15-451 Algorithms
Fall 2012
D. Sleator

Matchings October 23, 2012

I have borrowed words and ideas from these notes:
http://www.cs.dartmouth.edu/~ac/Teach/CsS105-Winter05/Handouts/tarjan-blossom.pdf
(In particular the discussion of blossoms and the proof of

the blossom theorem were borrowed wholesale from these notes.)

Also see: http://en.wikipedia.org/wiki/Blossom_algorithm

0: Introduction

A matching in an undirected graph is a set of edges such that none of
them have any endpoints in common. Today we're going to focus on the
problem of computing a matching that has as many edges as possible.

Matchings have many applications. For example, the best approximation
algorithm known for the travelling salesman problem involves computing
a minimum cost matching in a graph. 1It's also a fundamental
computational problem on graphs, and computing it is an interesting
algorithmic challenge in its own right.

We've already seen that if the graph is bipartite then we can compute
a maximum matching using network flow. Today we'll focus on
algorithms that work for general graphs.

1: Augmenting Paths

our general approach will be to build up the matching incrementally.
At each step we will have some matching, which we will try to improve.
When we get to a point where we cannot improve it, we're done.

Suppose we have a matching that is not maximum? Then what can we
search for to try to improve it?

Let G=(V,E) be our graph. And let R be our current matching. Suppose
there's another matching B which is bigger than R. Consider P, which
is the set of edges in R or B, but not both. Let's color the edges in
B blue, and the edges in R red, and look at the connected components
of P. The degree of the vertices incident on edges of P are of degree
1 or 2. Therefore these components of P must be paths or cycles.
(Those are the only kind of graphs where all the degrees are 1 or 2.)
A cycle in P must be even in length, and contain the same number of
red and blue edges. The paths could be of even length or of odd
length. The even length paths also contain the same number of red and
blue edges. Because B is a bigger matching than R, it follows that
there must be an odd length path that contains one more blue edge than
red. This path begins with a blue edge, and alternates colors, and
ends with a blue edge. This is called an augmenting path.

So going back to the original graph G and our current matching R, the
augmenting path (which the above paragraph shows must exist) is a path

in G which alternates between unmatched and matched edges. It is of

odd length and starts and ends with an unmatched edge. i

Given an alternating path, we can use it to increase the size of our
current matching by toggling all the edges on it in and out of the Avymen‘f':”?

Path

matching.

So our approach is going to be to search for an augmenting path. If
none exists, then we have a maximum matching. If one exists, we apply
it (increasing the size of our current matching), and then continue.

2. Blossoms

Consider an alternating even-length path P from a free (unmatched)
vertex v to a vertex w plus an odd-length alternating cycle from w to
itself. Cycle B is a blossom; path P is a stem; vertex w is the base
of the blossom. Shrinking the blossom consists of contracting all
vertices of B into a single vertex.

Stem o blossom

V e

2 2

— = Matched

—

\l}glﬂ\l’h ik

— Sunmgtched
\4

Theorem: Let G' be formed from G by shrinking a blossom B. Then G'
contains an augmenting path iff G does.

Proof: If the base w of the blossom B is not free, change the matching
in G by switching the edges along the stem to make w free (see figure
below). Then B is a blossom with a free vertex as a base. Let Gl be G
after this change and Gl' the graph resulting from shrinking B in

Gl. (G and Gl, and also G' and Gl', differ only in which edges are
matched and which are unmatched). The switching does not change the
matching size; thus G has an augmenting path iff Gl does, and G' has
iff G1' does. Thus we need consider only the case in which the base of

the blossom is free.
,7 L’A”“ﬁ’" ‘Ma(?
S—— I??g;\fcx‘et{

U
L/o.erom)Pﬁ.re
- I ——Ce bnmaehe

Suppose G' has an augmenting path. Either this path is an augmenting
path in G, or it ends at the blossom, and it can be extended to an
augmenting path in G by following the blossom in the direction that
results in alternation until reaching the base.

Suppose G has an augmenting path. Either it is an augmenting path in
G' or it hits the blossom, in which case the part from one end until
the blossom is first hit is an augmenting path in G'.

QED.

3. Edmonds' Blossom Shrinking Algorithm

The reason we introduced blossoms is that we're going to give an
algorithm that, given a graph G and a matching M (which is
non-maximal), the algorithm either finds an augmenting path or it
finds a blossom.

Why is this useful? Because if we find an augmenting path, we can
grow the matching and continue. If we find a blossom, we can (1)
shrink it, (2) resursively find an augmenting path in the shrunken
graph and (3) extend that augmenting path to the graph with the
blossom restored.

If our algorithm cannot find a blossom or augmenting path, then we
will supply a proof that we already have the maximum matching.

So it sufficies to give an algorithm that takes as input a graph G and
a sub-optimum matching M, and produces an augmenting path or a
blossom.

Edmonds' Algorithm:

We do breadth first search in the graph. We construct a series of
numbered layers. Layer 0 consists of all the free (unmatched)
vertices. The vertices in layer i are neighbors of those in layer
i-1. Each vertex keeps track of its "parent" vertex in the previous
layer caused it to be put there. Even and odd layers are constructed
differently.

Layer i (for i odd): Consider all non-matched edges incident to
vertices in layer (i-1). The vertices reachable from these that
have not yet been examined form layer i. If in the process we find
an unmatched edge from layer (i-1) to layer (i-1) we have found a
blossom or augmenting path.

Layer i (for i even): Consider all matched edges incident to
vertices in layer (i-1). If in the process we find a matched edge
from layer (i-1) to layer (i-1) we have found a blossom or
augmenting path.

o \ Z 3 4

- - -

— ‘(__,/—\ Caon

7 happen

,'ﬂ/_\
R “ -0k \ Found

blossom

The edges from an even layer to the next layer are all unmatched
edges. The edges from an odd layer to the next layer are all matched.
When examining the vertices on an even layer to construct the
subsequent odd layer the edges used must be unmatched edges. This is
because the even layer vertices are either unmatched, or were put into
their layer by a matched edges, which are therefore accounted for.

Note that when we find the edge within a layer causing a blossom or

augmenting path, we can easily construct that path by following
pointers back from the corresponding vertices to layer 0. If the two
paths meet, then we found a blossom, if they don’t then we found an
augmenting path.

Theorem: If the current matching has an augmenting path, then the
algorithm will reach one of the states "found a blossom or augmenting
path".

Proof: Consider the completeled layered construction given by the
algorithm. Let’s take the augmenting path and follow it along in the
layered construction. Eventually we have to come to an edge that
stays within the same level. This edge will therefore trigger the
condition that we claim must happen.

Here’s why this is true. 1If, as we traverse along the augmenting
path, we change levels, we must also change the parity of the level
we’'re on. If we're following a matched edge we go from one level to
the next. If we’'re following an unmatched edge, that means we’re on
an even level. We can go back to a previous level, but not to another
even level. Because there cannot be an unmatched edge connecting two
even levels. (We would have explored the right endpoint of that edge
when working on the earlier even level.)

The augmenting path is of odd length and starts and ends on level 0.
Therefore there must be two neighboring points on the path with the
same parity. This proves that the claimed condition must occur at
some point in running the algorithm.

4. Running time

The graph has n vertices and m edges. The maximum matching is of size
at most n/2. Therefore we augment the matching at most n/2 times.
Each time we augment requires finding and shrinking at most O(n)
blossoms. Each search for a blossom costs O(m) time. So the whole
algorithm is O(n*2 m).

5. Tutte matrix
Given an undirected graph G, construct the following matrix A

[xij if (i,j) is an edge of G and i<j
Aij = [—xji if (i,j) is an edge of G and i>j
[O otherwise

If we view the xijs as variables (one for each edge), then the
determinant of A is non-zero (as a polynomial) if and only if the
graph has a perfect matching. (A perfect matching on an n node graph
(n even) has n/2 matched edges.)

By assigning random values to the xijs and then computing the
determinant, we get a probabilistic algorithm for determining if a
graph has a perfect matching. This can also be used to construct the
perfect matching. The running time, however, ends up being O (n*5)
which is slower than the Edmonds algorithm. But it’s simpler to
program.

This is an example of the application of the Schwartz-Zippel lemma.
We may come back to this later in the semester.

