CMU 15-451 lecture 12/08/11

An Algorithms-based
Intro to Machine
Learning

Avrim Blum

[Based on a talk given at the National Academy of
Sciences "Frontiers of Science" symposium]

Plan for today

* Machine Learning intro: models and
basic issues

+ An interesting algorithm for “combining
expert advice”

Machine learning can be used to...

* recoghize speech,

* identify patterns in data,
* steer acar,

* play games,

* adapt programs to users,
* improve web search, ...

From a scientific perspective: can we develop
models to understand learning as a computational
problem, and what types of guarantees might we
hope to achieve?

A typical setting

* Imagine you want a computer program to
help filter which email messages are spam
and which are important.

* Might represent each message by n features.

+ Take sample S of data, labeled according to
whether they were/weren't spam.

* Goal of algorithm is o use data seen so far
produce good prediction rule
h(x) for future data.

The concept learning setting

Eg money pills Mr. bad spelling known-sender  spam?
g.,

The concept learning setting

Eg money pills Mr. bad spelling known-sender | spam?
! Y NY Y N Y
. N N N Y Y N
a positive
example N Y N N N ¥
a negative Y N N N Y N
example N N Y N Y N )
Y N N Y N Y
N N Y N N N
N Y N Y N Y

Given data, some reasonable rules might be:
*Predict SPAM if —known AND (money OR pills)

*Predict SPAM if money + pills - known > 0.




Big questions

(A)How might we automatically generate
rules that do well on observed data?

[algorithm design]
(B)What kind of confidence do we have
that they will do well in the future?
[confidence bound / sample complexity]

Power of basic paradigm

Many problems solved by converting to basic
“concept learning from structured data” setting.

+ E.g., document classification ﬁ
- convert to bag-of-words
- Linear separators do well

- E.g., driving a car e

- convert image into ek
features.
- Use neural net with -

several outputs.

Natural formalization (PAC)

Email msg Spam or not?
* We are given sample S = {ix,y)}.

- View labels y as being produced by some target
function f.

- Alg does optimization over S to produce
some hypothesis (prediction rule) h.

* Assume S is a random sample from some
probability distribution D. Goal is for h to
do well on new examples also from D.

Le., Prolh(x)=f(x)] < «.

Example of analysis: Decision Lists
| u:m ‘—"q =17 |—"4 u:ﬂ? ‘—'"Ln

A=’
b
L

Say we suspect there might be a good prediction
rule of this form.

1. Design an efficient algorithm A that will find a
consistent DL if one exists.

2. Show that if S is of reasonable size, then
Pr[exists consistent DL h with err(h) > €] < 8.

3. This means that A is a good algorithm to use if
fis, in fact,a DL.
(a bit of a toy example since would want to
extend to "mostly consistent” DL)

1

How can we find a consistent DL?

1 Tp T3 T4 ITs label
1 0 0 1 1 +
O— 1T —1—0 O =
T T T—0 O +
—06—=0 T © =
1 1 Q 1 1 -+
1 0 0 O 1 -

if (x,=0) then -, else
if (x,=1) then +, else
if (x4=1) then +, else -

Decision List algorithm

+ Start with empty list.
+ Find if-then rule consistent with data.

(and satisfied by at least one example)

+ Put rule at bottom of list so far, and cross of f

examples covered. Repeat until no examples remain.

If this fails, then:
*No rule consistent with remaining data.
S0 no DL consistent with remaining data.
*So, no DL consistent with original data.

OK, fine. Now why should we expect it

to do well on future data?




Confidence/sample-complexity

- Consider some DL h with err(h)>¢, that we're
worried might fool us.

+ Chance that h survives |S| examples is at
most (1-¢)!S.

- Let |H| = humber of DLs over n Boolean
features. |H| < (4”"’2)' (really crude bound)

So, Pr[some DL h with err(h)>c is consistent]
<IHI-2)ls!

* This is <0.01 for |S| > (1/e)[In(|H|) + In(100)]

or about (1/g)[n In n + In(100)]

Example of analysis: Decision Lists
| u;w ‘ln-{ xafl? |4"i{ mfm' ‘—"in

[\ 1

Say we suspect there might be a good prediction
rule of this form.
.¢ Design an efficient algorithm A that will find a
9" consistent DL if one exists.
%gshow that if |S| is of reasonable size, then
00" Prexists consistent DL h with err(h) > &] < 8.

3. So,if fisin fact a DL, then whp A's hypothesis
will be approximately correct. "PAC model”

Confidence/sample-complexity

* What's great is there was nothing special
about DLs in our argument.

- All we said was: “if there are not foo many
rules to choose from, then it's unlikely one
will have fooled us just by chance.”

* And in particular, the number of examples
needs to only be proportional to log(|H|).
(big difference between 100 and e!.)

Occam's razor
William of Occam (~1320 AD):

“entities should not be multiplied
unnecessarily” (in Latin)

Which we interpret as: "in general, prefer
simpler explanations”.

Why? Is this a good policy? What if we
have different notions of what's simpler?

Occam'’s razor (contd)
A computer-science-ish way of looking at it:

+ Say "simple” = "short description”.

+ At most 25 explanations can be < s bits long.

- So, if the number of examples satisfies:
m > (1/g)[s In(2) + In(100)]

Then it's unlikely a bad simple explanation
will fool you just by chance.

Occam's razor (contd)?

Nice interpretation:

- Even if we have different notions of what's
simpler (e.g., different representation
languages), we can both use Occam's razor.

- Of course, there's no guarantee there will
be a short explanation for the data. That
depends on your representation.




Further work

- Replace log(|H|) with “effective number of
degrees of freedom".

- There are infinitely many linear separators, but
not that many really different ones.

* Kernels, margins, more refined analyses....

Using "expert" advice

Say we want to predict the stock market.

+ We solicit n "experts” for their advice. (Will the
market go up or down?)

+ We then want to use their advice somehow to
make our prediction. E.g.,

Expt 1 Expt 2 Expt 3 neighbor's dog | truth
down up up up up
down up up down down

Basic question: Is there a strategy that allows us to do
nearly as well as best of these in hindsight?

["expert” = someone with an opinion. Not necessarily
someone who knows anything.]

Online learning

* What if we don't want to make assumption
that data is coming from some fixed
distribution? Or any assumptions on data?

* Can no longer talk about past performance
predicting future results.

+ Can we ™| Sz e -esting at
all??

Idea: rec- 5

»Show t , . i-rly as well

as best f 4 WS,

Simpler question

+ We have n "experts”.

+ One of these is perfect (never makes a mistake).
We just don't know which one.

+ Can we find a strategy that makes no more than
Ig(n) mistakes?

Answer: sure. Just take majority vote over all
experts that have been correct so far.

»Each mistake cuts # available by factor of 2.

>Note: this means ok for n to be very large.

What if no expert is perfect?

Intuition: Making a mistake doesn't completely
disqualify an expert. So, instead of crossing
off, just lower its weight.

Weighted Majority Alg:
- Start with all experts having weight 1.
- Predict based on weighted majority vote.
- Penalize mistakes by cutting weight in half.

prediction correct
weights

predictions Y Y
weights

predictions N Y

[,
moE e e
Mo e e e
Moo= e

weights

Analysis: do nearly as well as best
expert in hindsight
* M = # mistakes we've made so far.
m = # mistakes best expert has made so far.
W = total weight (starts at n).

After each mistake, W drops by at least 25%.
So, after M mistakes, W is at most n(3/4)M.
Weight of best expert is (1/2)™. So,
(1/2)™ < n(3/9)M
(4/3)M n2™
M 2.4(m+1gn)
So, if m is small, then M is pretty small too.

A

IN




Randomized Weighted Majority

2.4(m + Ig n) not so good if the best expert makes a
mistake 20% of the time. Can we do better? Yes.

+ Instead of taking majority vote, use weights as
probabilities.
Idea: smooth out the worst case.

- Also, generalize % to 1- €.

Solves to: M < m In(1 7'-) +n(n) a2

M = expected | »r - e =1/
M<139m+2Inn € 1/2

M<115m+4inn —e=1/4

(14z/2)m+ % In(n)

M<107m+8Inn «—==1/8

Analysis

* Say at time t we have fraction F, of weight on

experts that made mistake.

- So, we have probability F, of making a mistake, and

we remove an ¢F, fraction of the total weight.
= Wring = n(1-e F)(1 - & Fy)...
= In(Weing) = In(n) + X [In(1 - e F)] < In(n) - ¢ X F,
(using In(1-x) < -x)
=In(n) - ¢ M. (X F, = E[# mistakes])

- If best expert makes m mistakes, then In(W¢;,o) > In((1-€)™).
+ Now solve: In(h) - ¢ M > m In(1-¢).

M <

mIn(1 —e) 4+ In(n)

= (14+=/2)m+ 1

log(n)

What can we use this for?

+ Can use for repeated play of matrix game:
- Consider a matrix where all entries O or -1.

- Rows are different experts. Start at each with
weight 1.

- Pick row with prob. proportional to weight and
update as in RWM.

- Analysis shows do nearly as well as best row in
hindsight!

- In fact, analysis applies for entries in [-1,0], not
just {-1,0}.

- In fact, gives a proof of the minimax theorem...

Nice proof of minimax thm (sketch)

+ Suppose for contradiction it was false.
+ This means some game G has V. > Vy:

- If Column player commits first, there exists

a row that gets the Row player at least V..
- But if Row player has to commit first, the
Column player can make him get only V5.
+ Scale matrix so payoffs to row are
in[-1,0]. Say Vi = V.-3é.

Ve

Ve

Proof sketch, contd

* Now, consider randomized weighted-majority
alg, against Col who plays optimally against
Row's distrib.

* In T steps,

- Alg gets > (1-¢/2)[best row in hindsight] - log(n)/e

- BRiH > T-V, [Best against opponent’s empirical
distribution]

- Alg < T-V [Each time, opponent knows your
randomized strategy]

- Gap is 8T. Contradicts assumption if use e=5, once
T > 2log(n)/e2.

Other models

Some scenarios allow more options for

algorithm.

+ “"Active learning”: have large unlabeled
sample and alg may choose among these.
- E.g., web pages, image databases.

* Or, allow algorithm to construct its own
examples. "Membership queries”

- E.g., features represent variable-settings in
some experiment, label represents outcome.

- Gives algorithm more power.




Other models

+ A lot of ongoing research into better
algorithms, models that capture additional
issues, incorporating Machine Learning into
broader classes of applications.

Additional notes

+ Some courses at CMU on machine learning:

- 10-601 Machine Learning

- 15-859(B) Machine Learning Theory. See
http://www.machinelearning.com.

- Any 10-xxx course...

And finally...

- Final exam is Thurs 1pm DH 2210. 1 sheet of
notes allowed.

* Review session next Wed 1-3pm in Wean 7500.
* Good luck everyonel!




