






augmenting path, we can easily construct that path by following
pointers back from the corresponding vertices to layer 0.  If the two
paths meet, then we found a blossom, if they don’t then we found an
augmenting path.

Theorem: If the current matching has an augmenting path, then the
algorithm will reach one of the states "found a blossom or augmenting
path". 

Proof: Consider the completeled layered construction given by the
algorithm.  Let’s take the augmenting path and follow it along in the
layered construction.   Eventually we have to come to an edge that
stays within the same level.  This edge will therefore trigger the
condition that we claim must happen.

Here’s why this is true.  If, as we traverse along the augmenting
path, we change levels, we must also change the parity of the level
we’re on.  If we’re following a matched edge we go from one level to
the next.  If we’re following an unmatched edge, that means we’re on
an even level.  We can go back to a previous level, but not to another
even level.  Because there cannot be an unmatched edge connecting two
even levels.  (We would have explored the right endpoint of that edge
when working on the earlier even level.)

The augmenting path is of odd length and starts and ends on level 0.
Therefore there must be two neighboring points on the path with the
same parity.  This proves that the claimed condition must occur at
some point in running the algorithm.

----------------------------------------------------------
4. Running time

The graph has n vertices and m edges.  The maximum matching is of size
at most n/2.  Therefore we augment the matching at most n/2 times.
Each time we augment requires finding and shrinking at most O(n)
blossoms.  Each search for a blossom costs O(m) time.  So the whole
algorithm is O(n^2 m).

----------------------------------------------------------
5. Tutte matrix

Given an undirected graph G, construct the following matrix A

      [  xij if (i,j) is an edge of G and i<j
Aij = [ -xji if (i,j) is an edge of G and i>j
      [  0   otherwise

If we view the xijs as variables (one for each edge), then the
determinant of A is non-zero (as a polynomial) if and only if the
graph has a perfect matching. (A perfect matching on an n node graph
(n even) has n/2 matched edges.)

By assigning random values to the xijs and then computing the
determinant, we get a probabilistic algorithm for determining if a
graph has a perfect matching.  This can also be used to construct the
perfect matching.  The running time, however, ends up being O(n^5)
which is slower than the Edmonds algorithm.  But it’s simpler to
program. 

This is an example of the application of the Schwartz-Zippel lemma.
We may come back to this later in the semester.


