
Clustering via Similarity Functions: Theoretical

Foundations and Algorithms∗

Maria-Florina Balcan† Avrim Blum‡ Santosh Vempala§

Abstract

Problems of clustering data from pairwise similarity information arise in many different
fields. Yet questions of which algorithms are best to use under what conditions, and how good
a similarity measure is needed to produce accurate clusters for a given task remains poorly
understood.

In this work we propose a new general framework for analyzing clustering from similarity
information that directly addresses this question of what properties of a similarity measure are
sufficient to cluster accurately and by what kinds of algorithms. We use this framework to show
that a wide variety of interesting learning-theoretic and game-theoretic properties, including
properties motivated by mathematical biology, can be used to cluster well, and we design new
efficient algorithms that are able to take advantage of them. We consider two natural clustering
objectives: (a) list clustering, where the algorithm’s goal is to produce a small list of clusterings
such that at least one of them is approximately correct, and (b) hierarchical clustering, where
the algorithm’s goal is to produce a hierarchy such that desired clustering is some pruning of
this tree (which a user could navigate). We further develop a notion of clustering complexity
for a given property, analogous to notions of capacity in learning theory, which we analyze for a
wide range of properties, giving tight upper and lower bounds. We also show how our algorithms
can be extended to the inductive case, i.e., by using just a constant-sized sample, as in property
testing. This yields very efficient algorithms, though proving correctness requires subtle analysis
based on regularity-type results.

Our framework can be viewed as an analog of discriminative models for supervised classi-
fication (i.e., the Statistical Learning Theory framework and the PAC learning model), where
our goal is to cluster accurately given a property or relation the similarity function is believed to
satisfy with respect to the ground truth clustering. More specifically our framework is analogous
to that of data-dependent concept classes in supervised learning, where conditions such as the
large margin property have been central in the analysis of kernel methods.

Our framework also makes sense for exploratory clustering, where the property itself can
define the quality that makes a clustering desirable or interesting, and the hierarchy or list that
our algorithms output will then contain approximations to all such desirable clusterings.
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1 Introduction

Clustering is a central task in the analysis and exploration of data. It has a wide range of applica-
tions from computational biology to computer vision to information retrieval. It has many variants
and formulations and it has been extensively studied in many different communities. However,
while many different clustering algorithms have been developed, theoretical analysis has typically
involved either making strong assumptions about the uniformity of clusters or else optimizing
distance-based objective functions only secondarily related to the true goals.

In the Algorithms literature, clustering is typically studied by posing some objective function,
such as k-median, min-sum or k-means, and then developing algorithms for approximately op-
timizing this objective given a data set represented as a weighted graph [Charikar et al., 1999,
Kannan et al., 2004, Jain and Vazirani, 2001]. That is, the graph is viewed as “ground truth”
and the goal is to design algorithms to optimize various objectives over this graph. However, for
most clustering problems such as clustering documents by topic or clustering proteins by function,
ground truth is really the unknown true topic or true function of each object. The construction of
the weighted graph is just done using some heuristic: e.g., cosine-similarity for clustering documents
or a Smith-Waterman score in computational biology. That is, the goal is not so much to opti-
mize a distance-based objective but rather to produce a clustering that agrees as much as possible
with the unknown true categories. Alternatively, methods developed both in the algorithms and
in the machine learning literature for learning mixtures of distributions [Achlioptas and McSherry,
2005, Arora and Kannan, 2001, Kannan et al., 2005, Vempala and Wang, 2004, Dasgupta, 1999,
Dasgupta et al., 2005] explicitly have a notion of ground-truth clusters which they aim to recover.
However, such methods make strong probabilistic assumptions: they require an embedding of the
objects into Rn such that the clusters can be viewed as distributions with very specific properties
(e.g., Gaussian or log-concave). In many real-world situations we might only be able to expect a
domain expert to provide a notion of similarity between objects that is related in some reasonable
ways to the desired clustering goal, and not necessarily an embedding with such strong conditions.
Even nonparametric Bayesian models such as (hierarchical) Dirichlet Processes make fairly specific
probabilistic assumptions about how data is generated [Teh et al., 2006].

In this work, we develop a theoretical approach to analyzing clustering that is able to talk about
accuracy of a solution produced without resorting to a probabilistic generative model for the data.
In particular, motivated by work on similarity functions in the context of Supervised Learning that
asks “what natural properties of a given kernel (or similarity) function K are sufficient to allow
one to learn well?” [Herbrich, 2002, Shawe-Taylor and Cristianini, 2004, Scholkopf et al., 2004,
Balcan and Blum, 2006, Balcan et al., 2006] we ask the question “what natural properties of a
pairwise similarity function are sufficient to allow one to cluster well?” To study this question we
develop a theoretical framework which can be thought of as a discriminative (PAC style) model
for clustering, though the basic object of study, rather than a concept class, is a property of the
similarity function K in terms of its relation to the target. This is much like the approach taken in
the study of kernel-based learning; we expand on this connection further in Section 1.1.

The main difficulty that appears when phrasing the problem in this general way is that in
clustering there is no labeled data. Therefore, if one defines success as outputting a single clustering
that closely approximates the correct clustering, then one needs to assume very strong conditions
in order to cluster well. For example, if the similarity function provided by our expert is so good
that K(x, y) > 0 for all pairs x and y that should be in the same cluster, and K(x, y) < 0 for all
pairs x and y that should be in different clusters, then it would be trivial to use it to recover the
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Figure 1: Data lies in four regions A,B,C,D (e.g., think of as documents on tennis, soccer, TCS,
and AI). Suppose that K(x, y) = 1 if x and y belong to the same region, K(x, y) = 1/2 if x ∈ A
and y ∈ B or if x ∈ C and y ∈ D, and K(x, y) = 0 otherwise. Even assuming that all points are
more similar to all points in their own cluster than to any point in any other cluster, there are
still multiple consistent clusterings, including two consistent 3-clusterings ((A∪B, C, D) or (A, B,
C ∪ D)). However, there is a single hierarchical decomposition such that any consistent clustering
is a pruning of this tree.

clusters. However, if we slightly weaken this condition to just require that all points x are more
similar to all points y from their own cluster than to any points y from any other clusters (but
without a common cutoff value), then this is no longer sufficient to uniquely identify even a good
approximation to the correct answer. For instance, in the example in Figure 1, there are multiple
highly distinct clusterings consistent with this property: even if one is told the correct clustering
has 3 clusters, there is no way for an algorithm to tell which of the two (very different) possible
solutions is correct.

In our work we overcome this problem by considering two relaxations of the clustering objective
that are natural for many clustering applications. The first is as in list-decoding [Elias, 1957,
Guruswami and Sudan, 1999] to allow the algorithm to produce a small list of clusterings such
that at least one of them has low error. The second is instead to allow the clustering algorithm
to produce a tree (a hierarchical clustering) such that the correct answer is approximately some
pruning of this tree. For instance, the example in Figure 1 has a natural hierarchical decomposition
of this form. Both relaxed objectives make sense for settings in which we imagine the output being
fed to a user who will then decide what she likes best. For example, with the tree relaxation,
we allow the clustering algorithm to effectively start at the top level and say: “I wasn’t sure how
specific you wanted to be, so if any of these clusters are too broad, just click and I will split it
for you.” They are also natural for settings where one has additional side constraints that an
algorithm could then use in a subsequent post-processing step, as in the database deduplication
work of [Chaudhuri et al., 2007]. We then show that with these relaxations, a number of interesting,
natural learning-theoretic and game-theoretic properties of the similarity measure are sufficient to
be able to cluster well. For some of these properties we prove guarantees for traditional clustering
algorithms, while for other more general properties, we show such methods may fail and instead
develop new algorithmic techniques that are able to take advantage of them. We also define a
notion of the clustering complexity of a given property that expresses the length of the shortest list
of clusterings needed to ensure that at least one of them is approximately correct.

At the high level, our framework has two goals. The first is to provide advice about what
type of algorithms to use given certain beliefs about the relation of the similarity function to the
clustering task. That is, if a domain expert handed us a similarity function that they believed

3



satisfied a certain natural property with respect to the true clustering, what algorithm would be
most appropriate to use? The second goal is providing advice to the designer of a similarity function
for a given clustering task, such as clustering web-pages by topic. That is, if a domain expert is
trying up to come up with a similarity measure, what properties should they aim for? Generically
speaking, our analysis provides a unified framework for understanding under what conditions a
similarity function can be used to find a good approximation to the ground-truth clustering.

Our framework also provides a natural way to formalize the problem of exploratory clustering,
where the similarity function is given and the property itself can be viewed as a user-provided
definition of the criterion for an “interesting clustering”. In this case, our results can be thought of
as asking for a compact representation (via a tree), or a short list of clusterings, that contains all
clusterings of interest. The clustering complexity of a property in this view is then an upper-bound
on the number of “substantially different” interesting clusterings.

1.1 Perspective

There has been significant work in machine learning and theoretical computer science on clustering
or learning with mixture models [Achlioptas and McSherry, 2005, Arora and Kannan, 2001, Duda
et al., 2001, Devroye et al., 1996, Kannan et al., 2005, Vempala and Wang, 2004, Dasgupta, 1999].
That work, like ours, has an explicit notion of a correct ground-truth clustering of the data points
and to some extent can be viewed as addressing the question of what properties of an embedding
of data into Rn would be sufficient for an algorithm to cluster well. However, unlike our focus, the
types of assumptions made are distributional and in that sense are much more specific than the
types of properties we will be considering. This is similarly the case with work on planted partitions
in graphs [Alon and Kahale, 1997, McSherry, 2001, Dasgupta et al., 2006]. Abstractly speaking,
this view of clustering parallels the generative classification setting [Devroye et al., 1996], while
the framework we propose parallels the discriminative classification setting (i.e. the PAC model of
Valiant [Valiant, 1984] and the Statistical Learning Theory framework of Vapnik [Vapnik, 1998]).

In the PAC model for learning [Valiant, 1984], the basic object of study is a concept class, and
one asks what natural classes are efficiently learnable and by what algorithms. In our setting, the
basic object of study is a property, which can be viewed as a set of (concept, similarity function)
pairs, i.e., the pairs for which the target concept and similarity function satisfy the desired relation.
As with the PAC model for learning, we then ask what natural properties are sufficient to efficiently
cluster well (in either the tree or list models) and by what algorithms, ideally finding the simplest
efficient algorithm for each such property. In some cases, we can even characterize necessary and
sufficient conditions for natural algorithms such as single linkage to be successful in our framework.

Our framework also makes sense for exploratory clustering, where rather than a single target
clustering, one would like to produce all clusterings satisfying some condition. In that case, our
goal can be viewed as to output either explicitly (via a list) or implicitly (via a tree) an ǫ-cover of
the set of all clusterings of interest.

1.2 Our Results

We provide a general PAC-style framework for analyzing what properties of a similarity function
are sufficient to allow one to cluster well under the above two relaxations (list and tree) of the
clustering objective. We analyze a wide variety of natural properties in this framework, both from
an algorithmic and information theoretic point of view. Specific results include:
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• As a warmup, we show that the strong property discussed above (that all points are more
similar to points in their own cluster than to any points in any other cluster) is sufficient
to cluster well by the simple single-linkage algorithm. Moreover we show that a much less
restrictive “agnostic” version is sufficient to cluster well but using a more sophisticated ap-
proach (Property 2 and Theorem 3.3). We also describe natural properties that characterize
exactly when single linkage will be successful (Theorem 5.1).

• We consider a family of natural stability-based properties, showing (Theorems 5.2 and 5.4)
that a natural generalization of the “stable marriage” property is sufficient to produce a
hierarchical clustering via a common average linkage algorithm. The property is that no
two subsets A ⊂ C, A′ ⊂ C ′ of clusters C 6= C ′ in the correct clustering are both more
similar on average to each other than to the rest of their own clusters (see Property 8) and
it has close connections with notions analyzed in Mathematical Biology [Bryant and Berry,
2001]. Moreover, we show that a significantly weaker notion of stability is also sufficient to
produce a hierarchical clustering, and to prove this we develop a new algorithmic technique
based on generating candidate clusters and then molding them using pairwise consistency
tests (Theorem 5.7).

• We show that a weaker “average-attraction” property is provably not enough to produce a
hierarchy but is sufficient to produce a small list of clusterings (Theorem 4.1). We then give
generalizations to even weaker conditions that generalize the notion of large-margin kernel
functions, using recent results in learning theory (Theorem 4.4).

• We show that properties implicitly assumed by approximation algorithms for standard graph-
based objective functions can be viewed as special cases of some of the properties considered
here (Theorems 6.1 and 6.2).

We define the clustering complexity of a given property (the minimum possible list length that an
algorithm could hope to guarantee) and provide both upper and lower bounds for the properties we
consider. This notion is analogous to notions of capacity in classification [Boucheron et al., 2005,
Devroye et al., 1996, Vapnik, 1998] and it provides a formal measure of the inherent usefulness of
a given property.

We also show how our methods can be extended to the inductive case, i.e., by using just a constant-
sized sample, as in property testing. While most of our algorithms extend in a natural way, for
certain properties their analysis requires more involved arguments using regularity-type results
of [Frieze and Kannan, 1999, Alon et al., 2003] (Theorem 7.3).

More generally, the proposed framework provides a formal way to analyze what properties of a
similarity function would be sufficient to produce low-error clusterings, as well as what algorithms
are suited for a given property. For some properties we are able to show that known algorithms
succeed (e.g. variations of bottom-up hierarchical linkage based algorithms), but for the most
general ones we need new algorithms that are able to take advantage of them.

One concrete implication of this framework is that we can use it to get around certain funda-
mental limitations that arise in the approximation-algorithms approach to clustering. In particular,
in subsequent work within this framework, [Balcan et al., 2009] and [Balcan and Braverman, 2009]

have shown that the implicit assumption made by approximation algorithms for the standard
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k-means, k-median, and min-sum objectives (that nearly-optimal clusterings according to the ob-
jective will be close to the desired clustering in terms of accuracy) imply structure one can use to
achieve performance as good as if one were able to optimize these objectives even to a level that is
known to be NP-hard.

1.3 Related Work

We review here some of the existing theoretical approaches to clustering and how they relate to
our framework.

Mixture and Planted Partition Models: In mixture models, one assumes that data is generated
by a mixture of simple probability distributions (e.g., Gaussians), one per cluster, and aims to
recover these component distributions. As mentioned in Section 1.1, there has been significant
work in machine learning and theoretical computer science on clustering or learning with mixture
models [Achlioptas and McSherry, 2005, Arora and Kannan, 2001, Duda et al., 2001, Devroye et
al., 1996, Kannan et al., 2005, Vempala and Wang, 2004, Dasgupta, 1999]. That work is similar
to our framework in that there is an explicit notion of a correct ground-truth clustering of the
data points. However, unlike our framework, mixture models make very specific probabilistic
assumptions about the data that generally imply a large degree of intra-cluster uniformity. For
instance, the example of Figure 1 would not fit a typical mixture model well if the desired clustering
was {sports, TCS, AI}. In planted partition models [Alon and Kahale, 1997, McSherry, 2001,
Dasgupta et al., 2006], one begins with a set of disconnected cliques and then adds random noise.
These models similarly make very specific probabilistic assumptions, implying substantial intra-
cluster as well as inter-cluster uniformity.

Approximation Algorithms: Work on approximation algorithms, like ours, makes no probabilis-
tic assumptions about the data. Instead, one chooses some objective function (e.g., k-median, k-
means, min-sum, or correlation clustering), and aims to develop algorithms that approximately opti-
mize that objective [Ailon et al., 2005, Bartal et al., 2001, Charikar et al., 1999, Kannan et al., 2004,
Jain and Vazirani, 2001, de la Vega et al., 2003]. For example the best known approximation algo-
rithm for the k-median problem is a (3+ǫ)-approximation [Arya et al., 2004], and the best approxi-
mation for the min-sum problem in general metric spaces is a O(log1+δ n)-approximation [Bartal et
al., 2001]. However, while often motivated by problems such as clustering search results by topic,
the approximation algorithms approach does not explicitly consider how close the solution produced
is to an underlying desired clustering, and without any assumptions the clusterings produced might
be quite far away. If the true goal is indeed to achieve low error with respect to a target clustering,
then one is implicitly making the assumption that not only does the correct clustering have a good
objective value, but also that all clusterings that approximately optimize the objective must be
close to the correct clustering as well. We can make this explicit by saying that a data set satisfies
the (c, ǫ) property for some objective function Φ if all c-approximations to Φ on this data are ǫ-close
to the target clustering. In Section 6 we show that for some of these objectives, this assumption is
in fact a special case of properties considered and analyzed here. Subsequent to this work, Balcan
et al. [2009] and Balcan and Braverman [2009] have further analyzed these assumptions, giving
algorithms that can find accurate clusterings under the (c, ǫ) property for a number of common
objectives Φ (including k-median, k-means, and min-sum) even for values c such that finding a
c-approximation to the objective is NP-hard. This shows that for the goal of achieving low error
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on the data, one can bypass approximation hardness results by making these implicit assumptions
explicit, and using the structure they imply. We discuss these results further in Section 8.

Bayesian and Hierarchical Bayesian Clustering: Bayesian methods postulate a prior over
probabilistic models (ground truths), which in turn generate the observed data. Given the observed
data, there is then a well-defined highest-probability model that one can then hope to compute. For
example, Bayesian mixture models place a prior over the parameters of the mixture; nonparametric
models such as the Dirichlet / Chinese Restaurant Process allow for the number components to be
a random variable as well, which one can then infer from the data [Teh et al., 2006]. Hierarchical
Bayesian methods model the ground truth itself as a hierarchy, allowing for sharing of model
components across multiple clusters [Teh et al., 2006, Heller, 2008]. Our framework is similar to
these in that our goal is also to approximate a target clustering. However, unlike these approaches,
our framework makes no probabilistic assumptions about the data or target clustering. Instead,
we assume only that it is consistent with the given similarity measure according to the property at
hand, and our use of a hierarchy is as a relaxation on the output rather than an assumption about
the target.

Identifying special clusters: Bryant and Berry [2001] consider and analyze various notions
of “stable clusters” and design efficient algorithms to produce them. While their perspective is
different from ours, some of the definitions they consider are related to our simplest notions of strict
separation and stability and further motivate the notions we consider. Bandelt and Dress [1989]

also consider the problem of identifying clusters satisfying certain consistency conditions, motivated
by concerns in computational biology. For more discussion see Sections 3, 5, and Appendix A.

Axiomatic Approaches and Other Work on Clustering: There have recently been a number
of results on axiomatizing clustering in the sense of describing natural properties of algorithms, such
as scale-invariance and others, and analyzing which collections of such properties are or are not
achievable [Kleinberg, 2002, Ackerman and Ben-David., 2008]. In this approach there is no notion of
a ground-truth clustering, however, and so the question is whether an algorithm will satisfy certain
conditions rather than whether it produces an accurate output. Related theoretical directions
includes work on comparing clusterings [Meila, 2003, Meila, 2005], and on efficiently testing if a
given data set has a clustering satisfying certain properties [Alon et al., 2000]. There is also other
interesting work addressing stability of various clustering algorithms with connections to model
selection [Ben-David et al., 2006, Ben-David et al., 2007].

Relation to learning with Kernels: Some of the questions we address can be viewed as a
generalization of questions studied in supervised learning that ask what properties of similarity
functions (especially kernel functions) are sufficient to allow one to learn well [Balcan and Blum,
2006, Balcan et al., 2006, Herbrich, 2002, Shawe-Taylor and Cristianini, 2004, Scholkopf et al.,
2004]. For example, it is well-known that if a kernel function satisfies the property that the target
function is separable by a large margin in the implicit kernel space, then learning can be done from
few labeled examples. The clustering problem is more difficult because there is no labeled data,
and even in the relaxations we consider, the forms of feedback allowed are much weaker.

We note that as in learning, given an embedding of data into some metric space, the similarity
function K(x, x′) need not be a direct translation of distance such as e−d(x,x′), but rather may be a
derived function based on the entire dataset. For example, in the diffusion kernel of [Kondor and
Lafferty, 2002], the similarity K(x, x′) is related to the effective resistance between x and x′ in a
weighted graph defined from distances in the original metric. This would be a natural similarity
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function to use, for instance, if data lies in two well-separated pancakes.

Inductive Setting: In the inductive setting, where we imagine our given data is only a small
random sample of the entire data set, our framework is close in spirit to recent work done on
sample-based clustering (e.g., [Mishra et al., 2001, Ben-David, 2007, Czumaj and Sohler, 2004])
in the context of clustering algorithms designed to optimize a certain objective. Based on such
a sample, these algorithms have to output a clustering of the full domain set, that is evaluated
in terms of this objective value with respect to the underlying distribution. This work does not
assume a target clustering.

2 Definitions and Preliminaries

We consider a clustering problem (S, ℓ) specified as follows. Assume we have a data set S of n
objects. Each x ∈ S has some (unknown) “ground-truth” label ℓ(x) in Y = {1, . . . , k}, where we
will think of k as much smaller than n. We let Ci = {x ∈ S : ℓ(x) = i} denote the set of points of
label i (which could be empty), and denote the target clustering as C = {C1, . . . , Ck}. The goal is
to produce a hypothesis h : S → Y of low error up to permutation of label names. Formally, we
define the error of h to be

err(h) = min
σ∈Sk

[

Pr
x∈S

[σ(h(x)) 6= ℓ(x)]

]

,

where Sk is the set of all permutations on {1, . . . , k}. Equivalently, the error of a clustering
C′ = {C ′

1, . . . , C
′
k} is minσ∈Sk

1
n

∑

i |Ci − C ′
σ(i)|. It will be convenient to extend this definition

to clusterings C′ of k′ > k clusters: in this case we simply view the target as having k′ − k addi-
tional empty clusters C ′

k+1, . . . , C
′
k′ and apply the definition as above with “k′” as “k”. We will

assume that a target error rate ǫ, as well as the number of target clusters k, are given as input to
the algorithm.

We will be considering clustering algorithms whose only access to their data is via a pairwise
similarity function K(x, x′) that given two examples outputs a number in the range [−1, 1].1 We
will say that K is a symmetric similarity function if K(x, x′) = K(x′, x) for all x, x′.

Our focus is on analyzing natural properties of a similarity function K that are sufficient for an
algorithm to produce accurate clusterings with respect to the ground-truth clustering C. Formally,
a property P is a relation {(C,K)} between the target clustering and the similarity function and
we say that K has property P with respect to C if (C,K) ∈ P. For example, one (strong) property
would be that all points x are more similar to all points x′ in their own cluster than to any x′′ in
any other cluster– we call this the strict separation property. A weaker property would be to just
require that points x are on average more similar to their own cluster than to any other cluster.
We will also consider intermediate “stability” conditions.

As mentioned in the introduction, however, requiring an algorithm to output a single low-error
clustering rules out even quite strong properties. Instead we will consider two objectives that are
natural if one assumes the ability to get limited additional feedback from a user. Specifically, we
consider the following two models:

1. List model: In this model, the goal of the algorithm is to propose a small number of clus-
terings such that at least one has error at most ǫ. As in work on property testing, the list

1That is, the input to the clustering algorithm is just a weighted graph. However, we still want to
conceptually view K as a function over abstract objects.
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length should depend on ǫ and k only, and be independent of n. This list would then go to a
domain expert or some hypothesis-testing portion of the system which would then pick out
the best clustering.

2. Tree model: In this model, the goal of the algorithm is to produce a hierarchical clustering:
that is, a tree on subsets such that the root is the set S, and the children of any node S′ in
the tree form a partition of S′. The requirement is that there must exist a pruning h of the
tree (not necessarily using nodes all at the same level) that has error at most ǫ. In many
applications (e.g. document clustering) this is a significantly more user-friendly output than
the list model. Note that any given tree has at most 22k prunings of size k [Knuth, 1997], so
this model is at least as strict as the list model.

Transductive vs Inductive. Clustering is typically posed as a “transductive” problem [Vapnik,
1998] in that we are asked to cluster a given set of points S. We can also consider an inductive
model in which S is merely a small random subset of points from a much larger abstract instance
space X, and our goal is to produce a hypothesis h : X → Y of low error on X. For a given
property of our similarity function (with respect to X) we can then ask how large a set S we need
to see in order for our list or tree produced with respect to S to induce a good solution with respect
to X. For clarity of exposition, for most of this paper we will focus on the transductive setting. In
Section 7 we show how our algorithms can be adapted to the inductive setting.

Realizable vs Agnostic. For most of the properties we consider here, our assumptions are
analogous to the realizable case in supervised learning and our goal is to get ǫ-close to the target
(in a tree or list) for any desired ǫ > 0. For other properties, our assumptions are more like the
agnostic case in that we will assume only that 1−ν fraction of the data satisfies a certain condition.
In these cases our goal is to get ν + ǫ-close to the target.

Notation. For x ∈ X, we use C(x) to denote the cluster Cℓ(x) to which point x belongs. For
A ⊆ X,B ⊆ X, let

K(A,B) = Ex∈A,x′∈B

[

K(x, x′)
]

.

We call this the average attraction of A to B. Let

Kmax(A,B) = max
x∈A,x′∈B

K(x, x′);

we call this maximum attraction of A to B. Given two clusterings g and h we define the distance

d(g, h) = min
σ∈Sk

[

Pr
x∈S

[σ(h(x)) 6= g(x)]

]

,

i.e., the fraction of points in the symmetric difference under the optimal renumbering of the clusters.
As mentioned above, we are interested in analyzing natural properties that we might ask a

similarity function to satisfy with respect to the ground truth clustering. For a given property, one
key quantity we will be interested in is the size of the smallest list any algorithm could hope to
output that would guarantee that at least one clustering in the list has error at most ǫ. Specifically,
we define the clustering complexity of a property as:

Definition 1 Given a property P and similarity function K, define the (ǫ, k)-clustering com-

plexity of the pair (P,K) to be the length of the shortest list of clusterings h1, . . . , ht such that any
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k-clustering C′ consistent with the property (i.e., satisfying (C′,K) ∈ P) must be ǫ-close to some
clustering in the list. That is, at least one hi must have error at most ǫ. The (ǫ, k)-clustering

complexity of P is the maximum of this quantity over all similarity functions K.

The clustering complexity notion is analogous to notions of capacity in classification [Boucheron
et al., 2005, Devroye et al., 1996, Vapnik, 1998] and it provides a formal measure of the inherent
usefulness of a given property.

Computational Complexity. In the transductive case, our goal will be to produce a list or a
tree in time polynomial in n and ideally polynomial in ǫ and k as well. We will indicate when our
running times involve a non-polynomial dependence on these parameters. In the inductive case, we
want the running time to depend only on k and ǫ and to be independent of the size of the overall
instance space X, under the assumption that we have an oracle that in constant time can sample
a random point from X.

2.1 Structure of this paper

In the following sections we analyze both the clustering complexity and the computational com-
plexity of several natural properties and provide efficient algorithms to take advantage of simi-
larity functions satisfying them. We start by analyzing the strict separation property as well as
a natural relaxation in Section 3. We then analyze a much weaker average-attraction property
in Section 4 which has close connections to large margin properties studied in Learning Theory
[Balcan and Blum, 2006, Balcan et al., 2006, Herbrich, 2002, Shawe-Taylor and Cristianini, 2004,
Scholkopf et al., 2004].) This property is not sufficient to produce a hierarchical clustering, however,
so we then turn to the question of how weak a property can be and still be sufficient for hierarchical
clustering, which leads us to analyze properties motivated by game-theoretic notions of stability in
Section 5. In Section 6 we give formal relationships between these properties and those considered
implicitly by approximation algorithms for standard clustering objectives. Then in Section 7 we
consider clustering in the inductive setting.

Our framework allows one to study computational hardness results as well. While our focus is
on getting positive algorithmic results, we discuss a few simple hardness results in Section B.1.

3 Simple Properties

We begin with the simple strict separation property mentioned above.

Property 1 The similarity function K satisfies the strict separation property for the clustering
problem (S, ℓ) if all x ∈ S are strictly more similar to any point x′ ∈ C(x) than to every x′ 6∈ C(x).

Given a similarity function satisfying the strict separation property, we can efficiently construct
a tree such that the ground-truth clustering is a pruning of this tree (Theorem 3.2). As mentioned
above, a consequence of this fact is a 2O(k) upper bound on the clustering complexity of this
property. We begin by showing a matching 2Ω(k) lower bound.

Theorem 3.1 For ǫ < 1
2k , the strict separation property has (ǫ, k)-clustering complexity at least

2k/2.
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Proof: The similarity function is a generalization of that used in Figure 1. Specifically, parti-
tion the n points into k subsets {R1, . . . , Rk} of n/k points each. Group the subsets into pairs
{(R1, R2), (R3, R4), . . .}, and let K(x, x′) = 1 if x and x′ belong to the same Ri, K(x, x′) = 1/2 if
x and x′ belong to two subsets in the same pair, and K(x, x′) = 0 otherwise. Notice that in this

setting there are 2
k
2 clusterings (corresponding to whether or not to split each pair Ri ∪Ri+1) that

are consistent with Property 1 and differ from each other on at least n/k points. Since ǫ < 1
2k , any

given hypothesis clustering can be ǫ-close to at most one of these and so the clustering complexity
is at least 2k/2.

We now present the upper bound. For the case that K is symmetric, it is known that single-
linkage will produce a tree of the desired form (see, e.g., [Bryant and Berry, 2001]). However, when
K is asymmetric, single-linkage may fail and instead we use a more “Boruvka-inspired” algorithm.

Theorem 3.2 Let K be a similarity function satisfying the strict separation property. Then we
can efficiently construct a tree such that the ground-truth clustering is a pruning of this tree.

Proof: If K is symmetric, then we can use the single linkage algorithm (i.e., Kruskal’s algorithm)
to produce the desired tree. That is, we begin with n clusters of size 1 and at each step we merge
the two clusters C,C ′ maximizing Kmax(C,C ′). This procedure maintains the invariant that at
each step the current clustering is laminar with respect to the ground-truth (every cluster is either
contained in, equal to, or a union of target clusters). In particular, if the algorithm merges two
clusters C and C ′, and C is strictly contained in some cluster Cr of the ground truth, then by the
strict separation property we must have C ′ ⊂ Cr as well. Since at each step the clustering is laminar
with respect to the target, the target clustering must be a pruning of the final tree. Unfortunately,
if K is not symmetric, then single linkage may fail.2 However, in this case, the following “Boruvka-
inspired” algorithm can be used. Starting with n clusters of size 1, draw a directed edge from
each cluster C to the cluster C ′ maximizing Kmax(C,C ′). Then pick some cycle produced by the
directed edges (there must be at least one cycle) and collapse it into a single cluster, and repeat.
Note that if a cluster C in the cycle is strictly contained in some ground-truth cluster Cr, then by
the strict separation property its out-neighbor must be as well, and so on around the cycle. So this
collapsing maintains laminarity as desired.

We can also consider an agnostic version of the strict separation property, where we relax the
condition to require only that K satisfies strict separation with respect to most of the data. We
distinguish here two forms of this relaxation: an “easy version” for which simple bottom-up al-
gorithms are still successful and a harder, more general version which requires a more involved
approach.

In the easy version, we suppose that there exists a set S′ containing most of S such that all
x ∈ S′ are more similar to all x′ ∈ C(x) ∩ S′ than to any x′′ ∈ S − (C(x) ∩ S′). That is, the points
not in S′ act as distant outliers. We can address this version by noticing that this property implies
that K satisfies strict separation with respect to a modified version C̃ of the target clustering in
which each point in S − S′ is assigned its own cluster. Since C̃ has low error, Theorem 3.2 implies
that single-linkage will still produce a low-error tree.

2Consider 3 points x, y, z whose correct clustering is ({x}, {y, z}). If K(x, y) = 1, K(y, z) = K(z, y) = 1/2,
and K(y, x) = K(z, x) = 0, then this is consistent with strict separation and yet the algorithm will incorrectly
merge x and y in its first step.
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In the harder, general version, we allow points in S − S′ to behave arbitrarily, without any
requirement for consistency with respect to similarities in S′. This is analogous to the setting of
learning with malicious noise or agnostic learning. Formally, we define:

Property 2 The similarity function K satisfies ν-strict separation for the clustering problem
(S, ℓ) if for some S′ ⊆ S of size (1 − ν)n, K satisfies strict separation for (S′, ℓ). That is, for all
x, x′, x′′ ∈ S′ with x′ ∈ C(x) and x′′ 6∈ C(x) we have K(x, x′) > K(x, x′′).

Note that now even a single point in S −S′ (i.e., ν = 1/n) is enough to cause the single-linkage
algorithm to fail. For instance, given set S′ satisfying strict separation such that K(x, y) < 1 for
all x, y ∈ S′, add a new point u such that K(u, x) = 1 for all x ∈ S′. Single linkage will now just
connect every point to u. Nonetheless, using a different non-bottom-up style algorithm we can
show the following.

Theorem 3.3 If K satisfies ν-strict separation, then so long as the smallest target cluster has
size greater than 5νn, we can produce a tree such that the ground-truth clustering is ν-close to a
pruning of this tree.

We defer the algorithm and proof to Section 6, where we also show that properties implicitly
assumed by approximation algorithms for standard graph-based objective functions can be viewed
as special cases of the ν-strict separation property.

Strict separation and spectral partitioning: We end this section by pointing out that even
though the strict separation property is quite strong, a similarity function satisfying this property
can still fool a top-down spectral clustering approach.

In particular, Figure 2 shows that it is possible for a similarity function to satisfy the strict sep-
aration property for which Theorem 3.2 gives a good algorithm, but nonetheless to fool a straight-
forward spectral (top down) clustering approach.

4 Weaker properties

A much weaker property to ask of a similarity function is just that most points are noticeably more
similar on average to points in their own cluster than to points in any other cluster.

Specifically, we define:

Property 3 A similarity function K satisfies the (ν, γ)-average attraction property for the clus-
tering problem (S, ℓ) if a 1 − ν fraction of examples x satisfy:

K(x,C(x)) ≥ K(x,Ci) + γ for all i ∈ Y, i 6= ℓ(x).

This is a fairly natural property to ask of a similarity function: if a point x is more similar on
average to points in a different cluster than to those in its own, it is hard to expect an algorithm
to cluster it correctly. Note, however, that unlike properties considered in the previous section,
average attraction is not sufficient to cluster in the tree model. Consider, for instance, three regions
R1, R2, R3 with n/3 points each of similarity 1 within each region and similarity 0 between regions;
any grouping (Ri, Rj ∪ Rk) of these three regions into two clusters satisfies the (0, 1/2)-average
attraction property and yet these 2-clusterings are not laminar with respect to each other. On the
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Figure 2: Consider 2k sets B1, B2, . . . , Bk, B′

1
, B′

2
, . . . , B′

k of equal probability mass. Points inside the same
set have similarity 1. Assume that K(x, x′) = 1 if x ∈ Bi and x′ ∈ B′

i. Assume also K(x, x′) = 0.5 if
x ∈ Bi and x′ ∈ Bj or x ∈ B′

i and x′ ∈ B′

j , for i 6= j; let K(x, x′) = 0 otherwise. Let Ci = Bi ∪ B′

i,
for all i ∈ {1, . . . , k}. It is easy to verify that the clustering C1, . . . , Ck is consistent with Property 1 (part
(b)). However, for k large enough the cut of min-conductance is the cut that splits the graph into parts
{B1, B2, . . . , Bk} and {B′

1
, B′

2
, . . . , B′

k} (part (c)).

other hand, we can cluster in the list model and give nearly tight upper and lower bounds on the
clustering complexity of this property. Specifically, the following is a simple clustering algorithm
that given a similarity function K satisfying the average attraction property produces a list of
clusterings of size that depends only on ǫ, k, and γ.

Algorithm 1 Sampling Based Algorithm, List Model

Input: Data set S, similarity function K, parameters k,N, s ∈ Z+.

• Set L = ∅.

• Repeat N times

For k′ = 1, . . . , k do:

- Pick a set Rk′

S of s random points from S.

- Let h be the average-nearest neighbor hypothesis induced by the sets Ri
S , 1 ≤ i ≤ k′.

That is, for any point x ∈ S, define h(x) = argmaxi∈{1,...k′}[K(x,Ri
S)]. Add h to L.

• Output the list L.

Theorem 4.1 Let K be a similarity function satisfying the (ν, γ)-average attraction property for
the clustering problem (S, ℓ). Using Algorithm 1 with the parameters s = 4

γ2 ln
(

8k
ǫδ

)

and N =

(

2k
ǫ

)
4k

γ2
ln

(

8k
ǫδ

)

ln(1
δ ) we can produce a list of at most k

O
(

k

γ2
ln

(

1

ǫ

)

ln
(

k
ǫδ

))

clusterings such that with
probability 1 − δ at least one of them is (ν + ǫ)-close to the ground-truth.
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Proof: We say that a ground-truth cluster is big if it has probability mass at least ǫ
2k ; otherwise,

we say that the cluster is small. Let k′ be the number of “big” ground-truth clusters. Clearly the
probability mass in all the small clusters is at most ǫ/2.

Let us arbitrarily number the big clusters C1, . . . , Ck′ . Notice that in each round there is at

least a
(

ǫ
2k

)s
probability that RS

i ⊆ Ci, and so at least a
(

ǫ
2k

)ks
probability that RS

i ⊆ Ci for all

i ≤ k′. Thus the number of rounds
(

2k
ǫ

)

4k

γ2
ln

(

8k
ǫδ

)

ln(1
δ ) is large enough so that with probability at

least 1 − δ/2, in at least one of the N rounds we have RS
i ⊆ Ci for all i ≤ k′. Let us fix now one

such good round. We argue next that the clustering induced by the sets picked in this round has
error at most ν + ǫ with probability at least 1 − δ.

Let Good be the set of x in the big clusters satisfying

K(x,C(x)) ≥ K(x,Cj) + γ for all j ∈ Y, j 6= ℓ(x).

By assumption and from the previous observations, Prx∼S [x ∈ Good] ≥ 1 − ν − ǫ/2. Now, fix
x ∈ Good. Since K(x, x′) ∈ [−1, 1], by Hoeffding bounds we have that over the random draw of
RS

j, conditioned on RS
j ⊆ Cj,

Pr
RS

j

(∣

∣

∣
Ex′∼RS

j [K(x, x′)] −K(x,Cj)
∣

∣

∣
≥ γ/2

)

≤ 2e−2|RS
j |γ2/4,

for all j ∈ {1, . . . , k′}. By our choice of RS
j, each of these probabilities is at most ǫδ/4k. So, for

any given x ∈ Good, there is at most a ǫδ/4 probability of error over the draw of the sets RS
j. Since

this is true for any x ∈ Good, it implies that the expected error of this procedure, over x ∈ Good,
is at most ǫδ/4, which by Markov’s inequality implies that there is at most a δ/2 probability that
the error rate over Good is more than ǫ/2. Adding in the ν + ǫ/2 probability mass of points not in
Good yields the theorem.

Theorem 4.1 implies a corresponding upper bound on the (ǫ, k)-clustering complexity of the
(ǫ/2, γ)-average attraction property by the following Lemma.

Lemma 4.2 Suppose there exists a randomized algorithm for a given similarity function K and
property P that produces a list of at most L clusterings such that for any k-clustering C′ consistent
with P (i.e., (C′,K) ∈ P), with probability ≥ 1/2 at least one of the clusterings in the list is ǫ/2-close
to C′. Then the (ǫ, k)-clustering complexity of (K,P) is at most 2L.

Proof: Fix K and let h1, . . . , ht be a maximal ǫ-net of k-clusterings consistent with P; that is,
d(hi, hj) > ǫ for all i 6= j, and for any h consistent with P, d(h, hi) ≤ ǫ for some i.

By the triangle inequality, any given clustering h can be ǫ/2-close to at most one hi. This in
turn implies that t ≤ 2L. In particular, for any list of L k-clusterings, if i ∈ {1, . . . , t} at random,
then the probability that some clustering in the list is ǫ/2-close to hi is at most L/t. Therefore, for
any randomized procedure for producing such a list there must exist hi such that the probability
is at most L/t. By our given assumption, this must be at least 1/2.

Finally, since h1, . . . , ht satisfy the condition that for any h consistent with P, d(h, hi) ≤ ǫ for
some i, the (ǫ, k)-clustering complexity of (K,P) is at most t ≤ 2L.

Note that the bound of Theorem 4.1 combined with Lemma 4.2, however, is not polynomial in
k and 1/γ. We can also give a lower bound showing that the exponential dependence on k and 1/γ
is necessary.
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Theorem 4.3 For ǫ ≤ 1/4, the (ǫ, k)-clustering complexity of the (0, γ)-average attraction property

is Ω(k
k
8γ ) for k > (2e)4 and γ ≤ 1

3 ln 2k .

Proof: Consider N = k
γ regions {R1, . . . , Rk/γ} each with γn/k points. Assume K(x, x′) = 1

if x and x′ belong to the same region Ri and K(x, x′) = 0, otherwise. We now show that we

can have at least k
k
8γ clusterings that are at distance at least 1/2 from each other and yet satisfy

the (0, γ)-average attraction property. We do this using a probabilistic construction. Specifically
imagine that we construct the clustering by putting each region Ri uniformly at random into a
cluster Cr, r ∈ {1, ..., k}, with equal probability 1/k. Given a permutation π on {1, . . . , k}, let Xπ

be a random variable which specifies, for two clusterings C, C′ chosen in this way, the number of
regions Ri that agree on their clusters in C and C′ with respect to permutation π (i.e., Ri ∈ Cj

and Ri ∈ C ′
π(j) for some j). We have E[Xπ] = N/k and from the Chernoff bound we know that

Pr[Xπ ≥ tE[Xπ]] ≤
(

et−1

tt

)

E[Xπ]
. So, considering t = k/2 we obtain that

Pr[Xπ ≥ N/2] ≤
(

2e

k

)(k/2)(N/k)

=

(

2e

k

)k/(2γ)

.

So, we get that the probability that in a list of size m there exist a permutation π and two clusterings

that agree on more than N/2 regions under π is at most m2k!
(

2e
k

)k/(2γ)
. For m = k

k
8γ this is at

most kk+ k
4γ

− k
2γ (2e)

k
2γ ≤ k− k

8γ (2e)
k
2γ = o(1), where the second-to-last step uses γ < 1/8 and the

last step uses k > (2e)4.
We now show that there is at least a 1/2 probability that none of the clusters have more than

2/γ regions and so the clustering satisfies the γ/2 average attraction property. Specifically, for each
cluster, the chance that it has more than 2/γ regions is at most e−1/3γ , which is at most 1

2k for
γ ≤ 1

3 ln 2k .
So, discarding all clusterings that do not satisfy the property, we have with high probability

constructed a list of Ω(k
k
8γ ) clusterings satisfying γ/2 average attraction all at distance at least 1/2

from each other. Thus, such a clustering must exist, and therefore the clustering complexity for

ǫ < 1/4 is Ω(k
k
8γ ).

One can even weaken the above property to ask only that there exists an (unknown) weighting
function over data points (thought of as a “reasonableness score”), such that most points are on
average more similar to the reasonable points of their own cluster than to the reasonable points of
any other cluster. This is a generalization of the notion of K being a kernel function with the large
margin property [Vapnik, 1998, Shawe-Taylor et al., 1998] as shown in [Balcan and Blum, 2006,
Srebro, 2007, Balcan et al., 2008].

Property 4 A similarity function K satisfies the (ν, γ, τ)-generalized large margin property
for the clustering problem (S, ℓ) if there exist a (possibly probabilistic) indicator function R (viewed
as indicating a set of “reasonable” points) such that:

1. At least 1 − ν fraction of examples x satisfy:

Ex′ [K(x, x′)|R(x′), ℓ(x) = ℓ(x′)] ≥ Kx′∈Cr
[K(x, x′)|R(x′), ℓ(x′) = r] + γ,

for all clusters r ∈ Y, r 6= ℓ(x).
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2. We have Prx[R(x)|ℓ(x) = r] ≥ τ, for all r.

If we have K a similarity function satisfying the (ν, γ, τ)-generalized large margin property for
the clustering problem (S, ℓ), then we can again cluster well in the list model. Specifically:

Theorem 4.4 Let K be a similarity function satisfying the (ν, γ, τ)-generalized large margin prop-
erty for the clustering problem (S, ℓ). Using Algorithm 1 with the parameters s = 4

τγ2 ln
(

8k
ǫδ

)

and

N =
(

2k
τǫ

)
4k

τγ2
ln

(

8k
ǫδ

)

ln(1
δ ) we can produce a list of at most k

O
(

k

γ2
ln

(

1

τǫ

)

ln
(

k
ǫδ

))

clusterings such that
with probability 1 − δ at least one of them is (ν + ǫ)-close to the ground-truth.

Proof: The proof proceeds as in theorem 4.1. We say that a ground-truth cluster is big if it has
probability mass at least ǫ

2k ; otherwise, we say that the cluster is small. Let k′ be the number of
“big” ground-truth clusters. Clearly the probability mass in all the small clusters is at most ǫ/2.

Let us arbitrarily number the big clusters C1, . . . , Ck′ . Notice that in each round there is at

least a
(

ǫτ
2k

)s
probability that RS

i ⊆ Ci, and so at least a
(

ǫτ
2k

)ks
probability that RS

i ⊆ Ci for all

i ≤ k′. Thus the number of rounds
(

2k
ǫτ

)
4k

γ2
ln

(

8k
ǫδ

)

ln(1
δ ) is large enough so that with probability at

least 1 − δ/2, in at least one of the N rounds we have RS
i ⊆ Ci for all i ≤ k′. Let us fix one such

good round. The remainder of the argument now continues exactly as in the proof of Theorem 4.1
and we have that the clustering induced by the sets picked in this round has error at most ν + ǫ
with probability at least 1 − δ.

A too-weak property: One could imagine further relaxing the average attraction property to
simply require that the average similarity within any ground-truth cluster Ci is larger by γ than the
average similarity between Ci and any other ground-truth cluster Cj . However, even for k = 2 and
γ = 1/4, this is not sufficient to produce clustering complexity independent of (or even polynomial
in) n. In particular, let us define:

Property 5 A similarity function K satisfies the γ-weak average attraction property if for all
i 6= j we have K(Ci, Ci) ≥ K(Ci, Cj) + γ.

Then we have:

Theorem 4.5 The γ-weak average attraction property has clustering complexity exponential in n
even for k = 2, γ = 1/4, and ǫ = 1/8.

Proof: Partition S into two sets A,B of n/2 points each, and let K(x, x′) = 1 for x, x′ in the
same set (A or B) and K(x, x′) = 0 for x, x′ in different sets (one in A and one in B). Consider any
2-clustering {C1, C2} such that C1 contains 75% of A and 25% of B (and so C2 contains 25% of A
and 75% of B). For such a 2-clustering we have K(C1, C1) = K(C2, C2) = (3/4)2 + (1/4)2 = 5/8
and K(C1, C2) = 2(1/4)(3/4) = 3/8. Thus, the γ-weak average attraction property is satisfied for
γ = 1/4. However, not only are there exponentially many such 2-clusterings, but two randomly-
chosen such 2-clusterings have expected distance 3/8 from each other, and the probability their
distance is at most 1/4 is exponentially small in n. Thus, any list of clusterings such that all
such 2-clusterings have distance at most ǫ = 1/8 to some clustering in the list must have length
exponential in n.
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5 Stability-based Properties

The properties in Section 4 are fairly general and allow construction of a list whose length depends
only on on ǫ and k (for constant γ), but are not sufficient to produce a single tree. In this section,
we show that several natural stability-based properties that lie between those considered in Sections
3 and 4 are in fact sufficient for hierarchical clustering.

5.1 Max Stability

We begin with a stability property that relaxes strict separation and asks that the ground truth
clustering be “stable” in a certain sense. Interestingly, we show this property characterizes the
desiderata for single-linkage in that it is both necessary and sufficient for single-linkage to produce
a tree such that the target clustering is a pruning of the tree.

Property 6 A similarity function K satisfies the max stability property for the clustering problem
(S, ℓ) if for all target clusters Cr, Cr′, r 6= r′, for all A ⊂ Cr, A′ ⊆ Cr′ we have

Kmax(A,Cr \ A) > Kmax(A,A′).

Theorem 5.1 For a symmetric similarity function K, Property 6 is a necessary and sufficient
condition for single-linkage to produce a tree such that the ground-truth clustering is a pruning of
this tree.

Proof: We first show that if K satisfies Property 6, then the single linkage algorithm will produce
a correct tree. The proof proceeds exactly as in Theorem 3.2: by induction we maintain the
invariant that at each step the current clustering is laminar with respect to the ground-truth. In
particular, if some current cluster A ⊂ Cr for some target cluster Cr is merged with some other
cluster B, Property 6 implies that B must also be contained within Cr.

In the other direction, if the property is not satisfied, then there exist A, A′ such that Kmax(A,Cr\
A) ≤ Kmax(A,A′). Let y be the point not in Cr maximizing K(A, y). Let us now watch the al-
gorithm until it makes the first merge between a cluster C contained within A and a cluster C ′

disjoint from A. By assumption it must be the case that y ∈ C ′, so the algorithm will fail.

5.2 Average Stability

The above property states that no piece A of some target cluster Cr would prefer to join another
piece A′ of some Cr′ if we define “prefer” according to maximum similarity between pairs. A perhaps
more natural notion of stability is to define “prefer” with respect to the average. The result is a
notion much like stability in the “stable marriage” sense, but for clusterings. In particular we define
the following.

Property 7 A similarity function K satisfies the strong stability property for the clustering
problem (S, ℓ) if for all target clusters Cr, Cr′ , r 6= r′, for all A ⊂ Cr, A′ ⊆ Cr′ we have

K(A,Cr \ A) > K(A,A′).

Property 8 A similarity function K satisfies the weak stability property for the clustering prob-
lem (S, ℓ) if for all target clusters Cr, Cr′, r 6= r′, for all A ⊂ Cr, A′ ⊆ Cr′ , we have:
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• If A′ ⊂ Cr′ then either K(A,Cr \ A) > K(A,A′) or K(A′, Cr′ \ A′) > K(A′, A).

• If A′ = Cr′ then K(A,Cr \ A) > K(A,A′).

We can interpret weak stability as saying that for any two clusters in the ground truth, there
does not exist a subset A of one and subset A′ of the other that are more attracted to each other
than to the remainder of their true clusters (with technical conditions at the boundary cases) much
as in the classic notion of stable-marriage. Strong stability asks that both be more attracted to their
true clusters. Bryant and Berry [2001] define a quite similar condition to strong stability (though
technically a bit stronger) motivated by concerns in computational biology. We discuss formal
relations between their definition and ours in Appendix A. To further motivate these properties,
note that if we take the example from Figure 1 and set a small random fraction of the edges inside
each of the regions A,B,C,D to 0, then with high probability this would still satisfy strong stability
with respect to all the natural clusters even though it no longer satisfies strict separation (or even ν-
strict separation for any ν < 1 if we included at least one edge incident to each vertex). Nonetheless,
we can show that these stability notions are sufficient to produce a hierarchical clustering using
the average-linkage algorithm (when K is symmetric) or a cycle-collapsing version when K is not
symmetric. We prove these results below, after which in Section 5.3 we analyze an even more
general stability notion.

Algorithm 2 Average Linkage, Tree Model

Input: Data set S, similarity function K.

Output: A tree on subsets.

• Begin with n singleton clusters.

• Repeat till only one cluster remains: Find clusters C,C ′ in the current list which maximize
K(C,C ′) and merge them into a single cluster.

• Output the tree with single elements as leaves and internal nodes corresponding to all the
merges performed.

Theorem 5.2 Let K be a symmetric similarity function satisfying strong stability. Then the av-
erage single-linkage algorithm constructs a binary tree such that the ground-truth clustering is a
pruning of this tree.

Proof: We prove correctness by induction. In particular, assume that our current clustering is
laminar with respect to the ground truth clustering (which is true at the start). That is, for each
cluster C in our current clustering and each Cr in the ground truth, we have either C ⊆ Cr, or
Cr ⊆ C or C ∩ Cr = ∅. Now, consider a merge of two clusters C and C ′. The only way that
laminarity could fail to be satisfied after the merge is if one of the two clusters, say, C ′, is strictly
contained inside some ground-truth cluster Cr (so, Cr − C ′ 6= ∅) and yet C is disjoint from Cr.
Now, note that by Property 7, K(C ′, Cr − C ′) > K(C ′, x) for all x 6∈ Cr, and so in particular
we have K(C ′, Cr − C ′) > K(C ′, C). Furthermore, K(C ′, Cr − C ′) is a weighted average of the
K(C ′, C ′′) over the sets C ′′ ⊆ Cr − C ′ in our current clustering and so at least one such C ′′ must

18



satisfy K(C ′, C ′′) > K(C ′, C). However, this contradicts the specification of the algorithm, since
by definition it merges the pair C, C ′ such that K(C ′, C) is greatest.

If the similarity function is asymmetric then even if strong stability is satisfied the average
linkage algorithm may fail. However, as in the case of strict separation, for the asymmetric case
we can use a cycle-collapsing version instead, given here as Algorithm 3.

Algorithm 3 Cycle-collapsing Average Linkage

Input: Data set S, asymmetric similarity function K. Output: A tree on subsets.

1. Begin with n singleton clusters and repeat until only one cluster remains:

(a) For each cluster C, draw a directed edge to the cluster C ′ maximizing K(C,C ′).

(b) Find a directed cycle in this graph and collapse all clusters in the cycle into a single
cluster.

2. Output the tree with single elements as leaves and internal nodes corresponding to all the
merges performed.

Theorem 5.3 Let K be an asymmetric similarity function satisfying strong stability. Then Algo-
rithm 3 constructs a binary tree such that the ground-truth clustering is a pruning of this tree.

Proof: Assume by induction that the current clustering is laminar with respect to the target, and
consider a cycle produced in Step 1b of the algorithm. If all clusters in the cycle are target clusters
or unions of target clusters, then laminarity is clearly maintained. Otherwise, let C ′ be some cluster
in the cycle that is a strict subset of some target cluster Cr. By the strong stability property, it
must be the case that the cluster C ′′ maximizing K(C ′, C ′′) is also a subset of Cr (because at least
one must have similarity score at least as high as K(C ′, Cr \ C ′). This holds likewise for C ′′ and
throughout the cycle. Thus, all clusters in the cycle are contained within Cr and laminarity is
maintained.

Theorem 5.4 Let K be a symmetric similarity function satisfying the weak stability property. Then
the average single linkage algorithm constructs a binary tree such that the ground-truth clustering
is a pruning of this tree.

Proof: We prove correctness by induction. In particular, assume that our current clustering is
laminar with respect to the ground truth clustering (which is true at the start). That is, for each
cluster C in our current clustering and each Cr in the ground truth, we have either C ⊆ Cr, or
Cr ⊆ C or C ∩ Cr = ∅. Now, consider a merge of two clusters C and C ′. The only way that
laminarity could fail to be satisfied after the merge is if one of the two clusters, say, C ′, is strictly
contained inside some ground-truth cluster Cr′ and yet C is disjoint from Cr′ .

We distinguish a few cases. First, assume that C is a cluster Cr of the ground-truth. Then by
definition, K(C ′, Cr′ − C ′) > K(C ′, C). Furthermore, K(C ′, Cr′ − C ′) is a weighted average of the
K(C ′, C ′′) over the sets C ′′ ⊆ Cr′ − C ′ in our current clustering and so at least one such C ′′ must
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Figure 3: Part (a): Consider two sets B1, B2 with m points each. Assume that K(x, x′) = 0.3 if x ∈ B1

and x′ ∈ B2, K(x, x′) is random in {0, 1} if x, x′ ∈ Bi for all i. Clustering C1, C2 does not satisfy strict
separation, but for large enough m, w.h.p. will satisfy strong stability. Part (b): Consider four sets B1, B2,
B3, B4 of m points each. Assume K(x, x′) = 1 if x, x′ ∈ Bi, for all i, K(x, x′) = 0.85 if x ∈ B1 and x′ ∈ B2,
K(x, x′) = 0.85 if x ∈ B3 and x′ ∈ B4, K(x, x′) = 0 if x ∈ B1 and x′ ∈ B4, K(x, x′) = 0 if x ∈ B2 and
x′ ∈ B3. Now K(x, x′) = 0.5 for all points x ∈ B1 and x′ ∈ B3, except for two special points x1 ∈ B1 and
x3 ∈ B3 for which K(x1, x3) = 0.9. Similarly K(x, x′) = 0.5 for all points x ∈ B2 and x′ ∈ B4, except for
two special points x2 ∈ B2 and x4 ∈ B4 for which K(x2, x4) = 0.9. For large enough m, clustering C1, C2

satisfies strong stability. Part (c): Consider two sets B1, B2 of m points each, with similarities within a set
all equal to 0.7, and similarities between sets chosen uniformly at random from {0, 1}.

satisfy K(C ′, C ′′) > K(C ′, C). However, this contradicts the specification of the algorithm, since
by definition it merges the pair C, C ′ such that K(C ′, C) is greatest.

Second, assume that C is strictly contained in one of the ground-truth clusters Cr. Then, by
the weak stability property, either K(C,Cr − C) > K(C,C ′) or K(C ′, Cr′ − C ′) > K(C,C ′). This
again contradicts the specification of the algorithm as in the previous case.

Finally assume that C is a union of clusters in the ground-truth C1, . . . Ck′ . Then by definition,
K(C ′, Cr′ − C ′) > K(C ′, Ci), for i = 1, . . . k′, and so K(C ′, Cr′ − C ′) > K(C ′, C). This again leads
to a contradiction as argued above.

Linkage based algorithms and strong stability: We end this section with a few examples
relating strict separation, strong stability, and linkage-based algorithms. Figure 3 (a) gives an
example of a similarity function that does not satisfy the strict separation property, but for large
enough m, w.h.p. will satisfy the strong stability property. (This is because there are at most mk

subsets A of size k, and each one has failure probability only e−O(mk).) However, single-linkage
using Kmax(C,C ′) would still work well here. Figure 3 (b) extends this to an example where single-
linkage using Kmax(C,C ′) fails. Figure 3 (c) gives an example where strong stability is not satisfied
and average linkage would fail too. However notice that the average attraction property is satisfied
and Algorithm 1 will succeed. This example motivates our relaxed definition in Section 5.3 below.

5.3 Stability of large subsets

While natural, the weak and strong stability properties are still somewhat brittle: in the example
of Figure 1, for instance, if one adds a small number of edges with similarity 1 between the natural
clusters, then the properties are no longer satisfied for them (because pairs of elements connected by
these edges will want to defect). We can make the properties more robust by requiring that stability
hold only for large sets. This will break the average-linkage algorithm used above, but we can show
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that a more involved algorithm building on the approach used in Section 4 will nonetheless find an
approximately correct tree. For simplicity, we focus on broadening the strong stability property, as
follows (one should view s as small compared to ǫ/k in this definition):

Property 9 The similarity function K satisfies the (s, γ)-strong stability of large subsets

property for the clustering problem (S, ℓ) if for all target clusters Cr, Cr′, r 6= r′, for all A ⊂ Cr,
A′ ⊆ Cr′ with |A| + |A′| ≥ sn we have

K(A,Cr \ A) > K(A,A′) + γ.

The idea of how we can use this property is we will first run an algorithm for the list model much like
Algorithm 1, viewing its output as simply a long list of candidate clusters (rather than clusterings).

In particular, we will get a list L of k
O
(

k

γ2
log 1

ǫ
log k

δγǫ

)

clusters such that with probability at least
1− δ any cluster in the ground-truth of size at least ǫ

4k is close to one of the clusters in the list. We
then run a second “tester” algorithm that is able to throw away candidates that are sufficiently non-
laminar with respect to the correct clustering, so that the clusters remaining form an approximate
hierarchy and contain good approximations to all clusters in the target. We finally run a procedure
that fixes the clusters so they are perfectly laminar and assembles them into a tree. We present
and analyze the tester algorithm, Algorithm 4, below.

Algorithm 4 Testing Based Algorithm, Tree Model.

Input: Data set S, similarity function K, parameters f, g, s, α > 0. A list of clusters L with
the property that any cluster C in the ground-truth is at least f -close to some cluster in L.

Output: A tree on subsets.

1. Remove all clusters of size at most αn from L. Next, for every pair of clusters C, C ′ in L that
are sufficiently “non-laminar” with respect to each other in that |C \ C ′| ≥ gn, |C ′ \ C| ≥ gn
and |C ∩ C ′| ≥ gn, compute K(C ∩ C ′, C \ C ′) and K(C ∩ C ′, C ′ \ C). Remove C if the first
quantity is smaller, else remove C ′. Let L′ be the remaining list of clusters at the end of the
process.

2. Greedily sparsify the list L′ so that no two clusters are approximately equal (choose a cluster,
remove all that are approximately equal to it, and repeat), where we say two clusters C, C ′

are approximately equal if |C \ C ′| ≤ gn, |C ′ \ C| ≤ gn and |C ′ ∩ C| ≥ gn. Let L′′ be the list
remaining.

3. Add the cluster containing all of S to L′′ if it is not in L′′ already, and construct a tree T
on L′′ ordered by approximate inclusion. Specifically, C becomes a child of C ′ in tree T if
|C \ C ′| < gn, |C ′ \ C| ≥ gn and |C ′ ∩ C| ≥ gn.

4. Feed T to Algorithm 5 which cleans up the clusters in T so that the resulting tree is a legal
hierarchy (all clusters are completely laminar and each cluster is the union of its children).
Output this tree as the result of the algorithm.

We now analyze Algorithm 4 and its subroutine Algorithm 5, showing that the target clustering
is approximated by some pruning of the resulting tree.
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Algorithm 5 Tree-fixing subroutine for Algorithm 4.

Input: Tree T on clusters in S, each of size at least αn, ordered by approximate inclusion.
Parameters g, α > 0.

Output: A tree with the same root as T that forms a legal hierarchy.

1. Let CR be the root of T . Replace each cluster C in T , with C ∩CR. So, all clusters of T are
now contained within CR.

2. While there exists a child C of CR such that |C| ≥ |CR| − αn/2, remove C from the tree,
connecting its children directly to CR.

3. Greedily make the children of CR disjoint: choose the largest child C, replace each other child
C ′ with C ′ \ C, then repeat with the next smaller child until all are disjoint.

4. Delete any child C of CR of size less than αn/2 along with its descendants. If the children of
CR do not cover all of CR, and CR is not a leaf, create a new child with all remaining points
in CR so that the children of CR now form a legal partition of CR.

5. Recursively run this procedure on each non-leaf child of CR.

Theorem 5.5 Let K be a similarity function satisfying (s, γ)-strong stability of large subsets for
the clustering problem (S, ℓ). Let L be a list of clusters such that any cluster in the ground-truth
of size at least αn is f -close to one of the clusters in the list. Then Algorithm 4 with parameters
satisfying s + f ≤ g, f ≤ gγ/10 and α > 4

√
g yields a tree such that the ground-truth clustering is

2αk-close to a pruning of this tree.

Proof: Let k′ be the number of “big” ground-truth clusters: the clusters of size at least αn;
without loss of generality assume that C1, ..., Ck′ are the big clusters.

Let C ′
1, ...,C ′

k′ be clusters in L such that d(Ci, C
′
i) is at most f for all i. By Property 9 and

Lemma 5.6 (stated below), we know that after Step 1 (the “testing of clusters” step) all the clusters
C ′

1, ...,C ′
k′ survive; furthermore, we have three types of relations between the remaining clusters.

Specifically, either:

(a) C and C ′ are approximately equal; that means |C \ C ′| ≤ gn, |C ′ \ C| ≤ gn and |C ′ ∩ C| ≥ gn.

(b) C and C ′ are approximately disjoint; that means |C \ C ′| ≥ gn, |C ′ \ C| ≥ gn and |C ′ ∩ C| <
gn.

(c) or C ′ approximately contains C; that means |C \ C ′| < gn, |C ′ \ C| ≥ gn and |C ′ ∩ C| ≥ gn.

Let L′′ be the remaining list of clusters after sparsification. It is immediate from the greedy
sparsification procedure that there exists C ′′

1 , ..., C ′′
k′ in L′′ such that d(Ci, C

′′
i ) is at most (f + 2g),

for all i. Moreover, all the elements in L′′ are either in the relation “subset” or “disjoint”. Also,
since all the clusters C1, ..., Ck′ have size at least αn, we also have that C ′′

i , C ′′
j are in the relation

“disjoint”, for all i, j, i 6= j. That is, in the tree T given to Algorithm 5, the C ′′
i are not descendants

of one another.
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We now analyze Algorithm 5. It is clear by design of the procedure that the tree produced
is a legal hierarchy: all points in S are covered and the children of each node in the tree form a
partition of the cluster associated with that node. Moreover, except possibly for leaves added in
Step 4, all clusters in the tree have size at least αn/2, and by Step 2, all are smaller than their
parent clusters by at least αn/2. Therefore, the total number of nodes in the tree, not including
the “filler” clusters of size less than αn/2 added in Step 4, is at most 4/α.

We now must argue that all of the big ground-truth clusters C1, . . . , Ck′ still have close approx-
imations in the tree produced by Algorithm 5. First, let us consider the total amount by which a
cluster C ′′

i can possibly be trimmed in Steps 1 or 3. Since there are at most 4/α non-filler clusters in
the tree and all clusters are initially either approximately disjoint or one is an approximate subset
of the other, any given C ′′

i can be trimmed by at most (4/α)gn points. This in turn is at most αn/4
since α2 ≥ 16g. Note that since initially C ′′

i has size at least αn, this means it will not be deleted
in Step 4. However, it could be that cluster C ′′

i is deleted in Step 2: in this case, reassign C ′′
i to the

parent cluster CR. Thus, the overall distance between C ′′
i and Ci can increase due to both trimming

and reassigning by at most 3α/4. Using the fact that initially we had d(Ci, C
′′
i ) ≤ f + 2g ≤ α/4,

this means each big ground-truth Ci has some representative in the final tree with error at most
αn. Thus the total error on big clusters is at most αkn, and adding in the at most k small clusters
we have an overall error at most 2αkn.

Lemma 5.6 Let K be a similarity function satisfying the (s, γ)-strong stability of large subsets
property for the clustering problem (S, ℓ). Let C, C ′ be such that

|C ∩ C ′| ≥ gn and |C \ C ′| ≥ gn and |C ′ \ C| ≥ gn.

Let C∗ be a cluster in the underlying ground-truth such that

|C∗ \ C| ≤ fn and |C \ C∗| ≤ fn.

Let I = C ∩ C ′. If s + f ≤ g and f ≤ gγ/10. Then,

K(I, C \ I) > K(I, C ′ \ I).

Proof: Let I∗ = I ∩ C∗. So, I∗ = C ∩ C ′ ∩ C∗. We prove first that

K(I, C \ I) > K(I∗, C∗ \ I∗) − γ/2. (1)

Since K(x, x′) ≥ −1, we have

K(I, C \ I) ≥ (1 − p1)K(I ∩ C∗, (C \ I) ∩ C∗) − p1,

where 1 − p1 = |I∗|
|I| · |(C\I)∩C∗|

|C\I| . By assumption we have both

|I| ≥ gn and |I \ I∗| ≤ fn,

which imply:
|I∗|
|I| =

|I| − |I \ I∗|
|I| ≥ g − f

g
.

Similarly, we have both

|C \ I| ≥ gn and
∣

∣(C \ I) ∩ C̄∗
∣

∣ ≤ |C \ C∗| ≤ fn,
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which imply:
|(C \ I) ∩ C∗|

|C \ I| =
|C \ I| −

∣

∣(C \ I) ∩ C̄∗
∣

∣

|C \ I| ≥ g − f

g
.

Let us denote by 1 − p the quantity
(

g−f
g

)2
. We have:

K(I, C \ I) ≥ (1 − p)K(I∗, (C \ I) ∩ C∗) − p. (2)

Let A = (C∗ \ I∗) ∩ C and B = (C∗ \ I∗) ∩ C̄. We have

K(I∗, C∗ \ I∗) = (1 − α)K(I∗, A) − αK(I∗, B), (3)

where 1 − α = |A|
|C∗\I∗| . Note that A = (C \ I) ∩ C∗ since we have both

A = (C∗ \ I∗) ∩ C = (C∗ ∩ C) \ (I∗ ∩ C) = (C∗ ∩ C) \ I∗

and
(C \ I) ∩ C∗ = (C ∩ C∗) \ (I ∩ C∗) = (C∗ ∩ C) \ I∗.

Furthermore

|A| = |(C \ I) ∩ C∗| ≥ |C \ C ′| − |C \ C∗| ≥ gn − fn.

We also have |B| = |(C∗ \ I∗) ∩ C̄| ≥ |C∗ \ C| ≤ fn. These imply both

1 − α =
|A|

|A| + |B| =
1

1 + |B|/|A| ≥
g − f

g
,

and
α

1 − α
≤ f

g − f
.

Inequality (3) implies

K(I∗, A) =
1

1 − α
K(I∗, C∗ \ I∗) − α

1 − α
K(I∗, B)

and since K(x, x′) ≤ 1, we obtain:

K(I∗, A) ≥ K(I∗, C∗ \ I∗) − f/(g − f). (4)

Overall, combining (2) and (4) we obtain:

K(I, C \ I) ≥ (1 − p) [K(I∗, C∗ \ I∗) − f/(g − f)] − p,

so
K(I, C \ I) ≥ K(I∗, C∗ \ I∗) − 2p − (1 − p) · f/(g − f).

Since 1 − p =
(

g−f
g

)2
, we have p = 2gf−f2

g2 . Using this together with the assumption that

f ≤ gγ/10. it is easy to verify that

2p + (1 − p) · f/(g − f) ≤ γ/2,
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which finally implies inequality (1).
Our assumption that K is a similarity function satisfying the strong stability property with a

threshold sn and a γ-gap for our clustering problem (S, ℓ), together with the assumption s + f ≤ g
implies

K(I∗, C∗ \ I∗) ≥ K(I∗, C ′ \ (I∗ ∪ C∗)) + γ. (5)

We finally prove that

K(I∗, C ′ \ (I∗ ∪ C∗)) ≥ K(I, C ′ \ I) − γ/2. (6)

The proof is similar to the proof of statement (1). First note that

K(I, C ′ \ I) ≤ (1 − p2)K(I∗, (C ′ \ I) ∩ C̄∗) + p2,

where

1 − p2 =
|I∗|
|I| ·

∣

∣(C ′ \ I) ∩ C̄∗
∣

∣

|C ′ \ I| .

We know from above that |I∗|
|I| ≥ g−f

g , and we can also show
|(C′\I)∩C̄∗|

|C′\I| ≥ g−f
g . So 1−p2 ≥

(

g−f
g

)2
,

and so p2 ≤ 2 g
f ≤ γ/2, as desired.

To complete the proof note that relations (1), (5) and (6) together imply the desired result,
namely that K(I, C \ I) > K(I, C ′ \ I).

Theorem 5.7 Let K be a similarity function satisfying the (s, γ)-strong stability of large subsets
property for the clustering problem (S, ℓ). Assume that s = O(ǫ2γ/k2). Then using Algorithm 4
with parameters α = O(ǫ/k), g = O(ǫ2/k2), f = O(ǫ2γ/k2), together with Algorithm 1 we can with
probability 1 − δ produce a tree with the property that the ground-truth is ǫ-close to a pruning of
this tree. Moreover, the size of this tree is O(k/ǫ).

Proof: First, we run Algorithm 1 get a list L of clusters such that with probability at least 1− δ
any cluster in the ground-truth of size at least ǫ

4k is f -close to one of the clusters in the list. We can

ensure that our list L has size at most k
O
(

k

γ2
log 1

ǫ
log k

δf

)

. We then run Procedure 4 with parameters
α = O(ǫ/k), g = O(ǫ2/k2), f = O(ǫ2γ/k2). We thus obtain a tree with the guarantee that the
ground-truth is ǫ-close to a pruning of this tree (see Theorem 5.5). To complete the proof we only
need to show that this tree has O(k/ǫ) leaves. This follows from the fact that all leaves of our tree
have at least αn points and the overlap between any two of them is at most gn (for a formal proof
see lemma 5.8).

Lemma 5.8 Let P1, ..., Ps be a quasi-partition of S such that |Pi| ≥ n ν
k and |Pi ∩ Pj| ≤ gn for all

i, j ∈ {1, . . . , s}, i 6= j. If g = ν2

5k2 , then s ≤ 2k
ν .

Proof: Assume for contradiction that s > L = 2k
ν , and consider the first L parts P1, ..., PL.

Then
(

n ν
k − 2k

ν gn
)

2k
ν is a lower bound on the number of points that belong to exactly one of the

parts Pi, i ∈ {1, . . . , L}. For our choice of g, g = ν2

5k2 , we have
(

n
ν

k
− 2

k

ν
gn

)

2
k

ν
= 2n − 4

5
n.

So 6
5n is a lower bound on the number of points that belong to exactly one of the parts Pi,

i ∈ {1, . . . , L}, which is impossible since |S| = n. So, we must have s ≤ 2k
ν .

We discuss other interesting stability and average attraction-style properties in Appendix B.
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6 Approximation Assumptions

When developing a c-approximation algorithm for some clustering objective function Φ, if the goal
is to actually cluster the points correctly, then one is implicitly making the assumption (or hope)
that any c-approximation to Φ must be ǫ-close in symmetric difference to the target clustering.
We show here we show how assumptions of this kind can be viewed as special cases of the ν-strict
separation property.

Property 10 Given objective function Φ, we say that a metric d over point set S satisfies the
(c, ǫ)-Φ property with respect to target C if all clusterings C′ that are within a factor c of optimal in
terms of objective Φ are ǫ-close to C.

We now consider in particular the k-median and k-center objective functions.

Theorem 6.1 If metric d satisfies the (2, ǫ)-k-median property for dataset S, then the similarity
function −d satisfies the ν-strict separation property for ν = 4ǫ.

Proof: As before we denote the target clustering by C = {C1, C2, ..., Ck}. Let OPT = {OPT1,
OPT2, ...,OPTk} be the k-median optimal clustering, where

∑

i

|Ci ∩ OPTi| ≥ (1 − ǫ)n.

Mark the set of all points (at most ǫn) where C and OPT disagree.
For j = 1, 2, . . ., if there exists an unmarked xj that is more similar to some unmarked zj in a

different target cluster than to some unmarked yj in its own cluster, we mark all three points. If
this process halts after at most ǫn rounds, then we are done: the unmarked set, which has at least
(1− 4ǫ)n points, satisfies strict separation. We now claim we can get a contradiction if the process
lasts longer. Specifically, begin with OPT (not C) and move each xj to the cluster containing point
zj . Call the result OPT′. Note that for all j, the pair (xj , yj) are in the same cluster in C (because
we only chose xj, yj , zj from points where C and OPT agree) but are in different clusters in OPT′;
moreover, the pairs are all disjoint. So, d(OPT′, C) > ǫn. However, we claim that OPT′ has cost
at most 2OPT. To see this, first define cost(x) to be the contribution of x to the k-median cost in
OPT, and define cost′(x) to be x’s contribution in OPT′. Then, moving xj into the cluster of the
corresponding zj will increase the k-median objective by at most

cost′(xj) ≤ d(xj , zj) + cost(zj) ≤ d(xj , yj) + cost(zj)

≤ cost(xj) + cost(yj) + cost(zj).

Thus, since the triples (xj , yj, zj) are all disjoint, the k-median objective at most doubles,
contradicting our initial assumption.

We can similarly prove:

Theorem 6.2 If the metric d satisfies the (3, ǫ)-k-center property, then the similarity function
(−d) satisfies the ν-strict separation property for ν = 4ǫ.
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So if the metric d satisfies the (2, ǫ)-k-median or the (3, ǫ)-k-center property for dataset S,
then the similarity function −d satisfies the ν-strict separation property for ν = 4ǫ. Theorem 3.3
(in Section 6.1) then implies that as long as the smallest cluster in the target has size 20ǫn we can
produce a tree such that the ground-truth clustering is 4ǫ-close to a pruning of this tree.

Note: In fact, the (2, ǫ)-k-median property is quite a bit more restrictive than ν-strict separation.
It implies, for instance, that except for an O(ǫ) fraction of “bad” points, there exists d such that all
points in the same cluster have distance much less than d and all points in different clusters have
distance much greater than d. In contrast, ν-strict separation would allow for different distance
scales at different parts of the graph. This has been further exploited in subsequent work. In
particular, Balcan et al. [2009] show that if we assume that any c-approximation to the k-median
objective is ǫ-close to the target—then one can produce clusterings that are O(ǫ)-close to the
target, even for values c for which obtaining a c-approximation is NP-hard. We discuss this further
in Section 8.

6.1 The ν-strict separation Property

We end this section by proving Theorem 3.3.

Theorem 3.3 If K satisfies ν-strict separation, then so long as the smallest correct cluster has
size greater than 5νn, we can produce a tree such that the ground-truth clustering is ν-close to a
pruning of this tree.

Proof: Let S′ ⊆ S be the set of (1−ν)n points such that K satisfies strict separation with respect
to S′. Call the points in S′ “good”, and those not in S′ “bad” (of course, goodness is not known
to the algorithm). We will in fact create a tree that is perfect with respect to S′; that is, if points
in S \ S′ are removed, the target clustering will be exactly equal to some pruning of the tree.

We begin by generating a list L of n2 clusters such that, ignoring bad points, all clusters in the
ground-truth are in the list. We can do this by, for each point x ∈ S, creating a cluster of the t
nearest points to it for each 4νn ≤ t ≤ n. We next run a procedure that fixes or removes clusters
that are non-laminar with respect to each other without hurting any of the correct clusters, until
the remaining set is fully laminar. We then hook up the final set of clusters into a tree.

Specifically, after creating the set L, while there exist two clusters C and C ′ that are non-laminar
with respect to each other, we do the following (always choosing the first option that applies):

1. If either C or C ′ has size ≤ 4νn, delete it from the list. (By assumption, it cannot be one of
the ground-truth clusters).

2. If C and C ′ are “somewhat disjoint” in that |C \ C ′| > 2νn and |C ′ \ C| > 2νn, each point
x ∈ C ∩ C ′ chooses one of C or C ′ to belong to based on whichever of C \ C ′ or C ′ \ C
respectively has larger median similarity to x. We then remove x from the cluster not chosen.
Because each of C \C ′ and C ′ \C has a majority of its points as good points (since there are
at most νn bad points total), if one of C or C ′ is a ground-truth cluster with respect to S′,
all good points x in the intersection will make the correct choice. Thus, C and C ′ are now
fully disjoint and we maintain our invariant that, with respect to S′, all ground-truth clusters
are in our list.
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3. If C, C ′ are “somewhat equal” in that |C\C ′| ≤ 2νn and |C ′\C| ≤ 2νn, we make them exactly
equal based on the following related procedure. Each point x in the symmetric difference of
C and C ′ decides in or out based on whether its similarity to the (νn+1)st most-similar point
in C ∩ C ′ is larger or smaller (respectively) than its similarity to the (νn + 1)st most similar
point in S \ (C ∪ C ′). If x is a good point in C \ C ′ and C is a ground-truth cluster (with
respect to S′), then x will correctly choose in, whereas if C ′ is a ground-truth cluster then x
will correctly choose out. Thus, we can replace C and C ′ with a single cluster consisting of
their intersection plus all points x that chose in, without affecting the correct clusters. Thus,
we again maintain our invariant.

4. Finally, if none of the other cases apply, it may still be there exist C,C ′ such that C “somewhat
contains” C ′ in that |C \ C ′| > 2νn and 0 < |C ′ \ C| ≤ 2νn. In this case, choose the largest
such C and apply the same procedure as in Step 3, but only over the points x ∈ C ′ \ C. At
the end of the procedure, we have C ⊇ C ′ and the correct clusters have not been affected
with respect to the good points.

We now need to argue that the above procedure halts in a polynomial number of steps. Cases (1)
and (3) each delete a cluster, and no clusters are ever added, so together they can occur at most n2

times. Case (2) reduces the overall sum of cluster sizes, so it can occur only a polynomial number
of times before an instance of case (4).

Now, case (4) could cause one of its clusters (namely, C) to grow, so we need to be a bit more
careful with it. Specifically, we argue case (4) as follows. Let C̄ = C ∪ {C ′′ : C ∩ C ′′ 6= φ}. Note
that C̄ is completely disjoint from any cluster not contained inside it, because we only apply case
(4) when none of the other cases apply. Therefore, after case (4) is applied to C and all C ′ that it
“somewhat contains”, we have that all clusters in L are either subsets of C or disjoint from C, and
this will remain true throughout the remainder of the procedure. So, the number of active clusters
(those for which any of cases (1)-(4) might apply to) has decreased by 1. This can occur only a
polynomial number of times.

Thus, the overall total number of steps is polynomial in n. Finally, since all clusters remaining
are laminar, we can now arrange them into a forest, which we then arbitrarily complete into a tree.

7 Inductive Setting

In this section we consider an inductive model in which S is merely a small random subset of points
from a much larger abstract instance space X, and clustering is represented implicitly through a
hypothesis h : X → Y . In the list model our goal is to produce a list of hypotheses, {h1, . . . , ht}
such that at least one of them has error at most ǫ. In the tree model we assume that each node
in the tree induces a cluster which is implicitly represented as a function f : X → {0, 1}. For a
fixed tree T and a point x, we define T (x) as the subset of nodes in T that contain x (the subset
of nodes f ∈ T with f(x) = 1). We say that a tree T has error at most ǫ if T (X) has a pruning
f1, ..., fk′ of error at most ǫ.

We analyze in the following, for each of our properties, how large a set S we need to see in order
for our list or tree produced with respect to S to induce a good solution with respect to X.

The average attraction property. Our algorithms for the average attraction property (Prop-
erty 3) and the generalized large margin property are already inherently inductive. We simply
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extend the domain of the hypotheses h produced from S to all of X.

The strict separation property. We can adapt the algorithm in Theorem 3.2 to the inductive
setting as follows. We first draw a set S of n = O

(

k
ǫ ln

(

k
δ

))

unlabeled examples. We run the
algorithm described in Theorem 3.2 on this set and obtain a tree T on the subsets of S. Let Q be
the set of leaves of this tree. We associate to each node u in T a boolean function fu specified as
follows. Consider x ∈ X, and let q(x) ∈ Q be the leaf given by argmaxq∈QK(x, q); if u appears on
the path from q(x) to the root, then set fu(x) = 1, otherwise set fu(x) = 0.

Note that n is large enough to ensure that with probability at least 1− δ, S includes at least a
point in each cluster of size at least ǫ

k . Remember that C = {C1, . . . , Ck} is the correct clustering
of the entire domain. Let CS be the (induced) correct clustering on our sample S of size n. Since
our property is hereditary, Theorem 3.2 implies that CS is a pruning of T . It then follows from the
specification of our algorithm and from the definition of the strict separation property that with
probability at least 1− δ the partition induced over the whole space by this pruning is ǫ-close to C.

The strong stability of large subsets property. We can also naturally extend the algorithm for
Property 9 to the inductive setting. The main difference in the inductive setting is that we have to
estimate (rather than compute) the quantities |Cr \ Cr′ |, |Cr′ \ Cr|, |Cr ∩ Cr′ |, K(Cr ∩Cr′ , Cr \Cr′)
and K(Cr ∩Cr′ , Cr′ \Cr) for any two clusters Cr, Cr′ in the list L. We can easily do that with only
poly(k, 1/ǫ, 1/γ, 1/δ) log(|L|)) additional points, where L is the input list in Algorithm 4 (whose
size depends on 1/ǫ, 1/γ and k only). Specifically, using a straightforward modification of the proof
in Theorem 5.7 and standard concentration inequalities (e.g. the McDiarmid inequality [Devroye
et al., 1996]) we have:

Theorem 7.1 Assume that K is a similarity function satisfying the (s, γ)-strong stability of large
subsets property for (X, ℓ). Assume that s = O(ǫ2γ/k2). Then using Algorithm 4 with parameters
α = O(ǫ/k), g = O(ǫ2/k2), f = O(ǫ2γ/k2), together with Algorithm 1 we can produce a tree with
the property that the ground-truth is ǫ-close to a pruning of this tree. Moreover, the size of this tree

is O(k/ǫ). We use O
(

k
γ2 ln

(

k
ǫδ

)

·
(

k
ǫ

)
4k

γ2
ln

(

k
ǫδ

)

ln(1
δ )

)

points in the first phase and O
(

1
γ2

1
g2

k
γ2 log 1

ǫ

log k
δf log k

)

points in the second phase.

Note that each cluster is represented as a nearest neighbor hypothesis over at most k sets.

The strong stability property. In order to use the strong stability property in the inductive
setting, we first note that we need to consider a variant of our property that has a γ-gap. To see
why this is necessary consider the following example. Suppose all pairwise similarities K(x, x′) are
equal to 1/2, except for a special single center point xi in each cluster Ci with K(xi, x) = 1 for all
x in Ci. This satisfies strong-stability since for every A ⊂ Ci we have K(A,Ci \A) is strictly larger
than 1/2. Yet it is impossible to cluster in the inductive model because our sample is unlikely to
contain the center points. The variant of our property that is suited to the inductive setting is the
following (we assume here that our similarity function is symmetric):

Property 11 The similarity function K satisfies the γ-strong stability property for the clustering
problem (X, ℓ) if for all target clusters Cr, Cr′, r 6= r′, for all A ⊂ Cr, for all A′ ⊆ Cr′ we have

K(A,Cr \ A) > K(A,A′) + γ.
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For this property, we could always run the algorithm for Theorem 7.1, though running time
would be exponential in k and 1/γ. We show here how we can get polynomial dependence on
these parameters by adapting Algorithm 2 to the inductive setting as in the case of the strict order
property. Specifically, we first draw a set S of n unlabeled examples. We run the average linkage
algorithm on this set and obtain a tree T on the subsets of S. We then attach each new point x to
its most similar leaf in this tree as well as to the set of nodes on the path from that leaf to the root.
For a formal description see Algorithm 6. While the algorithm is simple, proving its correctness
requires substantially more involved arguments. In particular, we must show that if Property 11
holds for the entire space X, then with high probability (a version of) it holds for the sample as
well; i.e., that sampling preserves stability. This will require adapting regularity-style arguments
of [Frieze and Kannan, 1999] and [Alon et al., 2003].

Algorithm 6 Inductive Average Linkage, Tree Model

Input: Similarity function K, parameters γ, ǫ > 0, k ∈ Z+; n = n(ǫ, γ, k, δ);

• Pick a set S = {x1, . . . , xn} of n random examples from X.

• Run the average linkage algorithm (Algorithm 2) on the set S and obtain a tree T on the
subsets of S. Let Q be the set of leaves of this tree.

• Associate each node u in T a function fu (which induces a cluster) specified as follows:

Consider x ∈ X, and let q(x) ∈ Q be the leaf given by argmaxq∈QK(x, q); if u appears on the
path from q(x) to the root, then set fu(x) = 1, otherwise set fu(x) = 0.

• Output the tree T .

We show in the following that for n = poly(k, 1/ǫ, 1/γ, 1/δ) we obtain a tree T which has a
pruning f1, ..., fk′ of error at most ǫ. Specifically:

Theorem 7.2 Let K be a similarity function satisfying the strong stability property for the clus-
tering problem (X, ℓ). Then using Algorithm 6 with parameters n = poly(k, 1/ǫ, 1/γ, 1/δ), we can
produce a tree with the property that the ground-truth is ǫ-close to a pruning of this tree.

Proof: Remember that C = {C1, . . . , Ck} is the ground-truth clustering of the entire domain. Let
CS = {C ′

1, . . . , C
′
k} be the (induced) correct clustering on our sample S of size n. As in the previous

arguments we assume that a cluster is big if it has probability mass at least ǫ
2k .

First, Theorem 7.3 below implies that with high probability the clusters C ′
i corresponding to the

large ground-truth clusters satisfy our property with a gap γ/2. (Just perform a union bound over
x ∈ S \C ′

i.) Therefore, by the argument in Theorem 5.2, these large C ′
i will appear as nodes of the

tree T , even if the C ′
i corresponding to the small ground-truth clusters do not satisfy the property.

Thus, with high probability, CS is approximately a pruning of the tree T . Furthermore since n is
large enough we also have that with high probability, K(x,C(x)) is within γ/2 of K(x,C ′(x)) for
a 1 − ǫ fraction of points x. This ensures that with high probability, for any such good x the leaf
q(x) belongs to C(x). This finally implies that the partition induced over the whole space by the
pruning CS of the tree T is ǫ-close to C.
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Note that each cluster u is implicitly represented by the function fu defined in the description
of Algorithm 6.

We prove in the following that for a sufficiently large value of n sampling preserves stability.
Specifically:

Theorem 7.3 Let C1, C2, . . . , Ck be a partition of a set X such that for any A ⊆ Ci and any
x 6∈ Ci,

K(A,Ci \ A) ≥ K(A,x) + γ.

Let x 6∈ Ci and let C ′
i be a random subset of n′ elements of Ci. Then, n′ = poly(1/γ, log(1/δ)) is

sufficient so that with probability 1 − δ, for any A ⊂ C ′
i,

K(A,C ′
i \ A) ≥ K(A,x) +

γ

2
.

Proof: First of all, the claim holds for singleton subsets A with high probability using a Chernoff
bound. This implies the condition is also satisfied for every subset A of size at most γn′/2. Thus,
it remains to prove the claim for large subsets. We do this using the cut-decomposition of [Frieze
and Kannan, 1999] and the random sampling analysis of [Alon et al., 2003].

Let N = |Ci|. By [Frieze and Kannan, 1999], we can decompose the similarity matrix for Ci

into a sum of cut-matrices B1 + B2 + . . . + Bs plus a low cut-norm matrix W with the following
properties. First, each Bj is a cut-matrix, meaning that for some subset Sj1 of the rows and subset
Sj2 of the columns and some value dj , we have: Bj [xy] = dj for x ∈ Sj1, y ∈ Sj2 and all Bj[xy] = 0
otherwise. Second, the values dj are not too large, specifically each dj = O(1). Finally, s = 1/τ2

cut-matrices are sufficient so that matrix W has cut-norm at most τN2: that is, for any partition
of the vertices A,A′, we have |∑x∈A,y∈A′ W [xy]| ≤ τN2; moreover, ||W ||∞ ≤ 1/τ and ||W ||F ≤ N .

We now closely follow arguments in [Alon et al., 2003]. First, let us imagine that we have exact
equality Ci = B1 + . . . + Bs, and we will add in the matrix W later. We are given that for all A,
K(A,Ci \A) ≥ K(A,x)+γ. In particular, this trivially means that for each “profile” of sizes {tjr},
there is no set A satisfying

|A ∩ Sjr| ∈ [tjr − α, tjr + α]N

|A| ≥ (γ/4)N

that violates our given condition. The reason for considering cut-matrices is that the values |A∩Sjr|
completely determine the quantity K(A,Ci \ A). We now set α so that the above constraints
determine K(A,Ci \A) up to ±γ/4. In particular, choosing α = o(γ2/s) suffices. This means that
fixing a profile of values {tjr}, we can replace “violates our given condition” with K(A,x) ≥ c0

for some value c0 depending on the profile, losing only an amount γ/4. We now apply Theorem
9 (random sub-programs of LPs) of [Alon et al., 2003]. This theorem states that with probability
1− δ, in the subgraph C ′

i, there is no set A′ satisfying the above inequalities where the right-hand-
sides and objective c0 are reduced by O(

√

log(1/δ)/
√

n). Choosing n ≫ log(1/δ)/α2 we get that
with high probability the induced cut-matrices B′

i have the property that there is no A′ satisfying

|A′ ∩ S′
jr| ∈ [tjr − α/2, tjr + α/2]N

|A′| ≥ (γ/2)n′
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with the objective value c0 reduced by at most γ/4. We now simply do a union-bound over all
possible profiles {tjr} consisting of multiples of α to complete the argument.

Finally, we incorporate the additional matrix W using the following result from [Alon et al.,
2003].

Lemma 7.4 [Random submatrix][Alon et al., 2003] For τ, δ > 0, and any W an N ×N real matrix
with cut-norm ||W ||C ≤ τN2, ||W ||∞ ≤ 1/τ and ||W ||F ≤ N , let S′ be a random subset of the
rows of W with n′ = |S′| and let W ′ be the n′ × n′ submatrix of W corresponding to W . For
n′ > (c1/τ

4δ5) log(2/τ), with probability at least 1 − δ,

||W ′||C ≤ c2
τ√
δ
n′2

where c1, c2 are absolute constants.

We want the addition of W ′ to influence the values K(A,C ′
i − A) by o(γ). We now use the fact

that we only care about the case that |A| ≥ γn′/2 and |C ′
i −A| ≥ γn′/2, so that it suffices to affect

the sum
∑

x∈A,y∈C′
i−A K(x, y) by o(γ2n′2). In particular, this means it suffices to have τ = õ(γ2),

or equivalently s = Õ(1/γ4). This in turn implies that it suffices to have α = õ(γ6), which implies
that n′ = Õ(1/γ12) suffices for the theorem.

8 Subsequent work

Following the initial publication of this work, Balcan, Blum, and Gupta [2009] have further analyzed
implications of the (c, ǫ) property for k-median, k-means, and min-sum objectives. In particular,
one of the main results of [Balcan et al., 2009] for the k-median problem is the following:

Theorem 8.1 For any α > 0, if the metric d satisfies the (1 + α, ǫ)-k-median property for dataset
S, then one can efficiently find a (single) clustering which is O(ǫ/α)-close to the target. Moreover,
if each cluster in the target clustering has size at least (4 + 15/α)ǫn + 2, then one can efficiently
find a clustering that is ǫ-close to the target.

These results also highlight a surprising conceptual difference between assuming that the optimal
solution to the k-median objective is ǫ-close to the target, and assuming that any approximately
optimal solution is ǫ-close to the target, even for approximation factor say c = 1.01. In the former
case, the problem of finding a solution that is O(ǫ)-close to the target remains computationally
hard, and yet for the latter there is an efficient algorithm.

Balcan et al. [2009] prove similar results for the k-means objective, and Balcan and Braverman
[2009] derive similar results for the min-sum objective. In addition, Balcan and Braverman [2009]

also consider the correlation clustering objective and show that for this objective, the (1 + α, ǫ)
property implies a (2.5, O(ǫ/α)) property, so one can use a state-of-the-art 2.5-approximation algo-
rithm for minimizing disagreements [Ailon et al., 2005] in order to get an accurate clustering. This
contrasts with objectives such as min-sum, k-median, or k-means, where data may satisfy the (c, ǫ)
property but not even the (c′, 0.49) property for any c′ > c.
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9 Conclusions and Discussion

In this paper we provide a general framework for analyzing what properties of a similarity func-
tion are sufficient to allow one to cluster accurately. Our framework does not rely on proba-
bilistic generative-model assumptions, and instead parallels the notion of data-dependent concept
classes [Vapnik, 1998] (such as large-margin separators) in the context of classification. We prove
that in our framework, a number of interesting, natural properties are sufficient to cluster well
under two reasonable relaxations of the clustering objective, tree clustering and list clustering. To
do so, we analyze a wide variety of different types of algorithms. For some properties we are able
to show that known algorithms succeed (e.g. variations of bottom-up hierarchical linkage based
algorithms), but for the most general properties we develop new algorithmic techniques that are
able to take advantage of them, and that may prove to be more broadly useful. We also show that
for certain algorithms such as single-linkage, we can describe properties that completely charac-
terize the conditions needed for their success. We in addition define a measure of the clustering
complexity of a given property that characterizes its information-theoretic usefulness for clustering,
and analyze this complexity for a broad class of properties, providing tight upper and lower bounds.

Our work can be viewed both in terms of providing formal advice to the designer of a similarity
function for a given clustering task (such as clustering query search results) and in terms of advice
about what algorithms to use given certain beliefs about the relation of the similarity function to the
clustering task. Our model also provides a better understanding of when, in terms of the relation
between the similarity measure and the ground-truth clustering, different existing algorithms (e.g.,
hierarchical linkage-based algorithms) will fare better than others.

Our framework also provides a natural way to formalize exploratory clustering, by allowing the
property itself to be viewed as the criterion for a clustering to be “interesting”. In this view, all of
our formal guarantees can be interpreted as saying that the hierarchy or the list that our algorithm
outputs contains (approximations to) all the desirable clusterings, and the clustering complexity of
a property gives an upper-bound on the number of “substantially different” interesting clusterings.

9.1 Open questions

In terms of specific open questions, for the average attraction property (Property 3) we have an
algorithm that for k = 2 produces a list of size approximately 2O(1/γ2 ln 1/ǫ) and a lower bound on
clustering complexity of 2Ω(1/γ). One natural open question is whether one can close that gap. A
second open question is that for the strong stability of large subsets property (Property 9), our
algorithm produces hierarchy but has substantially larger running time than that for the simpler
stability properties. Can an algorithm with running time polynomial in k and 1/γ be developed?
Can one prove guarantees for stability properties based on spectral methods, e.g., the hierarchical
clustering algorithm given in [Cheng et al., 2006]? It would also be interesting to determine whether
these stability properties can be further weakened and still admit a hierarchical clustering.

More broadly, one would like to analyze other natural properties of similarity functions, as
well as to broaden the types of output structures produced, for applications in which the goal
is not just a partition of data but more broadly a tree, DAG, or other organizational structure.
Such structures arise in a number of applications including web-based knowledge acquisition and
bioinformatics applications,

Finally, in this work we have focused on formalizing clustering with non-interactive feedback;
that is, the tree or list produced would then be given to a user or subsequent post-processing step.
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It would be interesting to formalize clustering with other more interactive forms of feedback. For
example, depending on the application, different types of feedback can be most natural, such as
identifying points that should or should not be in the same cluster, or clusters that should be
split or merged. Some initial progress in this direction has been made in [Balcan and Blum, 2009]

and [Awasthi, 2009].
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A Relation to work on defining stable clusters

We review here the definition of stability in [Bryant and Berry, 2001] and how this relates to our
notion of strong stability. We start with a few definitions from [Bryant and Berry, 2001].

First, [Bryant and Berry, 2001] focus on symmetric similarity functions. A rooted triple ab | c
denotes a grouping of a and b relative to c. The set of rooted triples of X is denoted by R(X ).
An isolation index is a weighting function w : R(X ) → R such that w(ab|c) + w(ac|b) ≤ 0 for all
a, b, c ∈ X. Given a similarity function K define:

ρK(ab | c) = K(a, b) − max{K(a, c),K(b, c)}.

Then ρK is an isolation index. Given a non-empty set R of rooted triples and an isolation index
w, let av(R) denote the average weight of the triples in R and let avmin(R, k) denote the average
weight of the k ≤ |R| triples with minimum weight in R. Also, given disjoint non-empty sets U, V,Z
define w̄(UV |Z) as the average weight over all triples uv | z with u ∈ U , v ∈ V , and z ∈ Z. Denote
by U ⊎ V the union of disjoint sets U and V .

Definition 2 [Clustering indices] Let w be an isolation weighting and let A be a cluster of X.
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(a) The strong isolation index of A is defined

ιw(A) = min
uv|z

{w(uv | z) : uv | z ∈ r(A)},

and the strong clusters of w are {A : ιw(A) > 0}.

(b) The clean index of A is defined

ιcw(A) = avmin(r(A), |A| − 1),

and the clean clusters of w are {A : ιcw(A)}.

(c) The stability index of A is defined

ιsw(A) = min
U,V,Z 6=

{w̄(UV | Z) : A = U ⊎ V,Z ⊆ X \ A},

and the stable clusters of w are {A : ιsw(A) > 0}.

Let w = ρK. [Bryant and Berry, 2001] show the following:

Theorem A.1 Every stable cluster of w is a cluster in the average linkage tree of K.

We show in the following that our definition of strong stability is strictly more general than the
definition 2 (c) in the case where the isolation index w = ρK.

Theorem A.2 Let K be a symmetric similarity function. If a clustering C does not satisfy the
of strong stability property (Property 7) with respect to K, then one of the target clusters does not
satisfy the definition 2 (c) for the isolation index w = ρK.

Proof: Assume that a cluster of K is not stable in the sense of Property 7. That means, there
exist target clusters C, C ′ and A ⊂ C and A′ ⊆ C ′ such that K(A,C \ A) ≤ K(A,A′). Let z be
the point in A′ such that K(A, z) is maximized. We have K(A,C \ A) ≤ K(A, z) or equivalently
K(A,C \ A) −K(A, z) ≤ 0.

Now we expand out the left-hand-side (writing the K(A, z) term in a different way) to get:

1

|A| · |C \ A|
∑

u∈A,v∈C\A

K(u, v) − 1

|A| · |C \ A|
∑

u∈A,v∈C\A

K(u, z) ≤ 0.

This implies 1
|A|·|C\A|

∑

u∈A,v∈C\A[K(u, v) −K(u, z)] ≤ 0, so,

1

|A| · |C \ A|
∑

u∈A,v∈C\A

[K(u, v) − max(K(u, z),K(v, z)] ≤ 0.

This implies that Definition 2 (c) is not satisfied either, as desired.

On the other hand, it is possible to satisfy strong stability but not definition 2(c).
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Theorem A.3 There exists a pair clustering, similarity function (C,K) such that C satisfies the
strong stability property (Property 7) with respect to K, but such that one of the target clusters does
not satisfy the definition 2 (c), for the isolation index w = ρK.

Proof: Assume that cluster target cluster A has 4 points: u1, u2, v1, v2. Assume that our
similarity function satisfies K(u1, u2) = K(v1, v2) = K(u2, v2) = 1, K(u1, v1) = 0, and K(u1, v2) =
K(u2, v1) = 0.8. Assume that the target cluster Z has one point z. Assume that our similarity
function satisfies: K(u1, z) = K(v1, z) = 0, and K(u2, z) = K(v2, z) = 0.89.

We first note that C satisfies the strong stability property with respect to K, We show this
by brute-force checking over all subsets of A of size 1, 2, 3. For example K(u2, A − u2) =
0.933 ≥ K(u2, Z) = 0.89, K(v2, A − v2) = 0.933 ≥ K(v2, Z) = 0.89, K(u2, v2, A − u2, v2) = 0.9 ≥
K(u2, v2, Z) = 0.89.

We finally show that one of the target clusters does not satisfy definition 2 (c). Consider
U = {u1, u2}, V = {v1, v2}. Then the quantity ιsw(A) is the average of the following quantities:

w(u1v1 | z) = 0 − 0 = 0,

w(u1v2 | z) = 0.8 − 0.89 = −0.09,

w(u2v1 | z) = 0.8 − 0.89 = −0.09, and

w(u2v2 | z) = 1.0 − 0.89 = +0.11,

which is negative. This completes the proof.

B Other Aspects

B.1 Computational Hardness Results

Our framework also allows us to study computational hardness results as well. We discuss here a
simple example.

Property 12 A similarity function K satisfies the unique best cut property for the clustering
problem (S, ℓ) if k = 2 and

∑

x∈C1,x′∈C2

K(x, x′) <
∑

x∈A,x′∈B

K(x, x′) for all partitions (A,B) 6= (C1, C2)

of S.

Clearly, by design the clustering complexity of Property 12 is 1. However, producing even a
polynomial-length list of clusterings is NP-hard.

Theorem B.1 List-clustering under the unique best cut property is NP-hard. That is, there exists
ǫ > 0 such that given a dataset S and a similarity function K satisfying the unique best cut property,
it is NP-hard to produce a polynomial-length list of clusterings such that at least one is ǫ-close to
the ground truth.

Proof: It is known that the MAX-CUT problem on cubic graphs is APX-hard [Alimonti and
Kann, 1997] (i.e. it is hard to approximate within a constant factor α < 1).

We create a family ((S, ℓ),K) of instances for our clustering property as follows. Let G = (V,E)
be an instance of the MAX-CUT problem on cubic graphs, |V | = n. For each vertex i ∈ V in the
graph we associate a point xi ∈ S; for each edge (i, j) ∈ E we define K(xi, xj) = −1, and we define
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K(xi, xj) = 0 for each (i, j) /∈ E. Let SV ′ denote the set {xi : i ∈ V ′}. Clearly for any given cut
(V1, V2) in G = (V,E), the value of the cut is exactly

F (SV1
, SV2

) =
∑

x∈SV1
,x′∈SV2

−K(x, x′).

Let us now add tiny perturbations to the K values so that there is a unique partition (C1, C2) =
(SV ∗

1
, SV ∗

2
) minimizing the objective function Φ, and this partition corresponds to some maxcut

(V ∗
1 , V ∗

2 ) of G (e.g., we can do this so that this partition corresponds to the lexicographically first
such cut). By design, K now satisfies the unique best cut property for the clustering problem S
with target clustering (C1, C2).

Define ǫ such that any clustering which is ǫ-close to the correct clustering (C1, C2) must be at
least α-close in terms of the max-cut objective. E.g., ǫ < 1−α

4 suffices because the graph G is cubic.
Now, suppose a polynomial time algorithm produced a polynomial-sized list of clusterings with the
guarantee that at least one clustering in the list has error at most ǫ in terms of its accuracy with
respect to (C1, C2). In this case, we could then just evaluate the cut value for all the clusterings
in the list and pick the best one. Since at least one clustering is at least ǫ-close to (C1, C2) by
assumption, we are guaranteed that at least one is within α of the optimum cut value.

Note that we can get a similar results for any clustering objective Φ that (a) is NP-hard to
approximate within a constant factor, and (b) has the smoothness property that it gives approxi-
mately the same value to any two clusterings that are almost the same.

B.2 Other interesting properties

An interesting relaxation of the average attraction property is to ask only that there exists a target
cluster so that most of the points in that cluster are noticeably more similar on average to other
points in that cluster than to points in all the other clusters, and that once we remove that cluster
the property becomes true recursively.3 Formally:

Property 13 A similarity function K satisfies the γ-weak average attraction property for the
clustering problem (S, ℓ) if there exists cluster Cr such that all examples x ∈ Cr satisfy:

K(x,C(x)) ≥ K(x, S \ Cr) + γ,

and moreover the same holds recursively on the set S \ Cr.

We can then adapt Algorithm 1 to get the following result:

Theorem B.2 Let K be a similarity function satisfying γ-weak average attraction for the clustering

problem (S, ℓ). Using Algorithm 1 with s = 4
γ2 ln

(

8k
ǫδ

)

and N =
(

2k
ǫ

)
4k

γ2
ln

(

8k
ǫδ

)

ln(1
δ ) we can produce

a list of at most k
O
(

k

γ2
ln

(

1

ǫ

)

ln
(

k
ǫδ

))

clusterings such that with probability 1− δ at least one of them
is ǫ-close to the ground-truth.

3Thanks to Sanjoy Dasgupta for pointing out that this property is satisfied on real datasets, such as the MINST
dataset.
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Another interesting property that falls in between the weak stability property and the aver-
age attraction property is the following:

Property 14 The similarity function K satisfies the γ-strong attraction property for the clus-
tering problem (S, ℓ) if for all clusters Cr, Cr′, r 6= r′ in the ground-truth, for all A ⊂ Cr we
have

K(A,Cr \ A) > K(A,Cr′) + γ.

We can interpret the strong attraction property as saying that for any two clusters Cr and Cr′

in the ground truth, for any subset A ⊂ Cr, the subset A is more attracted to the rest of its own
cluster than to Cr′ . It is easy to see that we cannot cluster in the tree model, and moreover we
can show an lower bound on the sample complexity which is exponential. Specifically:

Theorem B.3 For ǫ ≤ γ/4, the γ-strong attraction property has (ǫ, 2) clustering complexity as
large as 2Ω(1/γ).

Proof: Consider N = 1
γ sets of equal probability mass. Consider a special matching of these

sets {(R1, L1), (R2, L2), . . . , (RN/2, LN/2)} and define K(x, x′) = 0 if x ∈ Ri and x′ ∈ Li for some
i and K(x, x′) = 1 otherwise. Then each partition of these sets into two pieces of equal size that
fully “respects” our matching (in the sense that for all i Ri, Li are on two different parts) satisfies
Property 14 with a gap γ′ = 2γ. The desired result then follows from the fact that the number
of such partitions (which split the set of sets into two pieces of equal size and fully respect our

matching) is 2
1

2γ
−1

.

It would be interesting to see if one could develop algorithms especially designed for this property
that provide better guarantees than Algorithm 1.

Another interesting property to analyze would be the following:

Property 15 The similarity function K satisfies the γ-stable split property for the clustering
problem (S, ℓ) if for all clusters Cr, Cr′, r 6= r′ in the ground-truth, for all A ⊂ Cr, A′ ⊂ Cr′ we
have

K(A,Cr \ A) + K(A′, Cr′ \ A′) > K(A,Cr′ \ A′) + K(A′, Cr \ A) + γ.

It would be interesting to see if one could develop algorithms especially designed for this property
that provides better guarantees than Algorithm 1.

B.3 Verification

A natural question is how hard is it (computationally) to determine if a proposed clustering of a
given dataset S satisfies a given property or not. For example, even for k = 2, determining if a
clustering satisfies strong stability is NP-hard (reduction from sparsest cut, see, e.g., [Bryant and
Berry, 2001]). On the other hand, recall that our goal is not to produce a clustering with a given
property but rather one that is accurate; the reason for the property is just to provide sufficient
conditions on achieving this goal. In addition, one can also efficiently compute distances between
any two given clusterings (via a weighted matching algorithm) if one has pre-clustered data for
testing purposes. Note that computing the distance between the target clustering and any other
clustering is the analogue of computing the empirical error rate of a given hypothesis in the PAC

41



setting [Valiant, 1984]; furthermore, there are many learning problems in the PAC model where
the consistency problem is NP-hard (e.g. 3-Term DNF), even though the corresponding classes are
learnable.
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