BIT 15 (1975), 831334

A MONTE CARLO METHOD FOR FACTORIZATION
J. M. POLLARD

Abstract.
We describe briefly a novel factorization method involving probabilistic ideas.

1. Introduction.

We point out a simple method by which, apparently, a prime factor p
of a number can usually be found in O(p?) arithmetical operations, as
opposed to the O(p) operations required by ‘“‘trial division” (e.g. [1]).
The theoretical possibility of doing this was shown previously [2] in &
much more complicated manner (which, however, enabled us to reach
a certain precise conclusion). Our method was suggested by the ideas
of [3], pp. 7-8, 25, but also has connections with [2].

Consider a sequence such as z,=2,

(1) T4 = 22— 1 (modn),

where 7 is the number we are attempting to factorize. Other polynomials
of degree =2 and other starting values can be used. We generate in turn
the triples

(2) (xi:wzi’ Qi)a i= 1:2:- oy
where
(3) Q; = H;"=1 (2g;—2;), (modm).

Bach triple is obtained from its predecessor by three applications of (1)
and one multiplication in (8); thus the work involved is substantially
that for four multiplications (modn). We use only four multi-length
variables, those for z;, x4, @, and n. Whenever 7 is a multiple of some
number m (say, m=100), we compute the greatest ecommmon divisor

(4) d; = ged(@s,m) ,

by one of the well-known methods [3].
If 1<d;<n then we have obtained a partial factorization of n as
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n=d;x (n/d;). Here d; may be composite and, if so, must be factorized
by some other means (in particular, the product of the smallest factors
of n will be found at the first calculation of (4), if they have not already
been removed). Then we continue with modulus n'=n/d, if this number
is composite and not divisible by the prime factors already found. We
stop on reaching some preset maximum number of steps S, a multiple
of m (say, §=10%); if the final pair (x;,2,,) is saved, we have the possi-
bility of continuing the computation at a later date.

2. Theory.

To obtain the “theory” of this method, consider (1) with = replaced
by p, a prime. The sequence is ultimately periodic, that is, there are
integers ¢ 1 and ¢ = 0 such that xy,,,...,%,,,4 are all distinet (modp),
but that z, =2, (modyp) for ¢=¢ (my previous name for the method
was the “p-method”; here the ¢ must be drawn starting at the bottom).
Define also r as the least positive integer with z,=w,, (modp), that is,

tSr <tte, r=0(mode), if ¢>0,
r=c, if t=0.

The function r==r(p) determines how soon our algorithm will find the
prime factor p of n: for after 7(p) steps we shall have @,=0 (modp),
and the factor p will then be found at the next calculation of (4) (perhaps
the product of several prime factors, with nearly the same values of
r{p), will be found instead).

Knowing of no other way to proceed, I make the agsumption that (1)
(to modulus p) constitutes a ‘‘random mapping” of the residues (modp)
in the sense of [3], p. 8. Then ¢(p) and (p) are random variables with
expectations close to

(8) V(wp[8) = 0.6267yp,

and the expectation of ¢(p)+#(p) is close to twice this value. The expec-
tation of #(p) (not in [3]) can be shown to be close to

(6) 75/%y/pf(12y/2) = 1.0308yp,

(the error terms in (5) and (6) are O(1) ag p — oo).

Thus we expect the mean values of ¢(p)/yp, {p)/Vp and »(p)/yp to
be close to the constants in (5), (5) and (6) respectively. For the 100
largest primes below 10° these values were found to be 0.6127, 0.6821
and 1.0780,

We are interested also in the distribution of the values of »(p)/Vp;
in this direction I estimate that r(p)< }yp with probability 0.183, and
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that 7(p) > 2)/p with probability 0.065 (out of my sample of 100 primes,
20 satisfy the first condition and 8 the second).

Next, let us define M (L) as the maximum of #(p) over all primes p < L.
A program run with Sz M(L) is certain to find all prime factors p< L.
I have computed M(10%)=67 and M(10%) =292, but would like much
larger values, requiring a large computation.

Finally, we will suggest, somewhat tentatively,

(i) that all polynomials 2%+ b seem equally good in (1) except that 22
and 22— 2 should not be used (whatever the starting value z,), the latter
for reasons connected with its appearance in the Lucas-Lehmer test
for primality of the Mersenne numbers [3],

(ii) that if the prime factors p of n are known to satisfy p=1 (mod£),
k>2, we may consider replacing 2*+b by «*+b. This, I conjecture,
causes p in (5) and (6) to be replaced by p/(k—1); but the advantage so
gained is offset by the increased work in each step.

3. Examples.

The following are examples of complete factorizations found by our
method (with m =100, §=10%),

277 -3 = 1291-99432527-1177212722617 ,
(factors found at ¢==100 and 7= 8200).
2" —3 = 5-3414023-146481287-241741417 ,

(factors found, in the order given, at ¢=100, 800 and 5300).

However, we are mainly intending to give a means of searching for the
smaller factors of a number before going on to other methods, in par-
ticular that of [4]. There are now at least three practical ways to do this:

(1) trial division,
(ii) the present method,

(i) methods to search for prime factors p with p—1 or p+ 1 composed
of small primes (one version was given in the last section of [2], but the
basic idea, it turns out, is much older),
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