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Abstract. One reason for wanting to compute an (approximate) Nash equilib-
rium of a game is to predict how players will play. However, ifthe game has
multiple equilibria that are far apart, orǫ-equilibria that are far in variation dis-
tance from the true Nash equilibrium strategies, then this prediction may not
be possible even in principle. Motivated by this consideration, in this paper we
define the notion of games that areapproximation stable, meaning that allǫ-
approximate equilibria are contained inside a small ball ofradius∆ around a true
equilibrium, and investigate a number of their properties.Many natural small
games such as matching pennies and rock-paper-scissors areindeed approxi-
mation stable. We show furthermore there exist 2-playern-by-n approximation-
stable games in which the Nash equilibrium and all approximate equilibria have
supportΩ(log n). On the other hand, we show all(ǫ, ∆) approximation-stable

games must have anǫ-equilibrium of supportO(∆
2−o(1)

ǫ2
log n), yielding an im-

mediatenO( ∆2−o(1)

ǫ2
log n)-time algorithm, improving over the bound of [11] for

games satisfying this condition. We in addition give a polynomial-time algorithm
for the case that∆ andǫ are sufficiently close together. We also consider an in-
verse property, namely that allnon-approximate equilibria arefar from some true
equilibrium, and give an efficient algorithm for games satisfying that condition.

1 Introduction
One reason for wanting to compute a Nash equilibrium or approximate equilibrium of
a game is to predict how players will play. However, if the game has multiple equilibria
that are far apart, orǫ-equilibria that are far from the true Nash equilibrium strategies,
then this prediction may not be possible even in principle. Motivated by this considera-
tion, in this paper we define the notion of games that are(ǫ, ∆)-approximation stable,
meaning that allǫ-approximate equilibria are contained inside a small ball of radius∆
(in variation distance) around a true equilibrium, and investigate a number of their prop-
erties. If a game is approximation-stable for small∆, then this means that even if play-
ers are only approximately best-responding, or even if the game matrix is not a perfect
description of players’ true payoffs, stationary play should in principle be predictable.
Many natural small 2-player games such as matching pennies and rock-paper-scissors
are indeed approximation-stable for∆ close toǫ. In this paper we analyze fundamental
properties of approximation-stable games.

We show first that all(ǫ, ∆) approximation-stable games must have anǫ-equilibrium of

support at mostO(∆2 log(1+1/∆)
ǫ2 log n), yielding an immediatenO( ∆2 log(1+1/∆)

ǫ2
log n)-

time algorithm for finding anǫ-equilibrium, improving by a factorO(∆2 log(1+1/∆))
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in the exponent over the bound of [11] for games satisfying this condition (and reducing
to the bound of [11] in the worst case when∆ = 1). Note that by assumption, this ap-
proximate equilibrium is also∆-close to a true Nash equilibrium. We in addition give
improved bounds yielding polynomial-time algorithms for the case that∆ andǫ are
sufficiently close together. Specifically, for∆ ≤ 2ǫ−6ǫ2 we give an algorithm for find-
ing O(ǫ)-equilibria in timenO(1/ǫ). On the other hand, we show that for∆ = O(

√
ǫ),

there existn-action approximation-stable games in which the Nash equilibrium and all
approximate equilibria have supportΩ(log n), extending results of Feder et al. [10].
We also consider an inverse property, namely that allnon-approximate equilibria are
far from some true equilibrium, and give an efficient algorithm for finding approximate
equilibria in games satisfying that condition.

Note that the classic notion of a stable Nash equilibrium is substantially more restrictive
than the condition we consider here: it requires that (1) anyinfinitesimal deviation from
the equilibrium by any player should make the deviating player strictly worse off (a
strict equilibrium, implying that the equilibrium must be in pure strategies) and (2) such
a deviation should not give theotherplayer any incentive to deviate. Our condition can
be viewed in a sense as a weaker, approximation version of requirement (1), namely
any deviation by distance∆ from the equilibrium should makeat least oneof the two
players have at leastǫ incentive to deviate.

Related Work: There has been substantial work exploring the computation of Nash
equilibria in 2-playern × n general-sum games. Unfortunately, the complexity results
in this area have been almost uniformly negative. A series ofpapers has shown that it is
PPAD complete to compute Nash equilibria, even in2 player games, even when payoffs
are restricted to lie in{0, 1} [7, 1, 6].

A structural result of Lipton et al. [11] shows that there always existǫ-approximate
equilibria with support over at mostO((log n)/ǫ2) strategies: this gives an immediate
nO(log n/ǫ2)-time algorithm for computingǫ-approximate equilibria and has also been
shown to be essentially tight [10]. There has also been a series of results [8, 12, 5] on
polynomial-time algorithms for computing approximate equilibria for larger values of
ǫ. The best polynomial-time approximation guarantee known is 0.3393 [12].

For special classes of games, better results are known. For example, Barany et al. con-
sidered two player games with randomly chosen payoff matrices, and showed that with
high probability, such games have Nash equilibria with small support [4].

Our work is also motivated by that of Balcan et al. [2] who considerclusteringproblems
under approximation stability – meaning that all near-optimal solutions to the objective
function should be close in the space of solutions – and give efficient algorithms for
stable instances for several common objectives. Results relating incentive to deviate
and distance to equilibria in general games appear in [9].

2 Definitions and Preliminaries

We consider 2-playern-action general-sum games. LetR denote the payoff matrix to
the row player andC denote the payoff matrix of the column player. We assume all
payoffs are scaled to the range[0, 1]. We say that a pair of mixed strategies(p, q) is an
ǫ-equilibrium if for all rowsi, we haveeT

i Rq ≤ pT Rq + ǫ, and for all columnsj, we
havepT Cej ≤ pT Cq + ǫ. We will typically use(p∗, q∗) to denote a Nash equilibrium,



which is anǫ-equilibrium forǫ = 0. Note that in a Nash equilibrium(p∗, q∗), all rowsi
in the support ofp∗ satisfyeT

i Rq∗ = p∗Rq∗ and similarly all columnsj in the support
of q∗ satisfyp∗T Cej = p∗T Cq∗.

We also are interested in the distance between mixed strategies. For probability distri-
butions in this context, the most natural notion is variation distance, which we use here.
Specifically we define:

d(q, q′) =
1

2

∑

i

|qi − q′i| =
∑

i

max(qi − q′i, 0). (1)

We then define the distance between two strategy pairs as the maximum of the row-
player’s and column-player’s distances, that is:

d((p, q), (p′, q′)) = max[d(p, p′), d(q, q′)]. (2)

We now present our main definition, namely that of a game beingapproximation stable.

Definition 1. A game satisfies(ǫ, ∆)-approximation stability if there exists a Nash
equilibrium(p∗, q∗) such that any(p, q) that is anǫ-equilibrium is∆-close to(p∗, q∗),
i.e.d((p, q), (p∗, q∗)) ≤ ∆.

So, fixingǫ, a smaller∆ means a stronger condition and a larger∆ means a weaker con-
dition. Every game is(ǫ, 1)-approximation stable, and as∆ gets smaller, we might ex-
pect for the game to exhibit more useful structure. Many natural games such as matching
pennies and rock-paper-scissors satisfy(ǫ, ∆)-approximation stability for∆ = O(ǫ);
see Section 2.2 for analysis of a few simple examples. We notethat this definition is very
similar to a condition used in Balcan et al. [2] in the contextof clustering problems.

All our results also apply to a weaker notion of approximation stability that allows for
multiple equilibria, so long as moving distance∆ from any equilibrium produces a
solution in which at least one player hasǫ incentive to deviate. Specifically,

Definition 2. A game satisfies(ǫ, ∆)-weak approximation stability if, for any Nash
equilibrium (p∗, q∗) and any(p, q) such thatd((p, q), (p∗, q∗)) = ∆, (p, q) is not an
ǫ′-equilibrium for anyǫ′ < ǫ.

Organization of this paper: We now begin with a few useful facts about the region
around Nash equilibria and the relation betweenǫ and ∆ in any game, as well as
a few simple examples of games satisfying(ǫ, ∆)-approximation stability for∆ ≈
ǫ. We then in Section 3 analyze properties of approximation-stable games, showing
that every(ǫ, ∆)-approximation stable game must have anǫ-equilibrium of support

O(∆2 log(1+1/∆) log(n)
ǫ2 ), yielding an immediatenO( ∆2 log(1+1/∆) log(n)

ǫ2
)-time algorithm.

Note that for large∆ this exponent simply reduces to theO( log(n)
ǫ2 ) bound of [11],

but improves as∆ approachesǫ. In Section 5 we give a near-matching lower bound,
showing that there exist approximation-stable games with all approximate equilibria
having supportΩ(log n). In Section 4 we analyze games where∆ is especially close
to ǫ, and give polynomial-time algorithms for finding approximate equilibria when
∆ ≤ 2ǫ − O(ǫ2). Finally, in Section 6 we consider the inverse condition that all strate-
gies within distance∆ of some Nash equilibrium areǫ-equilibria, and give an efficient
algorithm for computing(ǫ/∆)-approximate equilibria in this case.



2.1 Preliminaries

We begin with a few preliminary facts that apply to any 2-player general-sum game.

Claim 1. If (p, q) is α-close to a Nash equilibrium(p∗, q∗) (i.e., ifd((p, q), (p∗, q∗)) ≤
α), then(p, q) is a3α-Nash equilibrium.

Proof. (omitted)

Claim 1 is useful because while it may be hard to determine howclose some pair(p, q)
is to a true equilibrium, it is easy to check how much incentive players have to deviate.
Say that a Nash equilibrium(p∗, q∗) is non-trivial if at least one ofp∗ or q∗ does not
have full support over all the rows or columns. Notice trivial Nash equilibria, if they
exist, can be computed in polynomial-time using Linear programming. We then have:

Claim 2. For any nontrivial Nash equilibrium(p∗, q∗) and anyα > 0, there exists
(p, q) such thatd((p, q), (p∗, q∗)) ≥ α and(p, q) is anα-approximate equilibrium.

Proof. Without loss of generality, assume thatp∗ does not have full support. Letei

be a row not in the support ofp∗. Consider a pair of distributions(p, q∗) wherep =
(1 − α)p∗ + αei. Sincei was not in the support ofp∗, (p, q∗) has variation distanceα
from (p∗, q∗). Yet, in (p, q∗), with probability(1−α) both the players are playing best
responses to each other. Hence, no player has more thanα incentive to deviate. ⊓⊔
Corollary 1. Assume that the gameG satisfies(ǫ, ∆)-approximation stability and has
a non-trivial Nash equilibrium. Then we must have∆ ≥ ǫ.

2.2 Some Simple Examples

A number of natural small games satisfy(ǫ, ∆)-approximation stability for everyǫ > 0
and for∆ = O(ǫ). Here, we give a few simple examples.

Game 1:The row and the column matrices are2 × 2 as follows:

R =

[

1 1
0 0

]

C =

[

1 0
1 0

]

Here, the only Nash equilibrium(p∗, q∗) is for the row player to play row1 and the col-
umn player to play column1, which are dominant strategies. Any deviation by distance
∆ from p∗ will give the row player∆ incentive to deviate, regardless of the strategy of
the column player. Similarly, any deviation of∆ from q∗ will give the column player
a ∆ incentive to deviate regardless of the strategy of the row player. Hence, for every
ǫ ∈ [0, 1], this game is(ǫ, ∆)-stable for∆ = ǫ.

Game 2:This game is simply matching pennies:

R =

[

1 0
0 1

]

C =

[

0 1
1 0

]

Denoting the indicator vectors ase1 ande2, the Nash equilibrium(p∗, q∗) is equal to
(1
2 (e1 + e2),

1
2 (e1 + e2)). We now show that for any strategy which is∆ far from

(p∗, q∗), at least one player must haveǫ incentive to deviate forǫ = ∆ (1+2∆)
(1+4∆) .



Specifically, let(p, q) be ∆-far from (p∗, q∗), and without loss of generality assume
d(p, p∗) = ∆. We may further assume without loss of generality (by symmetry) that
p = (1

2 + ∆)e1 + (1
2 −∆)e2. Let q = (1

2 −∆′)e1 + (1
2 + ∆′)e2 for ∆′ ∈ [−∆, ∆]. In

this case the row player is getting a payoffpT Rq = (1
2 − 2∆∆′). Furthermore, he can

move to row 2 and get payoffeT
2 Rq = (1

2 + ∆′). Hence, the incentive to deviate(e2 −
p)T Rq ≥ ∆′(1 + 2∆). Similarly, the column player has payoffpT Cq = (1

2 + 2∆∆′),
whereaspT Ce2 = (1

2 +∆), and hence has at least∆(1−2∆′) incentive to deviate. The

maximum of these two is at least∆ (1+2∆)
(1+4∆) (with this value occuring at∆′ = ∆

1+4∆ ).
Therefore, the incentive to deviate in any(p, q) that is∆-far from (p∗, q∗) is at least
this large. Solving for∆ as a function ofǫ, this game is(ǫ, ∆)-approximation stable for
∆ = ǫ + O(ǫ2).

Game 3:Rock, Paper, Scissors.

R =





0.5 0 1
1 0.5 0
0 1 0.5



 C =





0.5 1 0
0 0.5 1
1 0 0.5





A case analysis (omitted) shows that this game is(ǫ, ∆)-approximation stable for∆ =
4ǫ, for anyǫ ≤ 1

6 .

3 The Support of Equilibria in Stable Games

We now show that approximation-stable games have structurethat can be used to im-
prove the efficiency of algorithms for computing approximate equilibria.

Theorem 1. For any game satisfying(ǫ, ∆)-approximation stability, there exists anǫ-
equilibrium where each player’s strategy has supportO((∆/ǫ)2 log(1 + 1/∆) log n).

Corollary 2. There is an algorithm to findǫ-equilibria in games satisfying(ǫ, ∆)-
approximation stability, running in timenO((∆/ǫ)2 log(1+1/∆) log n).

Let S = c(∆/ǫ)2 log n for some absolute constantc, and let(p∗, q∗) denote the Nash
equilibrium such that allǫ-equilibria lie within distance∆ of (p∗, q∗). Theorem 1 is
proven in stages. First, in Lemma 1 we show that given a pair ofdistributions(p, q), if
p is near-uniform over a large support thenp can be written as a convex combination
p = xp1 + (1 − x)p2 wherep1 andp2 have disjoint supports, and for every columnj,
j’s performance againstp1 is close to its performance againstp2. This impliesp∗ itself
cannot be near-uniform over a large sized support, since otherwise we could write it in
this way and then shift∆ probability mass fromp2 to p1, producing a new distribution
p′ such that under(p′, q∗), the column player has less thanǫ incentive to deviate (and the
row player has zero incentive to deviate sincesupp(p′) ⊆ supp(p∗)). This contradicts
the fact that the game is(ǫ, ∆)-approximation stable. We then build on this to show that
if p∗ is not near-uniform and does have a large support, it must be well-approximated by
a distribution of small support (roughlyO(S log 1

∆)). This analysis combines Lemma
1 together with the sampling idea of Lipton et al. [11]. The same, of course, applies to
q∗. For the rest of this section we assume that∆ ≤ 1/4.



Lemma 1. For any distributionsp andq, if p satisfies‖p‖2
2 ≤ 1

S whereS = c(∆/ǫ)2 log n
for sufficiently large constantc, thenp can be written as a convex combinationp =
xp1 + (1 − x)p2 of two distributionsp1 andp2 over disjoint supports such that:

(i) x ≤ 3/4 ≤ 1 − ∆.
(ii) ∀j, (p1 − p)T C(ej − q) < ǫ

4∆

The point of Lemma 1 is that by (i) and (ii), modifyingp by moving∆ probability mass
from p2 to p1 can improve the performance ofej relative toq for the column player by
at mostǫ. The proof of Lemma 1 makes extensive use of the Hoeffding Bound:

Theorem 2 (Hoeffding Bound).Let Xi, i = 1, 2, . . . , n, ben random variables, s.t.
∀i, Xi ∈ [ai, bi]. Letµi = E[Xi]. Then for everyt > 0 we have that:

Pr [
∑

i Xi > t +
∑

i µi] ≤ exp
(

− t2
P

i(bi−ai)2

)

(3)

Proof (Lemma 1).Letr be a random subset of the support ofp; that is, for every element
in supp(p), add it tor with probability1/2. Also, letCi denote theith entry ofCq. The
idea of the proof is just to argue that for any columnj, by the Hoeffding bound, with
high probability over the choice ofr, the distributionp1 induced byp restricted tor
satisfies the desired condition thatpT

1 C(ej − q) is within ǫ
4∆ of pT C(ej − q). We then

simply perform a union bound overj.

Fix columnej . Let Yij be the random variable defined as2pi(Cij − Ci) if elementi
was added tor, and0 otherwise. Observe thatE[

∑

i Yij ] = 1
2

∑

i 2pi(Cij − Ci) =

pT C(ej − q). Let Zi be the random variable defined as2pi with probability 1/2 (if
elementi was added tor), and0 otherwise. ObserveE[

∑

i Zi] = 1. Observe also that
for everyi we have thatZi, Yij ∈ [−2pi, 2pi].

The obvious reason for definingYij andZi is that by denoting the distributionp re-
stricted tor (renormalized to haveL1 norm equal to 1) aspr, we have:

pr
T C(ej − q) =

P

i∈r pi(Cij−Ci)
P

i∈r pi
=

P

i Yij
P

i Zi
(4)

so by bounding the numerator from above and the denominator from below, we can
hope to findr for which pr

T C(ej − q) < E[
∑

i Yij ] + (ǫ/4∆), thus decomposingp
into the desiredp1 = pr andp2 = pr̄. We can do this using the Hoeffding bound and
plugging the value ofS:

Pr
[
∑

i Yij > pT C(ej − q) + ǫ
10∆

]

< exp
(

−(ǫ/10∆)2
P

i(4pi)2

)

≤ exp
(

−Sǫ2

(40∆)2

)

< 1
2n ,

where the last inequality is by definition ofS. Thus,Pr[∃j,
∑

i Yij > pT C(ej − q) +
ǫ

10∆ ] < 1/2. Similarly (and even simpler), we have thatPr[
∑

i Zi < 1 − ǫ
10∆ ] < 1/2,

and so the existence ofr for which both events do not hold is proven. Observe that for
this specificr we have that

P

i Yij
P

i Zi
≤ pT C(ej−q)+ǫ/10∆

1−ǫ/10∆ ≤ pT C(ej − q) + ǫ/5∆
1−ǫ/10∆ ≤ pT C(ej − q) + ǫ

4∆ ,

using the fact thatpT C(ej −q) ≤ 1. Thus, we have the desired decomposition ofp. ⊓⊔



Proof (Theorem 1).We begin by partitioningp∗ into its heavyandlight parts. Specifi-
cally, greedily remove the largest entries ofp∗ and place them into a setH (the heavy
elements) until either (a)Pr[H ] ≥ 1 − 4∆, or (b) the remaining entriesL (the light
elements) satisfy the condition that∀i ∈ L, Pr[i] ≤ 1

S Pr[L] for S as in Lemma 1,
whichever comes first. We analyze each case in turn.

If case (a) occurs first, then clearlyH has at mostS log(1/4∆) elements. We now
simply apply the sampling argument of Lipton et al [11] toL and union the result with
H . Specifically, decomposep∗ asp∗ = βpH + (1 − β)pL, whereβ denotes the total
probability mass overH . Applying the sampling argument of [11] topL, we have that
by sampling a multisetX of S elements fromsupp(pL) = L, we are guaranteed, by
definition ofS, that for any columnej ,

∣

∣(UX )T Cej − pT
LCej

∣

∣ ≤ (ǫ/8∆), whereUX

is the uniform distribution overX . This means that for̃p = βpH + (1 − β)UX , all
columnsej satisfy|p∗T Cej − p̃T Cej | ≤ ǫ/2. We have thus found (the row portion of)
an ǫ-equilibrium with support of sizeS(1 + log(1/4∆)) as desired, and now simply
apply the same argument toq∗.

If (b) occurs first, we show that the game cannot satisfy(ǫ, ∆)-approximation stabil-
ity. Specifically, letpL denote the induced distribution produced by restrictingp∗ to L
and renormalizing so that

∑

i(pL)i = 1, then
∑

i(pL)2i ≤ 1
S

∑

i(pL)i = 1
S . Using

Lemma 1, we deduce we can writepL as a convex combinationpL = xp1 + (1 − x)p2

of p1 andp2 satisfying the properties of Lemma 1. Again, by denotingβ as the total
probability mass overH , we have:

p∗ = βpH + (1 − β)xp1 + (1 − β)(1 − x)p2 (5)

wherepH is the induced distribution overH . We now consider the transition fromp∗

to p′ defined as

p′ = βpH + ((1 − β)x + ∆)p1 + ((1 − β)(1 − x) − ∆)p2 (6)

Notice that by Lemma 1,x ≤ 3
4 and hence(1−β)(1−x)−∆ ≥ (1−β)/4−∆ ≥ 0, so

p′ is a valid probability distribution. Also, sincep1 andp2 are distributions over disjoint
support,p′ is ∆ far from p∗. Note that sincep′ is obtained from an internal deviation
within the support ofp∗, the row player has no incentive to deviate when playingp′

againstq∗. So, if the game is(ǫ, ∆)-approximation stable, then playingp′ againstq∗

must cause the column player to have more thenǫ incentive to deviate. However, by
transitioning fromp∗ to p′ the expected gain of switching fromq∗ to anyej is

p′T C(ej − q) = (p∗ + ∆(p1 − p2))
T C(ej − q∗)

≤ ∆(p1 − p2)
T C(ej − q∗) (sincep∗T Cq∗ ≥ p∗T Cej)

From Lemma 1 we know that for every columnj, (p1 − pL)T C(ej − q∗) < ǫ
4∆ . Also

we have thatp2 = 1
1−x(pL − xp1). Using this we can write∆(p1 − p2)

T C(ej − q∗) =
∆

1−x (p1 − pL)T C(ej − q∗) < ∆
1−x( ǫ

4∆) ≤ ǫ where the last step follows fromx ≤ 3/4.
So the column player has less thanǫ incentive to deviate which contradicts the fact that
the game is(ǫ, ∆)-approximation stable. ⊓⊔



4 Polynomial-Time Algorithms when∆ and ǫ are Close

We now show that if∆ ≤ 2ǫ − 6ǫ2, then there must exist anO(ǫ)-equilibrium where
each player’s strategy has supportO(1/ǫ). Thus, in this case, for constantǫ, we have a
polynomial-time algorithm for computingO(ǫ)-equilibria.

Theorem 3. For any game satisfying(ǫ, ∆)-approximation stability for∆ ≤ 2ǫ −
6ǫ2, there exists anO(ǫ)-equilibrium where each player’s strategy has supportO(1/ǫ).
Thus,O(ǫ)-equilibria can be computed in timenO(1/ǫ).

Proof. Let (p∗, q∗) be a Nash equilibrium of the game. First, if there is no setS of
rows having a combined total probability massx ∈ [∆, ∆ + ǫ] in p∗, then this implies
that except for rows of total probability mass less than∆, all rows in the support ofp∗

have probability greater thanǫ. Therefore,p∗ is ∆-close to a distribution of support at
most1/ǫ. If this is true forq∗ as well, then this implies(p∗, q∗) is ∆-close to a pair of
strategies(p, q) each of support≤ 1/ǫ, which by Claim 1 and the assumption∆ < 2ǫ,
is anO(ǫ)-equilibrium as desired. So, to prove the theorem, it suffices to show that
if such a setS exists, then the game cannot satisfy(ǫ, ∆)-approximation stability for
∆ ≤ 2ǫ − 6ǫ2.

Therefore, assume for contradiction thatp∗ can be written as a convex combination

p∗ = xp1 + (1 − x)p2, (7)

wherep1, p2 have disjoint supports andx ∈ [∆, ∆ + ǫ]. Let γ = pT
1 Cq∗ − pT

2 Cq∗

and letVC = p∗T Cq∗. We now consider two methods for moving distance∆ from p∗:
moving probability fromp1 to p2, and moving probability fromp2 to p1. Let

p′ = (x − ∆)p1 + (1 − x + ∆)p2 (8)

= (1 + ∆
1−x )p∗ − ( ∆

1−x)p1. (9)

Sincep′ has distance∆ from p∗ and its support is contained in the support ofp∗, by
approximation-stability, there must exist some columnej such thatp′T Cej ≥ p′T Cq∗+
ǫ. By (8) we havep′T Cq∗ = VC−∆(p1−p2)

T Cq∗ = VC−∆γ. By (9) and the fact that
p∗T Cej ≤ VC we have thatp′T Cej ≤ VC(1 + ∆

1−x ). Therefore we have the constraint

VC(1 + ∆
1−x ) ≥ VC − ∆γ + ǫ. (10)

Now, consider moving∆ probability mass fromp2 to p1. Specifically, let

p′′ = (x + ∆)p1 + (1 − x − ∆)p2 (11)

= (1 − ∆
1−x )p∗ + ( ∆

1−x )p1. (12)

Again, there must exist some columnek such thatp′′T Cek ≥ p′′T Cq∗ + ǫ. By (11)
we havep′′T Cq∗ = VC + ∆(p1 − p2)

T Cq∗ = VC + ∆γ. By (12) and the fact that
p∗T Cek ≤ VC we have thatp′′T Cek ≤ VC(1 − ∆

1−x ) + ∆
1−x . Therefore we have the

constraint

VC(1 − ∆
1−x ) + ∆

1−x ≥ VC + ∆γ + ǫ. (13)

From constraint (10) we haveVC( ∆
1−x ) ≥ ǫ − ∆γ and from constraint (13) we have

VC( ∆
1−x) ≤ ∆

1−x − ∆γ − ǫ. Therefore, ∆
1−x ≥ 2ǫ, contradicting∆ ≤ 2ǫ − 6ǫ2. ⊓⊔



5 Stable Games of Large Support

We now give a near-matching lower bound to the results of Section 3, showing that
there exist stable games in which the Nash equilibrium and all approximate equilibria
have supportΩ(log n).

Theorem 4. For any∆ ≤ 1/2, there existn-by-n games satisfying(ǫ, ∆)-approximation
stability for ǫ = ∆2/32 such that allǫ-Nash equilibria have supports of size at least
(1 − ∆) lg(n).

Thus, Theorem 4 implies the following near-matching lower bound to Theorem 1.

Corollary 3. For any∆ ≤ 1/2 there exists an(ǫ, ∆)-approximation stable gameG for
someǫ > 0 such that allǫ-equilibria have supportΩ(∆4

ǫ2 log n).

Proof. The proof builds on a construction in Feder et al. [10] exhibiting a game in
which all approximate equilibria have support of sizeΩ(log n). However, the game
in [10] does not satisfy stability and so a more involved construction and argument is
needed. We now present the construction of the matrixR. The game will be constant
sum withC = 1− R. Let k = log2(n) and letα = ∆/4. The matrix R looks like:

[

X Y
Z W

]

Where:

– X is k by k with all entries equal to0.5.
– W is n − k by n − k with all entries equal to0.5.
– Z is n − k by k where each row has(0.5 − α)k entries equal to 1 and(0.5 + α)k

entries equal to 0. Specifically, all
(

k
(0.5−α)k

)

different such rows appear. We can
add multiple copies of these rows if needed to fill out the matrix.

– Y is k by n−k where each column has(0.5−α)k entries equal to 0 and(0.5+α)k

entries equal to 1. Specifically, all
(

k
(0.5−α)k

)

different such columns appear. We can
add multiple copies of these columns if needed to fill out the matrix.

We begin with two observations about the above construction:

Observation 1: This game has a Nash equilibrium(p∗, q∗) which is uniform over the
first k rows and columns.

Observation 2:The minimax value of this game is1/2 to each player. So any(p, q) in
which one player gets less than1/2 − ǫ is notǫ-Nash.

We now prove that this game satisfies(ǫ, ∆) approximation-stability forǫ = ∆2/32.
Let (p, q) be some pair of distributions such thatd((p, q), (p∗, q∗)) > ∆. Recall that
d((p, q), (p∗, q∗)) = max[d(p, p∗), d(q, q∗)] and assume without loss of generality that
d(q, q∗) > ∆. We want to show that this isnotanǫ-Nash equilibrium. It will be conve-
nient to writeq = q′ + q′′ whereq′ is nonzero only over the firstk columns andq′′ is
nonzero only over the remainingn − k columns.

Case 1:Suppose that|q′′| > β for β = ∆/4. Then, one possible response of the row
player is to playp∗, achieving a payoffp∗T Rq greater than:

0.5(1 − β) + (0.5 + α)β = 0.5 + αβ. (14)



Thus, if pT Rq ≤ 0.5 + αβ
2 then this is not anαβ

2 -equilibrium (since the row player
would have more thanαβ

2 incentive to deviate top∗) and if pT Rq > 0.5 + αβ
2 then

this is also not anαβ
2 -equilibrium (sincepT Cq = 1 − pT Rq < 0.5 − αβ

2 and yet
pT Cq∗ ≥ 0.5 by Observation 2, so now the column player has more thanαβ

2 incentive
to deviate). Plugging inα = β = ∆/4, we getǫ = αβ/2 = ∆2/32 as desired.

Case 2:|q′′| ≤ β. Defined′(q, q∗) =
∑k

i=1 max(qi − q∗i , 0). So,d′(q, q∗) > ∆ − β.
For conceptual convenience, let us sort the entries ofq′ (i.e., the firstk entries ofq) in
decreasing order. We now claim that

∑(0.5−α)k
i=1 qi > 1/2 + αβ. (15)

This will imply at least one player has more thanǫ incentive to deviate since one pos-
sible response of the row player is to play the row in matrixZ with 1’s in the first
(0.5−α)k entries, gaining a value greater than1/2+αβ. Thus, ifpT Rq ≤ 0.5+αβ/2
then the row-player has more thanαβ/2 incentive to deviate to that row inZ, and if
pT Rq > 0.5 + αβ/2 then the column player has more thanαβ/2 incentive to deviate
to q∗). So, all that remains is to prove inequality (15). Letc = q(0.5−α)k.

Case 2a:c ≥ 1/k. In this case we simply use the fact that since the columns
are sorted in decreasing order ofqi, at least an(0.5−α) fraction of the quantity
d′(q, q∗) =

∑k
i=1 max(qi − q∗i , 0) (think of this as the “excess” ofq′ overq∗)

must be in the first(0.5 − α)k columns. In addition, we have the remaining
“non-excess”

∑(0.5−α)k
i=1 min(qi, q

∗

i ) = [(0.5 − α)k](1/k) = 0.5 − α. So,

summing these two and usingd′(q, q∗) > ∆ − β we get:
∑(0.5−α)k

i=1 qi >
(0.5−α)(1+∆−β) = 0.5+αβ+(0.5∆−0.5β−α−α∆) ≥ 0.5+αβ, where
the last inequality comes from our choice ofα = β = ∆/4 and assumption
that∆ ≤ 1/2.

Case 2b:c ≤ 1/k. This implies thatall thed(q, q∗) − β “excess” ofq′ over
q∗ must be in the first(0.5 − α)k columns. In addition, these columns must
contain at least a(0.5 − α) fraction of the “non-excess”

∑k
i=1 min(qi, q

∗

i ).
This latter quantity in turn equals1 − d(q, q∗), by using the factd(q, q∗) =
∑k

i=1 max[q∗i − qi, 0]. Putting this together we have:
∑(0.5−α)k

i=1 qi > (∆ −
β) + (0.5 − α)(1 − ∆) = 0.5 − α + α∆ − β + ∆/2 ≥ 0.5 + α∆, where the
last inequality comes from our choice ofα = β = ∆/4.

This completes Case 2 and the proof. ⊓⊔

This example can be extended if desired to make the game be non-constant sum and
also so that the sumR + C of the two matrices does not have a constant rank.

6 Inverse Conditions

In this section we consider an inverse condition to approximation-stability, namely that
for some true equilibrium(p∗, q∗), all non-approximate equilibria arefar from (p∗, q∗).
In particular,



Definition 3. A game is(ǫ, ∆)-smoothif for some equilibrium(p∗, q∗), all strategy
pairs (p, q) such thatd((p, q), (p∗, q∗)) ≤ ∆ are ǫ-equilibria.

We now show that games that are(ǫ, ∆)-smooth for∆ large compared toǫ have the
property that good approximate equilibria can be computed efficiently. (Recall by Claim
1 that all games are(ǫ, ∆)-smooth for∆ ≤ ǫ/3.)

Theorem 5. There is a polynomial-time algorithm to find an(ǫ/∆)-approximate equi-
librium in any game that is(ǫ, ∆)-smooth.

We prove Theorem 5 through a series of claims as follows.

Claim. Let G be(ǫ, ∆)-smooth for equilibrium(p∗, q∗). Then for every rowi we have
eT

i Rq∗ ≥ p∗T Rq∗ − ǫ/∆.

Proof. LetVR = p∗T Rq∗. Since(p∗, q∗) is a Nash equilibrium, any rowei ∈ supp(p∗)
will get an expected payoff ofVR againstq∗ as well. Now consider a rowei /∈ supp(p∗).
Let p = (1−∆)p∗ + ∆ei and consider the pair(p, q∗). This pair is∆-close to(p∗, q∗)
and hence, by the assumption that the game is(ǫ, ∆)-smooth, must be anǫ-equilibrium.
This means thatpT Rq∗ ≥ VR − ǫ. So we get(1 − ∆)p∗T Rq∗ + ∆eT

i Rq∗ ≥ VR − ǫ,
and using the fact thatp∗T Rq∗ = VR, this implies thateT

i Rq∗ ≥ VR − ǫ
∆ .

Similarly, we have:

Claim. Let G be (ǫ, ∆)-smooth for equilibrium(p∗, q∗). Then for every columnj we
havep∗T Cej ≥ p∗T Cq∗ − ǫ/∆.

Using these claims, we can efficiently compute anǫ
∆ -approximate equilibrium in smooth

games.

Proof (Theorem 5):Solve the following linear program for a pair of strategiesp, q and
valuesVR, VC :

eT
i Rq ≥ VR − ǫ

∆
, ∀i (16)

eT
i Rq ≤ VR, ∀i (17)

pT Cej ≥ VC − ǫ

∆
, ∀j (18)

pT Cej ≤ VC , ∀j (19)

From the previous claims we have that(p∗, q∗, VR = p∗T Rq∗, VC = p∗T Cq∗) is a
feasible solution to the above LP. Also, when playing(p, q), the row and the column
players are getting expected payoff at leastVR − ǫ

∆ andVC − ǫ
∆ respectively. Fur-

thermore, by deviating fromp, the row player can get a payoff of at mostVR and by
deviating fromq, the column player cannot get more thanVC . Hence,(p, q) is an ǫ

∆ -
approximate Nash equilibrium. ⊓⊔



7 Open Questions and Conclusions

In this work we define and analyze a natural notion of approximation-stability for 2-
player general-sum games, motivated by the goal of finding approximate equilibria for
predictive purposes. We show that one can improve over the general Lipton et al. [11]
bound based on the extent to which the given game satisfies this condition. Further-
more, if ∆ < 2ǫ − O(ǫ2) we show there must exist approximate equilibria of small
support, yielding an algorithm to find them in timenO(1/ǫ). On the other hand, we show
that approximation-stable games with∆ = O(

√
ǫ) can have all approximate equilibria

of supportΩ(log n). We also analyze an inverse condition for which we show finding
(ǫ/∆)-approximate equilibria can be done efficiently. One open problem is to better un-
derstand for what values of∆ (as a function ofǫ) one can findO(ǫ)-approximate equi-
libria efficiently under the assumption of(ǫ, ∆)-approximation-stability. For instance,
can one extend thenO(1/ǫ)-time algorithm from∆ < 2ǫ − O(ǫ2) to ∆ = poly(ǫ)?
Recently Balcan and Braverman [3] have shown this may be intrinsically hard: specifi-
cally, for∆ = ǫ1/4, they show annpoly(1/ǫ) algorithm to findǫ-equilibria in such games
would imply a PTAS in general games. In fact, [3] motivates the following interesting
question: could there be an algorithm that forevery(ǫ, ∆) finds a∆-equilibrium in time
O(npoly(1/ǫ))? This may be solvable even if a PTAS is hard for general games,which
itself still remains an open question.
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