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Abstract. One reason for wanting to compute an (approximate) NasHilequi
rium of a game is to predict how players will play. Howeverthe game has
multiple equilibria that are far apart, erequilibria that are far in variation dis-
tance from the true Nash equilibrium strategies, then théligtion may not
be possible even in principle. Motivated by this considergtin this paper we
define the notion of games that aapproximation stablemeaning that alk-
approximate equilibria are contained inside a small bathdfusA around a true
equilibrium, and investigate a number of their propertiggny natural small
games such as matching pennies and rock-paper-scissomsdaed approxi-
mation stable. We show furthermore there exist 2-playdry-n approximation-
stable games in which the Nash equilibrium and all approténeguilibria have

support2(log n). On the other hand, we show &H, A) approximation-stable
games must have arequilibrium of supporO( 42;(1) log n), yielding an im-
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mediaten lo2™)_time algorithm, improving over the bound of [11] for
games satisfying this condition. We in addition give a polyrial-time algorithm

for the case that\ ande are sufficiently close together. We also consider an in-
verse property, namely that albn-approximate equilibria arar from some true
equilibrium, and give an efficient algorithm for games dgtigy that condition.

1 Introduction

One reason for wanting to compute a Nash equilibrium or agprate equilibrium of
a game is to predict how players will play. However, if the galmas multiple equilibria
that are far apart, ar-equilibria that are far from the true Nash equilibrium sdgies,
then this prediction may not be possible even in principletivated by this considera-
tion, in this paper we define the notion of games that(arel)-approximation stable
meaning that alt-approximate equilibria are contained inside a small bathdius A
(in variation distance) around a true equilibrium, and stigate a number of their prop-
erties. If a game is approximation-stable for smaJlthen this means that even if play-
ers are only approximately best-responding, or even if tragmatrix is not a perfect
description of players’ true payoffs, stationary play skidn principle be predictable.
Many natural small 2-player games such as matching penniksoek-paper-scissors
are indeed approximation-stable fdrclose toe. In this paper we analyze fundamental
properties of approximation-stable games.

We show first that all¢, A) approximation-stable games must have-aquilibrium of

. . . X A210g(141/4)
support at mow(w logn), yielding an immediate,0( " logn)_

time algorithm for finding ar-equilibrium, improving by a facto® (A% log(1+1/4))
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in the exponent over the bound of [11] for games satisfyimg¢bndition (and reducing
to the bound of [11] in the worst case wheh= 1). Note that by assumption, this ap-
proximate equilibrium is alsa\-close to a true Nash equilibrium. We in addition give
improved bounds yielding polynomial-time algorithms foetcase that\ ande are
sufficiently close together. Specifically, fdr < 2e — 6¢2 we give an algorithm for find-
ing O(¢)-equilibria in timen®(1/¢), On the other hand, we show that fdr= O( /e),
there exist-action approximation-stable games in which the Nash #xjwim and all
approximate equilibria have suppa®(logn), extending results of Feder et al. [10].
We also consider an inverse property, namely thahatrapproximate equilibria are
far from some true equilibrium, and give an efficient algorittonfinding approximate
equilibria in games satisfying that condition.

Note that the classic notion of a stable Nash equilibriunaisstantially more restrictive
than the condition we consider here: it requires that (1)iafigitesimal deviation from
the equilibrium by any player should make the deviating ptastrictly worse off (a
strict equilibrium, implying that the equilibrium must be in putesgegies) and (2) such
a deviation should not give ttatherplayer any incentive to deviate. Our condition can
be viewed in a sense as a weaker, approximation version afreggent (1), namely
any deviation by distancé from the equilibrium should makat least oneof the two
players have at leastincentive to deviate.

Related Work: There has been substantial work exploring the computatiddash
equilibria in 2-playem x n general-sum games. Unfortunately, the complexity results
in this area have been almost uniformly negative. A serigmpgers has shown that it is
PPAD complete to compute Nash equilibria, eve player games, even when payoffs
are restricted to lie if0, 1} [7, 1, 6].

A structural result of Lipton et al. [11] shows that there aj@ existe-approximate
equilibria with support over at mog?((logn)/€?) strategies: this gives an immediate

nOUegn/<*) time algorithm for computing-approximate equilibria and has also been
shown to be essentially tight [10]. There has also been assefiresults [8, 12, 5] on
polynomial-time algorithms for computing approximate gifpra for larger values of

e. The best polynomial-time approximation guarantee knah 3393 [12].

For special classes of games, better results are knownxaonge, Barany et al. con-
sidered two player games with randomly chosen payoff madriand showed that with
high probability, such games have Nash equilibria with $swgbport [4].

Our work is also motivated by that of Balcan et al. [2] who ddesclusteringproblems
under approximation stability — meaning that all near-mjatisolutions to the objective
function should be close in the space of solutions — and dfi@ent algorithms for
stable instances for several common objectives. Resuling incentive to deviate
and distance to equilibria in general games appear in [9].

2 Definitions and Preliminaries

We consider 2-player-action general-sum games. LBtdenote the payoff matrix to
the row player and” denote the payoff matrix of the column player. We assume all
payoffs are scaled to the ranffe 1]. We say that a pair of mixed strategigs ¢) is an
e-equilibrium if for all rowsi, we havee! Rq < p” Rq + ¢, and for all columng, we
havep” Ce; < pTCq + . We will typically use(p*, ¢*) to denote a Nash equilibrium,



which is ane-equilibrium fore = 0. Note that in a Nash equilibriuitp*, ¢*), all rows:
in the support op* satisfye! Rq* = p* Rg* and similarly all columng in the support
of ¢* SatiSfyp*TCej =pTCg .

We also are interested in the distance between mixed sigatdepr probability distri-
butions in this context, the most natural notion is variatiistance, which we use here.
Specifically we define:

1
d(q,q') = QZI% —qj| =Y max(g — q;,0). 1)

We then define the distance between two strategy pairs as d@kgmuam of the row-
player's and column-player’s distances, that is:

d((p, q), (', q")) = max[d(p,p"), d(q.q)]. ()
We now present our main definition, namely that of a game bajipgoximation stable

Definition 1. A game satisfiege, A)-approximation stability if there exists a Nash
equilibrium(p*, ¢*) such that anyp, ¢) that is ane-equilibrium is A-close to(p*, ¢*),
i.e.d((p,q),(p",q")) < A.

So, fixinge, a smallerA means a stronger condition and a largemeans a weaker con-
dition. Every game ige, 1)-approximation stable, and as gets smaller, we might ex-
pect for the game to exhibit more useful structure. Manyratgames such as matching
pennies and rock-paper-scissors satigfyA)-approximation stability forA = O(e);
see Section 2.2 for analysis of a few simple examples. Wethat¢his definition is very
similar to a condition used in Balcan et al. [2] in the contef¢lustering problems.

All our results also apply to a weaker notion of approximatiability that allows for
multiple equilibria, so long as moving distanck from any equilibrium produces a
solution in which at least one player hamcentive to deviate. Specifically,

Definition 2. A game satisfiege, A)-weak approximation stability if, for any Nash
equilibrium (p*, ¢*) and any(p, ¢) such thatd((p, ¢), (p*,q*)) = A4, (p,q) is not an
¢’-equilibrium for anye’ < e.

Organization of this paper: We now begin with a few useful facts about the region
around Nash equilibria and the relation betweeand A in any game, as well as
a few simple examples of games satisfyifiqgA)-approximation stability forA ~

e. We then in Section 3 analyze properties of approximattaie games, showing
that every(e, A)-approximation stable game must have eaequilibrium of support

i i . . A2 log(141/A) log(n)y . i
O(Al e+ 1/A) log(n)) - yielding an immediate®” 2 )-time algorithm.

Note that for largeA this exponent simply reduces to tlcﬁs(k’i#) bound of [11],
but improves asA approaches. In Section 5 we give a near-matching lower bound,
showing that there exist approximation-stable games with@roximate equilibria
having support?(logn). In Section 4 we analyze games whekds especially close
to ¢, and give polynomial-time algorithms for finding approxitmaquilibria when

A < 2¢ — O(€?). Finally, in Section 6 we consider the inverse conditiort tibstrate-
gies within distanced of some Nash equilibrium areequilibria, and give an efficient
algorithm for computinde/A)-approximate equilibria in this case.




2.1 Preliminaries
We begin with a few preliminary facts that apply to any 2-gageneral-sum game.

Claim 1. If (p, q) is a-close to a Nash equilibriurtp*, ¢*) (i.e., ifd((p, q), (p*, ¢*)) <
«), then(p, q) is a3a-Nash equilibrium.

Proof. (omitted)

Claim 1 is useful because while it may be hard to determine¢iose some paifp, )

is to a true equilibrium, it is easy to check how much incemfilayers have to deviate.
Say that a Nash equilibriurtp*, ¢*) is non-trivial if at least one op* or ¢* does not
have full support over all the rows or columns. Notice triiiéash equilibria, if they
exist, can be computed in polynomial-time using Linear paogming. We then have:

Claim 2. For any nontrivial Nash equilibriun{p*, ¢*) and anya > 0, there exists
(p, q) such thadd((p, q), (p*, ¢*)) > aand(p, q) is ana-approximate equilibrium.

Proof. Without loss of generality, assume that does not have full support. Let;
be a row not in the support of*. Consider a pair of distribution®, ¢*) wherep =
(1 — a)p™ + ae;. Since: was not in the support of*, (p, ¢*) has variation distance
from (p*, ¢*). Yet, in (p, ¢*), with probability(1 — «) both the players are playing best
responses to each other. Hence, no player has moreitharentive to deviate. a

Corollary 1. Assume that the ganggsatisfies(e, A)-approximation stability and has
a non-trivial Nash equilibrium. Then we must hatte> e.

2.2 Some Simple Examples

A number of natural small games satigty A)-approximation stability for every > 0
and forA = O(e). Here, we give a few simple examples.

Game 1:The row and the column matrices &e 2 as follows:
11 10
w=[oo] =[]
Here, the only Nash equilibriuifp*, ¢*) is for the row player to play row and the col-
umn player to play columm, which are dominant strategies. Any deviation by distance
A from p* will give the row playerA incentive to deviate, regardless of the strategy of
the column player. Similarly, any deviation af from ¢* will give the column player

a A incentive to deviate regardless of the strategy of the raayea. Hence, for every
e € [0, 1], this game ife, A)-stable forA = e.

Game 2: This game is simply matching pennies:

10 01
w=o] e-[ho)
Denoting the indicator vectors as andes, the Nash equilibriunip*, ¢*) is equal to
(3(e1 + e2), 2(e1 + e2)). We now show that for any strategy which 45 far from

(p*,¢*), at least one player must havéncentive to deviate for = A 81223 .




Specifically, let(p, q) be A-far from (p*, ¢*), and without loss of generality assume
d(p,p*) = A. We may further assume without loss of generality (by synmyjehat
p=(L+A)er+ (L~ Aes. Letg= (L — A)es + (3 + A)es for A’ € [~ A, A In
this case the row player is getting a paypffRq = (% —2AA"). Furthermore, he can
move to row 2 and get payoff] Rq = (1 + A’). Hence, the incentive to deviate, —
p)TRq > A'(1+ 2A). Similarly, the column player has payoff Cq = (5 + 244",
whereag” Ce; = (5 +A), and hence has at leadt1 —24’) incentive to deviate. The

maximum of these two is at Ieastgﬁﬁg (with this value occuring at\’ = 45).

Therefore, the incentive to deviate in afy, ¢) that is A-far from (p*, ¢*) is at least
this large. Solving forA as a function o, this game ige, A)-approximation stable for
A=ec+ 0(e?).

Game 3:Rock, Paper, Scissors.

050 1
1050
0 105

R = C =

1 0 05

051 0
0051

A case analysis (omitted) shows that this gam ig\)-approximation stable fald =
4e, for anye < .

3 The Support of Equilibria in Stable Games

We now show that approximation-stable games have struttatecan be used to im-
prove the efficiency of algorithms for computing approximaguilibria.

Theorem 1. For any game satisfyin¢e, A)-approximation stability, there exists an
equilibrium where each player’s strategy has supgoftA/e)? log(1 + 1/A) logn).

Corollary 2. There is an algorithm to find-equilibria in games satisfyinge, A)-
approximation stability, running in timg©@((4/¢)* log(1+1/4) logn)

Let S = ¢(A/e)? logn for some absolute constantand let(p*, ¢*) denote the Nash
equilibrium such that alk-equilibria lie within distanceA of (p*, ¢*). Theorem 1 is
proven in stages. First, in Lemma 1 we show that given a padistfibutions(p, q), if

p is near-uniform over a large support thercan be written as a convex combination
p = ap1 + (1 — x)p2 wherep; andp, have disjoint supports, and for every column
j's performance againgt is close to its performance against This impliesp™* itself
cannot be near-uniform over a large sized support, sinceretee we could write it in
this way and then shift\ probability mass fronp to p;, producing a new distribution
p’ such thatundep’, ¢*), the column player has less thaimcentive to deviate (and the
row player has zero incentive to deviate sira@p(p’) C supp(p*)). This contradicts
the fact that the game {8, A)-approximation stable. We then build on this to show that
if p* is not near-uniform and does have a large support, it mustleapproximated by
a distribution of small support (rought9 (S log %)). This analysis combines Lemma
1 together with the sampling idea of Lipton et al. [11]. Thenga of course, applies to
q*. For the rest of this section we assume that 1/4.



Lemma 1. For any distributiong andg, if p satisfieg|p||3 < & whereS = ¢(A/e)?logn
for sufficiently large constant, thenp can be written as a convex combinatipn=
ap1 + (1 — x)py of two distributiong; andp, over disjoint supports such that:

(x<3/4<1- A
(ii) Vj, (1 =p)"Cle; —a) < 13
The point of Lemma 1 is that by (i) and (ii), modifyingoy movingA probability mass

from p, to p; can improve the performance ef relative tog for the column player by
at moste. The proof of Lemma 1 makes extensive use of the Hoeffdingi@ou

Theorem 2 (Hoeffding Bound).Let X;, : = 1,2,...,n, ben random variables, s.t.
Vi, X; € [ai, b;]. Letu; = E[X;]. Then for every > 0 we have that:

Pr(S, Xi > t+ 3, ] < exp (— sty ) 3

Proof (Lemma 1).etr be arandom subset of the supporppthatis, for every element
in supp(p), add it tor with probability1/2. Also, letC; denote theth entry ofCq. The
idea of the proof is just to argue that for any columrby the Hoeffding bound, with
high probability over the choice of, the distributionp; induced byp restricted tor
satisfies the desired condition thgtC(e; — ¢) is within ;5 of p” C(e; — ¢). We then
simply perform a union bound over

Fix columne;. LetY;; be the random variable defined 2s,(C;; — C;) if element:
was added tor, and0 otherwise. Observe th&[>", Vi;] = 1>, 2pi(Ci; — Ci) =
pTC(e; — q). Let Z; be the random variable defined 2g; with probability 1/2 (if
element; was added te), and0 otherwise. ObservE|[) ", Z;] = 1. Observe also that
for everyi we have thatZ;,Y;; € [—2p;, 2p;].

The obvious reason for defining,; and Z; is that by denoting the distribution re-
stricted tor (renormalized to havé; norm equal to 1) ag,., we have:

2icr Pi > Zi

prTc(ej _ q) _ Zierpi(cij_ci) > Y” (4)

so by bounding the numerator from above and the denominedor below, we can
hope to findr for which p,"C(e; — q) < E[}, Y;;] + (¢/44), thus decomposing
into the desiregh; = p,- andp, = pr. We can do this using the Hoeffding bound and
plugging the value ob":

(e 2 52
Pr 35,V > p'Clej —q) + 5z] < eXP( z(ﬁgf)é ) < exp ((4054)2) < 2

where the last inequality is by definition 6f Thus,Pr(3j,>",Y;; > pT C(e; — q) +
1oa) < 1/2. Similarly (and even simpler), we have tHat[) . 7; < 1 — x| < 1/2,
and so the existence offor which both events do not hold is proven. Observe that for

this specific- we have that

> Vi " C(ej—q)+e/10A T 54 T
S, 7 = £ 18157102 <p Cle;—q) + 1—://104 <p Cle; —q) + 13,

using the fact thagt” C(e; — ¢) < 1. Thus, we have the desired decompositiop.of O



Proof (Theorem 1)We begin by partitioning* into its heavyandlight parts. Specifi-
cally, greedily remove the largest entriespgfand place them into a séf (the heavy
elements) until either (aPr[H] > 1 — 4A, or (b) the remaining entries (the light
elements) satisfy the condition thét € L, Pr[i] < +Pr[L] for S as in Lemma 1,
whichever comes first. We analyze each case in turn.

If case (a) occurs first, then cleary has at mostSlog(1/44) elements. We now
simply apply the sampling argument of Lipton et al [11]i@nd union the result with
H. Specifically, decompose’ asp* = px + (1 — 3)pr, whereg denotes the total
probability mass oveH . Applying the sampling argument of [11] {g., we have that
by sampling a multise®’ of S elements fromsupp(p;,) = L, we are guaranteed, by
definition of 5, that for any columr;, | (Ux)” Ce; — pECe;| < (¢/84), whereUx

is the uniform distribution ove®’. This means that fop = SBpy + (1 — 8)Uy, all
columnse; satisfy|p*’ Ce; — 7 Ce;| < /2. We have thus found (the row portion of)
an e-equilibrium with support of size5(1 + log(1/4A)) as desired, and now simply
apply the same argument4o.

If (b) occurs first, we show that the game cannot satisfy\)-approximation stabil-
ity. Specifically, letp;, denote the induced distribution produced by restricido L
and renormalizing so that,(p.); = 1, then},(pL)? < + > ;(pr)i = +. Using
Lemma 1, we deduce we can wrjig as a convex combinatign, = xp; + (1 — x)p2
of p; andps satisfying the properties of Lemma 1. Again, by denotihgs the total
probability mass ovek, we have:

p" = Bpr + (1= B)ap; + (1 - B)(1 —x)p2 5)

wherepy is the induced distribution ovel. We now consider the transition fropf
top’ defined as

P = fpr + (L= B)z+ A)p1 + (1 = B)(1 —z) — A)p> (6)

Notice that by Lemma I; < 3 and hencél —3)(1—z)—A > (1-3)/4—A > 0,50
p’ is a valid probability distribution. Also, singg andp, are distributions over disjoint
support,p’ is A far from p*. Note that since’ is obtained from an internal deviation
within the support ofp*, the row player has no incentive to deviate when playihg
againstg*. So, if the game ige, A)-approximation stable, then playing againstg*
must cause the column player to have more tha@mcentive to deviate. However, by
transitioning fromp* to p’ the expected gain of switching frogi to anye; is

P Clej —q) = (p" + Alpr — p2))" Cle; — q*)
< A(py — pg)TC(ej —q) (sincep*TCq* > p*TCej)

From Lemma 1 we know that for every columin(p, — pz)" C(e; — ¢*) < 75. Also
we have thap, = 2 (pL — xp1). Using this we can writed(p1 — p2)TC(e; — ¢*) =
=2 (11 —pr)"Clej — ¢%) < 125 (55) < e where the last step follows from < 3/4.
So the column player has less thamcentive to deviate which contradicts the fact that
the game ige, A)-approximation stable. O



4 Polynomial-Time Algorithms when A and € are Close

We now show that ifA < 2e¢ — 6¢2, then there must exist ad(¢)-equilibrium where
each player's strategy has suppOitl /¢). Thus, in this case, for constantwe have a
polynomial-time algorithm for computin@(e)-equilibria.

Theorem 3. For any game satisfyinge, A)-approximation stability forA < 2e —
6¢2, there exists a(¢)-equilibrium where each player’s strategy has supgaft /).
Thus,O(¢)-equilibria can be computed in time”(*/¢).

Proof. Let (p*, ¢*) be a Nash equilibrium of the game. First, if there is no Setf
rows having a combined total probability mass [A, A + €] in p*, then this implies
that except for rows of total probability mass less th&mall rows in the support ob*
have probability greater than Thereforep* is A-close to a distribution of support at
most1/e. If this is true forg* as well, then this impliesp*, ¢*) is A-close to a pair of
strategiesp, ¢) each of suppor 1/e, which by Claim 1 and the assumptiah < 2e,

is an O(e)-equilibrium as desired. So, to prove the theorem, it sufficeshow that
if such a setS exists, then the game cannot satigfy A)-approximation stability for
A < 2e — 6€2.

Therefore, assume for contradiction thp@tcan be written as a convex combination

p" =zp1 + (1 — 2)pa, (7
wherep1, po have disjoint supports and € [A, A + ¢]. Lety = pI' Cq* — pf'Cq*
and letVe: = p*T'C¢*. We now consider two methods for moving distantérom p*:
moving probability fromp; to p2, and moving probability fronp, to p;. Let

pr=@—A)pi+1—z+A)p, (8)
=1+ 2" — (1351 9
Sincep’ has distanced from p* and its support is contained in the supporipdf by
approximation-stability, there must exist some columeuch thap'” Ce; > p'TCq*+
€. By (8) we havey'' Cq* = Vo — A(p1 —p2) T Cq* = Vo — Ay. By (9) and the fact that
p*TOej < Ve we have thap’TCej <Ve(l+ %). Therefore we have the constraint

Ve(l+2) > Vo — Ay +e (10)

Now, consider moving) probability mass fronp, to p;. Specifically, let
P =@+ Apr+(1—z—A)py (11)
=(1-=2)p" + (1551 (12)

Again, there must exist some colurap such thap”” Ce;, > p"TCq* + €. By (11)
we havep”TCq* = Vo + A(py — p2)TCq* = Vo + Ay. By (12) and the fact that
p*"'Cey, < Vo we have thap”" Cey, < Ve (1 — 12-) + 2. Therefore we have the
constraint

Vo(l—2)+ 2 2 Ve + Ay +e (13)

From constraint (10) we ha\i[éc(%) > ¢ — Ay and from constraint (13) we have
Vo(12:) < 12 — Ay — e. Therefore 2~ > 2¢, contradictingA < 2¢ — 6¢2. o

1—x M—x



5 Stable Games of Large Support

We now give a near-matching lower bound to the results ofi®e@&, showing that
there exist stable games in which the Nash equilibrium ahdpgdroximate equilibria
have supporf2(logn).

Theorem 4. Forany A < 1/2, there exish-by-n games satisfying:, A)-approximation
stability fore = A?2/32 such that alle-Nash equilibria have supports of size at least
(1—A)lg(n).

Thus, Theorem 4 implies the following near-matching loweuibd to Theorem 1.

Corollary 3. Forany A < 1/2 there exists affe, A)-approximation stable gamg for
somee > 0 such that alle-equilibria have supporﬂ(f—; logn).

Proof. The proof builds on a construction in Feder et al. [10] eximigi a game in
which all approximate equilibria have support of siZ¢logn). However, the game
in [10] does not satisfy stability and so a more involved ¢ardion and argument is
needed. We now present the construction of the mdtriXhe game will be constant
sumwithC = 1 — R. Letk = log,(n) and leta = A/4. The matrix R looks like:

XY
Z W
Where:

— X is k by k with all entries equal t0.5.

— Wisn — k byn — k with all entries equal t0.5.

— Zisn — k by k where each row ha.5 — a)k entries equal to 1 an.5 + o)k
entries equal to 0. Specifically, 3@!0.5504);:) different such rows appear. We can

add multiple copies of these rows if needed to fill out the matr
— Y isk by n— k where each column h&8.5 — «)k entries equal to 0 and.5 + o)k

entries equal to 1. Specifically, a(l<lo_5ﬁa)k) different such columns appear. We can
add multiple copies of these columns if needed to fill out tharix.

We begin with two observations about the above construction

Observation 1: This game has a Nash equilibriufp*, ¢*) which is uniform over the
first k rows and columns.

Observation 2: The minimax value of this game ig/2 to each player. So any, ¢) in
which one player gets less thaji2 — ¢ is note-Nash.

We now prove that this game satisfigs A) approximation-stability foe = A2/32.
Let (p, ¢) be some pair of distributions such th&{(p, ¢), (p*, ¢*)) > A. Recall that
d((p,q), (p*,¢*)) = max[d(p, p*), d(q, ¢*)] and assume without loss of generality that
d(q,q*) > A. We want to show that this isotane-Nash equilibrium. It will be conve-
nient to writeq = ¢’ + ¢” whereq’ is nonzero only over the firdt columns and;” is
nonzero only over the remaining— k columns.

Case 1:Suppose thaly”’| > § for 3 = A/4. Then, one possible response of the row
player is to play*, achieving a payofp*” Rq greater than:

0.5(1 = ) + (0.5 + )8 = 0.5 + af. (14)



Thus, ifp’ Rg < 0.5 + %ﬁ then this is not ar%—ﬁ-equilibrium (since the row player
would have more thaﬁ‘zﬁ incentive to deviate tp*) and if p? Rg > 0.5 + O‘—f then
this is also not arfy’-equilibrium (sincep” Cq = 1 — p"Rg < 0.5 — 22 and yet
pT'Cq* > 0.5 by Observation 2, so now the column player has more ﬂg%l'mcentive
to deviate). Plugging iac = 3 = A/4, we gete = a3/2 = A?/32 as desired.

Case 2:|¢"| < j. Defined'(q,¢*) = Zle max(q; — ¢f,0). So,d (¢, ¢*) > A — (.
For conceptual convenience, let us sort the entrieg (fe., the firstk entries ofq) in
decreasing order. We now claim that

SOSmk S 1/2 4 ap. (15)

This will imply at least one player has more thaimcentive to deviate since one pos-
sible response of the row player is to play the row in mafiwith 1's in the first
(0.5 — )k entries, gaining a value greater thgf2 + o3. Thus, ifp? Rg < 0.5+ «/3/2
then the row-player has more thars/2 incentive to deviate to that row i#, and if
pT Rq > 0.5 + a3/2 then the column player has more thafi/2 incentive to deviate
to ¢*). So, all that remains is to prove inequality (15). ket q.5—a)x-

Case 2a:c > 1/k. In this case we simply use the fact that since the columns
are sorted in decreasing ordergf at least arf0.5 — «) fraction of the quantity
d(q,q*) = Zle max(q; — ¢F,0) (think of this as the “excess” af overg*)
must be in the first0.5 — a)k columns. In addition, we have the remaining
“non-excess”> "2 min(q;, ¢f) = [(0.5 — @)k](1/k) = 0.5 — a. So,
summing these two and usintj(q,¢*) > A — 8 we get: 3“2~ F g >
(0.5—a)(1+4A-p3) =0.54+a8+(0.5A-0.58—a—aA) > 0.5+af, where

the last inequality comes from our choice®f= 3 = A/4 and assumption
thatA < 1/2.

Case 2b:c < 1/k. This implies thatll the d(q,¢*) — 3 “excess” of¢’ over
g* must be in the first0.5 — «)k columns. In addition, these columns must
contain at least 0.5 — «) fraction of the “non-excessEf:1 min(g;, qf).
This latter quantity in turn equals — d(q, ¢*), by using the factl(q, ¢*) =

S°¥_ max[q; — ¢, 0]. Putting this together we havd>(*>~** ¢, > (A —

B)+(05—a)(1—-—A4)=05—a+adA -3+ A/2>0.5+ aA, where the
last inequality comes from our choice of= 5 = A/4.

This completes Case 2 and the proof. a
This example can be extended if desired to make the game bearstant sum and

also so that the suiR + C' of the two matrices does not have a constant rank.

6 Inverse Conditions

In this section we consider an inverse condition to appragiom-stability, namely that
for some true equilibriunip*, ¢*), all non-approximate equilibria arar from (p*, ¢*).
In particular,



Definition 3. A game is(e, A)-smoothif for some equilibrium(p*, ¢*), all strategy
pairs (p, q) such thatd((p, q), (p*, ¢*)) < A are e-equilibria.

We now show that games that gre A)-smooth forA large compared te have the
property that good approximate equilibria can be compuffedently. (Recall by Claim
1 that all games arg, A)-smooth forA < e/3.)

Theorem 5. There is a polynomial-time algorithm to find &y A)-approximate equi-
librium in any game that i$e, A)-smooth.

We prove Theorem 5 through a series of claims as follows.

Claim. Let G be (e, A)-smooth for equilibrium(p*, ¢*). Then for every row we have
el Rg* > T Rq* — ¢/ A.

Proof. LetVz = p*” Rq*. Since(p*, ¢*) is a Nash equilibrium, any row; € supp(p*)
will get an expected payoff df; againsy* as well. Now consider arow; ¢ supp(p*).
Letp = (1 — A)p* + Ae,; and consider the paip, ¢*). This pair isA-close to(p*, ¢*)
and hence, by the assumption that the gan(e, id )-smooth, must be asrequilibrium.
This means that” Rg* > Vi — €. So we ge(1 — A)p*?T Rg* + Ael Rg* > Vi — ¢,
and using the fact that'” R¢* = Vi, this implies that! Rg* > Vg — X

Similarly, we have:

Claim. Let G be (e, A)-smooth for equilibriump*, ¢*). Then for every colump we
havep*TCej >pTCq* — ¢/ A.

Using these claims, we can efficiently computef@pproximate equilibrium in smooth
games.

Proof (Theorem 5): Solve the following linear program for a pair of strategjeg and
valuesVy, Vi

¢TRq > Vg — i Vi (16)
el Rq < Vg, Vi (17)
PTCe; = Ve -, ¥ (18)
p'Cej < Ve, Vj (19)

From the previous claims we have that, ¢*, Vi = p*" R¢*, Vo = p* Cq*) is a
feasible solution to the above LP. Also, when play{pgq), the row and the column
players are getting expected payoff at lebgt — 5 and Ve — 5 respectively. Fur-
thermore, by deviating from, the row player can get a payoff of at mdgt and by
deviating fromg, the column player cannot get more thin. Hence,(p, ¢) is an %-
approximate Nash equilibrium. ad



7 Open Questions and Conclusions

In this work we define and analyze a natural notion of appratiom-stability for 2-
player general-sum games, motivated by the goal of findipgag@pmate equilibria for
predictive purposes. We show that one can improve over thergéLipton et al. [11]
bound based on the extent to which the given game satisfiexdmdition. Further-
more, if A < 2¢ — O(e?) we show there must exist approximate equilibria of small
support, yielding an algorithm to find them in tim&(1/¢)_ On the other hand, we show
that approximation-stable games with= O(,/¢) can have all approximate equilibria
of support2(log n). We also analyze an inverse condition for which we show figdin
(e/A)-approximate equilibria can be done efficiently. One operbfam is to better un-
derstand for what values af (as a function ot) one can findD(¢)-approximate equi-
libria efficiently under the assumption ¢f, A)-approximation-stability. For instance,
can one extend the®(/9)-time algorithm fromA < 2¢ — O(e?) to A = poly(e)?
Recently Balcan and Braverman [3] have shown this may bimsgitally hard: specifi-
cally, for A = €!/4, they show am?°'¥(1/€) algorithm to finde-equilibria in such games
would imply a PTAS in general games. In fact, [3] motivates tbllowing interesting
question: could there be an algorithm thatéwery(e, A) finds aA-equilibrium in time
O(nrew(1/€))? This may be solvable even if a PTAS is hard for general gawieish
itself still remains an open question.
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