
1 

Topics in Machine Learning Theory 
 

Lecture 5: uniform convergence, tail 
inequalities,  & VC-dimension 

Avrim Blum 
09/17/14 

Today: back to distributional setting 
• We are given sample S = {(𝑥, 𝑙 𝑥 )}. 

– Assume x’s come from some fixed probability 
distribution D over instance space. 

– View labels 𝑙 as being produced by some target 
function. [Or can think of distrib over pairs (𝑥, 𝑙(𝑥)).] 

• Alg does optimization over S to produce 
some hypothesis h.  Want h to do well on 
new examples also from D. 

• How big does S have to be to get this kind 
of guarantee? 

Basic sample complexity bound recap 

• Argument: fix bad h.  Prob of fooling us on S 
is at most (1-)|S|.  Overall chance of being 
fooled at most |C|(1-)|S|. Set to . 

• So, if the target is in C, and we have an algo 
that can find consistent functions, then we 
only need this many examples to learn well. 

• If |S| ≥ (1/)[ln⁡(|𝐶|) ⁡+ ⁡ln⁡(1/)], then with 
probability ≥ 1 −, all h∈C with errD(h)≥⁡ 
have errS(h) > 0. 

Today: two issues 

• If |S| ≥ (1/)[ln⁡(|𝐶|) ⁡+ ⁡ln⁡(1/)], then with 
probability ≥ 1 −, all h∈C with errD(h)≥⁡ 
have errS(h) > 0. 

1. Look at more general notions of “uniform 
convergence”. 

2. Replace ln(|C|) with better measures of 
complexity. 

Uniform Convergence 
• Our basic result only bounds the chance that 

a bad hypothesis looks perfect on the data. 
What if there is no perfect h∈C? 

• Without making any assumptions about the 
target function, can we say that whp all h∈C 
satisfy |errD(h) – errS(h)| ≤⁡? 
– Called “uniform convergence”. 

– Motivates optimizing over S, even if we can’t find 
a perfect function. 

• To prove bounds like this, need some good 
tail inequalities. 

Chernoff and Hoeffding bounds 
Consider coin of bias p flipped m times.  Let X 

be the observed # heads.  Let ,a ∈ [0,1]. 
Hoeffding bounds: 
• Pr[X/m > p + ] ≤ e-2m2

, and 
• Pr[X/m < p - ] ≤ e-2m2

. 
Chernoff bounds: 
• Pr[X/m > p(1+a)] ≤⁡e-mpa2/3, and 
• Pr[X/m < p(1-a)] ≤ e-mpa2/2. 
E.g, 
• Pr[X > 2(expectation)] ≤ e-(expectation)/3. 
• Pr[X < (expectation)/2] ≤ e-(expectation)/8. 
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Typical use of bounds 

• Proof: Just apply Hoeffding. 
–  Pr[X/m > p + ] ≤ e-2m2, Pr[X/m < p - ] ≤ e-2m2. 

– Chance of failure at most 2|C|e-2|S|2. 

– Set to . Solve. 

• So, whp, best on sample is -best over D. 
– Note: this is worse than previous bound (1/ has 

become 1/2), but conclusion is stronger. 

– Can also get bounds “between” these two. 

Thm: If |S| ≥ 
1

2𝜖2
ln 𝐶 + ⁡ln

2

𝛿
,⁡then w.p. 

≥ 1-, all h∈C have |errD(h)- errS(h)| ≤ 𝜖. 

Next topic: improving the |C| 

• For convenience, let’s go back to the 
question: how big does S have to be so 
that whp, errS(h) = 0  ⇒  errD(h) ≤⁡. 

VC-dimension and effective size of C 
• If many hypotheses in C are very 

similar, we shouldn’t have to pay so much 
• E.g., consider the class C ={[0,a]: 0 ≤ a ≤ 1}. 

– Define a so Pr([a,a])=, and a’ so Pr([a,a’])=. 

 

 
– Enough to get at least one example in each 

interval.  Just need (1-)|S| ≤ /2. 

– (1/)ln(2/) examples. 

• How can we generalize this notion? 

a a’ a 

Effective number of hypotheses 

• Thm: For any class C, distribution D, if     
|S| = m > (2/)[log2(2C[2m]) + log2(1/)], 
then with prob. 1-, all h∈C with error >  
are inconsistent with data. [Will prove soon] 

• I.e., can roughly replace “|C|” with “C[2m]”. 

Define: C[m] = maximum number of ways to 
split m points using concepts in C.  (Often 
called C(m).)  
– What is C[m] for “initial intervals”? 

– How about linear separators in R2? 

Effective number of hypotheses 
Define: C[m] = maximum number of ways to 

split m points using concepts in C.  (Often 
called C(m).)  
– What is C[m] for “initial intervals”? 

– How about linear separators in R2? 

– C[m] is sometimes hard to calculate exactly, but 
can get a good bound using “VC-dimension”.   

– VC-dimension is roughly the point at which C 
stops looking like it contains all functions. 

Shattering 
• Defn: A set of points S is shattered by C if 

there are concepts in C that split S in all of 
the 2|S| possible ways. 
– In other words, all possible ways of classifying 

points in S are achievable using concepts in C. 

• E.g., any 3 non-collinear points can be 
shattered by linear threshold functions in 
2-D. 

• But no set of 4 points in R2 can be shattered 
by LTFs. 
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VC-dimension 
• The VC-dimension of a concept class C is the 

size of the largest set of points that can be 
shattered by C. 

• I.e., it’s the largest m s.t. 𝐶 𝑚 = 2𝑚. 

• So, if the VC-dimension is d, that means 
there exists a set of d points that can be 
shattered, but there is no set of d+1 points 
that can be shattered. 

Upper and lower bound theorems 
• Theorem 1: For any class C, distribution D, if 

m=|S| > (2/)[log2(2C[2m]) + log2(1/)], then 
with prob. 1-, all h∈C with error >  are 
inconsistent with data.  

• Theorem 2 (Sauer’s lemma): 

 

• Corollary 3: can replace bound in Thm 1 with 

 

• Theorem 4: For any alg A, there exists a 
distrib D and target in C such that                     
|S| < (VCdim(C)-1)/(8) ⇒ E[errD(A)]⁡≥ . 


