
Fully Persistent Lists with Catenation

JAMES R. DRISCOLL

Dannouth College, Hanocer, New Hampshire

DANIEL D. K. SLEATOR

Carnegie-Mellon Unitwrsi@ Pittsburgh, Penn.~11 unia

AND

ROBERT E. TARJAN

Princeton Unilersi& Prmcetorr, New’ Jersey, and NEC Research Institt{te, Proweton. Nc\v Jersey

Abstract. This paper considers the problem of represmrtirrg stacks with catenation so that any

stack, old or new, is available for access or update operations. Th]s problem arises in the
implementation of list-based and functional programming languages. A solution is proposed

requiring constant time and space for each stack operation except catenation, which requmes
O(log log k) time and space. Here k is the number of stack operations done before the

mtenation. All the resource bounds are amortized over the sequence of operations.

Categories and Subject Descriptors: D. 1.1 [Programming Techniques]: Applicative (Functional)
Programming; E.1 [Data Structures]: Lists; F.2.2 [Analysis of Algorithms and Problem Complex-

ity]: Nonnumerical Algorithms and Problems—co~~zpz~tufiot~s mz ducrete structures

General Terms: Algorithms, Design, Languages. Theory

Additional Key Words and Phrases: Amortization, catenation, concatenation, data structures,
functional programming, LISP. list. queue, stack

A preliminary version of this paper appeared in Proceedurgs of tlzc 2nd Atztzaal ACM–SIAhf

$mnposiurzz on Discrete Aigorithrz.s (San Francisco, Cal if’., Jan. 28-30). ACM, New York, 1991, pp.

89-99.

The research of J. R. Driscoll wds supported in part by the National Sc]ence Foundation (NSF)

under grant CCR 88-09573 and by DARPA as monitored by the Air Force OffIce of Sczcrrtific
Research under gmrrt AFOSR-90-0292.

The research of D. D. K. Sleator was supported in part by the NSF under grant CCR 86-58139
and by DIMACS (Center for Discrete Mathematics and Theoretical Computer Science), a

National Science Foundation Science and Technology Center—NSF-STC 88-09648.

The research of R. E. Tarjan at Princeton University was partially supported by the NSF under

grant CCR 89-20505, by the Office of Naval Research (ONR) under grant NOO014-91-J- 1463. and
by DIMACS.

Authors’ addresses: J. H. Driscoll, Department of Mathematics and Computer Science, Dart-
mouth College, Hanover, NH 03755; D. D. K. Sleator, School of Computer Science, Carnegie-

Mellon University, Pittsburgh, PA 15213; R. E. Tarjan, Computer Science Department, Princeton
University, Princeton, NJ 08544, and NEC Research Institute, Princeton, NJ 08540.

Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appe=, and notice is given that copying is @ Perm issi~n Of the

Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and\or
specific permission.
01994 ACM 0004-541 1/94/0900-0943 $03.50

Journal of the Asmcldtmn for Compuzmg M~chlnmy. Vol 41. No 5, September 1Y94. pp. 943–959

944 J. R. DRISCOLL ET AI..

1. Introduction

In this paper we consider the problem of efficiently implementing a set of

side-effect-free procedures for manipulating lists. These procedures are:

makelist(d): Create and return a new list of length 1 whose first and only

element is d.

jlrst(X): Return the first element of list X.

pop(x): Return a new list that is the same as list X with its first

element deleted. This operation does not effect X.

cate~zate(X, Y): Return a new list that is the result of catenating list X and list

Y, with X first, followed by Y (X and Y may be the same

list). This operation has no effect on X or Y.

We show how to implement these operations so that makelist(d) runs in

constant time and consumes constant space, first(X) runs in constant time and

consumes no space, pop(X) runs in constant time and consumes constant

space, and cuterzate(X, Y) runs in time (and consumes space) proportional to

log log k, where k is the number of list operations done up to the time of the

catenation. All of these time and space bounds are amortized over the

sequence of operations.

Note. Another important operation on lists is pusMd.X), which returns the

list formed by adding element d to the front of list X. We treat this operation

as a special case of catenation, since caterzate(makelist[d~, X) has the same

effect as push(d, X).

This list manipulation problem arises naturally in list-based programming

languages such as lisp or scheme. Incorporating our representation for lists

into such a language would allow a programmer to use these conceptually

simple procedures for manipulating lists without incurring a severe cost penalty.

Another application is the implementation of continuations in a functional

programming language [Felleisen et al. 1988].

In addition to solving these practical problems very efficiently, our result is

the first nontrivial example of a fully persistent data structure that supports an

operation that combines two versions. To put this work in context, we need to

summarize previous work and terminology on persistence.

A typical data structure allows two types of operations: queries and updates.

A query merely retrieves information, whereas an update changes the informa-

tion represented. Such a data structure is said to be ephemeral if queries and

updates may only be done on the current version. With an ephemeral struc-
ture, the sequence of versions (one for mch update done) leading to the

current version is lost.

In the partially persistent form of an ephemeral data structure, queries may

be performed on any version that ever existed, while updates may be per-

formed only on the most recent version. Thus, the collection of versions forms

a linear sequence, each one (except the current one) being the predecessor of

exactly one version. In the filly persistertt form of an ephemeral data structure

both queries and updates are allowed on any version of the structure. There-

fore, one version may be the predecessor of several versions (one for each

update that was applied to it). The graph of relations between versions is a

tree.

Fully Persistent Lists with Catenation 945

Several researchers have constructed methods for making specific data

structures either partially or fully persistent and some general techniques have

been developed.] In particular, our previous joint work with Neil Sarnak

[Driscoll et al. 1989] gives efficient methods for transforming a pointer-based

ephemeral data structure into one that is partially or fully persistent in a

manner that satisfies ideal resource bounds: a constant factor in query time

over that in the ephemeral structure, and a constant amount of space per

change in the ephemeral structure. These techniques have several important

limitations, however. One of these is that the updates in the ephemeral

structure operate on a single version. Combining two versions together, such as

catenating two lists, is not allowed. Another limitation is that the in-degree

(number of pointers pointing to a particular node) in the ephemeral structure
must be bounded by a fixed constant.

A fully persistent version of an ephemeral data structure that supports an

update in which two different versions are combined is said to be conjluent(v
persistent. The relationship between versions of a confluently persistent data

structure is that of a directed acyclic graph. The resulk of this paper, efficient

confluently persistent catenatable lists, expands the range of data structures to

which persistence can be applied.

As a starting point for thinking about this problem,, we mention two simple

approaches. If we represent the lists as singly-linked lists in the standard way,

with a special e~ztlynode for each version that points to the first element of the

version, then two lists X and Y can be catenated in time and space propor-

tional to the length of X. This is done by duplicating the list X and calling the

duplicate X’, creating a new entry node that points to X’, and making the last

element of X‘ point to the beginning of Y. Popping the first element of a list is

accomplished by creating a new entry node and making it point to the second

element of the given list. This takes constant time and space.

This solution is an example of a more general technique known as path-
copying [Reps et al. 1983]: When a node is to be changed, replace it by a new

node, and change all nodes that point to it by applying the same idea

recursively. (Such a method will obviously work best when the in-degree of the

nodes is small and the paths in the structure are short,) By representing lists as

balanced search trees and using the path-copying technique, pop and catenate

can be made to run in O(log n) time and space (n is the length of the longest

list involved in the operation). This improves the performance of catenate, but

makes popping worse.

In our search for a more efficient solution, we began by trying to apply the

node-copying method of Driscoll et al. [1989], which can make lists fully

persistent using constant time and space per change. This idea breaks down

because the method does not allow a pointer in a particular version to be

changed to point to a node that is not part of the same version. This is because

the node-copying method assigns a Lersion tmrnber to each version, and

maintains a data structure that contains version numbers throughout; to

navigate (follow pointers) through a particular version requires comparing the

1For examples of partially m- fully persistent data structures, sec Chazelle [19S5], Cole [1986].
Dobkin and Munro [1985], Hood and Melville [1981], Krijnen and Mcertens [1983], Myers [1982:

1983; 1984], Reps et al. [1983], and Swart [1985]. For examples of general techniques. see Driscoll
et u]. [1987], Dietz [1989], Overmars [1981], and Sarnak [1986].

946 J. R. DRISCOLL ET AL.

version number of that version with those encountered in the traversal, and

making decisions based on these comparisons. To accommodate the changing

of a pointer to point into a different version would require a new navigation

algorithm.

Rather than inventing a more powerful navigation scheme (which does not

seem plausible), we instead constructed an efficient list representation that is

itself made up of fully persistent (but not efficiently catenatable) lists. These

lists are linked together to form a tree whose leaves are the elements of the list

to be represented. We devised two solutions based on this underlying represen-

tation.

In our first method the subtrees of the root increase in size exponentially

from left to right, and these subtrees are 3-collapsible (a structural property to

be defined later that roughly says that the leaves near the left are near the

root). We call this the increasing subtree method. Because the subtrees increase

in size exponentially. only O(log n) of them are required to represent a list of

length n. Popping operates on the leftmost subtree of the root, and makes use

of the 3-collapsibility property to run in constant time. Catenating moves the

subtrees of the right list into the data structure of the left list one at a time in

such a way as to preserve 3-collapsibility and the exponential growth of the

subtrees.

Because catenatable lists can get quite large with very few operations

(repeatedly catenating a singleton list to itself k times results in a list with

length 2~) we have devised a method that allows this O(log n) bound to be

improved to O(log k), where k is the total number of list operations.

In our more sophisticated solution (called the finger tree method), we change

the representation of the list of exponentially growing subtrees, replacing it by

a finger search tree. This tree has O(log n) leaves, so its depth is O(log log n).

This structure allows popping in constant time and space and catenating two

lists of total length ~~ in O(log log n) time and space. As before, the n in this

bound can be replaced by k, where k is the total number of list operations.

This is a dramatic improvement over the naive method, which can require

0(2~) time, and even over an O(log n)-time catenation method, which can

require 0(k) time and space per catenate.

This paper is organized as follows: Section 2 outlines the fully persistent

memory architecture we shall use, describes the basic representation of lists,

and explains the fundamental operations of delete, link, and pull that will be

applied to this representation. Section 3 describes the increasing subtree

method and the trick for improving the time and space bound for catenation to

O(log k). Section 4 outlines the finger tree method, and Section 5 concludes

with open problems and directions for future research.

2. Basic Representation

Our representation of a list is a rooted ordered tree with the list elements in

the leaves, such that a left-to-right traversal of the tree visits the elements in

the order they occur in the list. Each of the internal nodes of the tree has two

or more children. No further structural constraint is imposed on these trees

(except implicitly by the operations that manipulate them).
Each internal node of the tree is represented by a header node that has

pointers to the first element of a singly-linked list of pointers to its children.

Fully 947

dlef9

FIG. 1. A representation of the list [a, b, c, d, e, f, g, h, i, j, k]. Cln the left is a picture of the
structure. The bracketed circles represent singly-linked lists of pointers to children. These

pointers are shown as dotted lines. The portions of the structure corresponding to the four

internal nodes of the tree are circled. Each of these is made fully persistent, and can be thought

of as a single memory element. On the right is a picture of the tree.

The root node is slightly more complicated. Here, the list elements for the

children that are not leaves are singly linked together by additional pointers.

The header node for the root also has pointers to the first and last of these

nonleaf children, and to the last child. (See Figure 1.)

Since the representation of an internal node has a constant number of node

types, bounded in-degree, and a single entry point, it can be made fully

persistent at a cost of constant space per change by the node-copying method

[Driscoll et al. 1989]. Each time such a change occurs, a new version of that

node is created and is given a unique uersion number. The version number

serves as a pointer to the node. It is natural to view the persistence machinery

as providing memory elements (pointed to by version numbers), each of which

contains all the data necessary to represent an internal node of the tree (a

header node and a linked list). Such a memory ellement can be modified

(creating a new memory element of this type) at a cost of constant additional

space for each elementary change. While navigating pointers within a memory

element, the version number of the element is used. When a pointer from one

memory element to another is followed, a new version number is given to the

navigation algorithm for use within the new memory element.

We now describe the three primitive operations on these trees: link, delete,
and pull. The link operation takes two trees and makes the root of the second

tree the last child of the root of the first. This requires adding a new element

to the end of the root list of the first tree, making it point to the root of the

second tree (the pointer being the version number of the list representing

the root list of the second tree), updating the link from the last nonnull child

948 J. R. DRISCOLL E-l_ AL,

FIG, 2, Linking two trees,

a*d #z
bc W/x

of the root to point to the new child (if this new child is not a leaf), and

updating the last three fields of the header node. When a root node becomes a

nonroot node. certain information stored there is no longer needed (such as

the pointer to the rightmost child, and the links among nonnull child pointers).

No harm is done by this extra information. All of these changes can be

accomplished in constant time and space; and, because the lists are persistent,

the original trees are still available. (See Figure 2.) It is also possible to link the

left tree below the root of the right tree, making the root of the left tree the

first child of the root of the right tree. This form of linking is useful in the

balanced linking method described in Section 3.

It is important to note that the persistence mechanism used to represent the

lists does not allow the root list of the first tree to point directly to the

beginning of that of the second. If this were allowed, it would solve the

problem of efficient catenation. Instead, we must settle for the less satisfactory

method described above and work to ensure that the way we link lists together

keeps the beginning of the list easily accessible.

The delete operation removes the first child of the root, provided it is a leaf.

It is invalid to apply delete to a tree whose first child is not a leaf, and in what

follows we shall maintain the invariant that the first child of the root is always

a leaf. The operation of deletion can be accomplished in constant time and

space while maintaining persistence.

The objective of the pull operation is to bring subtrees up toward the root. It

is the tool we shall use to maintain the invariant that the first child of the root

is a leaf. Pull takes the first nonleaf child of the root, and “pulls” its leftmost

child into the root list. (See Figure 3.) If this creates an internal node with only

one child, this child is pulled up as well, and the now childless node is removed

from the root list. This is shown in the second pull of Figure 3. If there is no

nonleaf child of the root, the tree is said to flat. The pull operation applied to a

flat tree does nothing. The pointer to the first nonnull child (and the links

among the nonnull children) allow this operation to be accomplished in
constant time, and to be made fully persistent with only constant space

consumption.

LEMMA 1. The number of pulls required to flatten a tree is the number of leaues
minus the degree of the root.

Full yPemisten tLists with Catenation 949

?-4)-+
de

FIG.3. The pull operation.

This lemma is a consequence of the observation that each pull increases the

degree of the root by exactly one.

Note. In our basic representation any change in the tree requires changing

all the nodes on the path leading from the location of the change to the root.

Therefore, in designing our data structure, we must be wary of making changes

deep in the tree.

3. Preliminav Methods

The basic operations can be combined to give several different algorithms with

varying efficiency trade-offs. We first describe the balanced linking method. At

the root of each tree, we keep the size of the tree, which is the number of

leaves it contains. We denote the size of a tree T by IT 1. Catenation is

implemented by linking the smaller tree below the larger tree. The pop

operation repeatedly pulls the tree until the left child of the root is a leaf. This

leaf is then deleted. Catenation takes constant time and space, and pop takes

time and space at most proportional to the number of catenations done before

the pop.

This algorithm is very closely related to the method of path compression with

weighted union for maintaining disjoint sets [Tarjan 1983 b]. In fact, it follows

from the analysis of path compression that in an ephemeral version of the

structure the amortized cost of a pop is 0(a (k)), where k is the number Of list

operations. Unfortunately, an amortized bound of this form is simply not

sufficient to give efficient full persistence. This is because a “bad” version, one

in which pop is expensive, can generate arbitrarily many other bad versions.

This would happen if, for example, several different short lists are catenated to

the same bad version. Popping each of these new lists will be expensive and will

ruin any global amortized bound. There are two ways to circumvent this

problem. One is to find some way to make popping globally improve the

representations of the lists (rather than locally improving a single version of a

list). Another is to find a way to make the amortized bound worst-case. We

pursue the latter avenue.

Call a tree c-collapsible if repeatly applying “delete, then pull c times” until

the tree becomes empty preserves the invariant that the first child of the root is

a leaf. Our goal is to arrange that all trees are c-collapsible for some constant

c. We now show that c-collapsibility is preserved under linking with a suffi-

ciently small tree.

950 J. R. DRISCOLL ET AL.

LEMMA 2. Let T, and Tz be two trees, and let T be the result of limking T1 to
t~le right of TI, making the root of Tz the last child of the root of T,. If T, is
c-collapsible and IT1I s (c – 1) “ IT, I then T is c-collapsible.

PROOF. Because TI is c-collapsible, ITI I collapsing steps (each one is a

delete followed by c pulls) will work on T (the presence of T? does not

interfere with the deletions). At this point, C]T1I pulls have been applied to T.
But IT I = IT, I + ITZI s CIT11,so CIT1I pulls are sufficient to flatten T. There-

fore, after IT1I collapsing steps, T is flat: that is. all the leaves are children of

the root. ❑

In particular, if we choose c = 3, then a tree of size up to 2n can be linked

to a tree of size n while preserving 3-collapsibility. We now use this observa-

tion to provide a solution with O(log n) catenation time.

Represent a list by a fully persistent list of trees satisfying the invariant that

every tree is 3-collapsible and the ith tree has more than twice as many leaves

as the (i – 1)st tree. With each tree in the list, store the size of the tree. The

doubling property implies that a list with t >2 trees in its representation must

have at least 2’ elements. To pop the first element of such a list, apply delete,

followed by 3 pulls to the first tree. If this leaves an empty tree, then delete the

empty tree from the front of the list of trees. This operation uses constant time

and space, and the resulting list has the doubling property.

Catenation is more complicated. To catenate two lists of trees, process each

tree of the right list in order from left to right. For each such tree T, com-

pare the size of T with the current size of the rightmost tree T’ of the left list.

If IT I s 2. IT’1, then link T onto T’. Otherwise, make T the new rightmost

tree of the left list, (After this happens. no further links will occur in the cate-

nation.) (See Figure 4.) This process preserves the doubling property and 3-

collapsibility. Catenation takes O(log n) time and space because the number of

trees representing a list of n elements is at most logz(n + 1).
Although catenation has a cost that is logarithmic in the size of the lists

involved, a sequence of k catenates can generate a list of length 2~. Thus. in

terms of the number of operations k, the previous result only gives us an

0(k2) bound on the total time and space used to process the sequence.
We can do better in an amortized sense with the following trick: Make an

initial guess k,] = 2 of the total number of list operations to be performed.

Carry out the operations normally. but keep track of the total size of all trees

comprising a list. Keep a record of all the list operations performed as well. If a

list becomes longer than logzkt) during a catenation then truncate it so that the

length of the resulting list of trees is exactly logz L(l. This ensures that

catenation will cost O(log k(l) time and space, and that at least the first LO
elements of each list will be correctly representccl. As long as no more than ktl

pops occur, all the pops will return the correct values. Should the actual

number of operations exceed the guess k,,, then throw away the lists, pick a

ncw guess k, = k;, and rebuild the lists using the recorded sequence of

operations and this new guess.

The following analysis shows that with this method the amortized cost of a

pop is 0(1) and the total amortized cost of a catenate is O(log k). Since the

guess k, at least doubles at every phase, the total number of pops, each costing

0(1), performed in all phases, is at most k + k + k/2 + k/4 + . . . = O(k).
This 0(k) cost is a cost of 0(1) per operation, whether a pop or a catenate.

Fully Persistent Lists with Catenation 951

4JY-
849

20
I

100
201

1
FIG. 4. Catenating two lists in O(log H) time.

-
20

Since the final guess k~ is at most kz, since logz k, +, = 2 logzkl, and since in

each phase the cost of a catenate is O(log k,), the total cost of repeating a

catenate during each phase is

0[&logk]=0(210gk+ logk+;logk+]=O(logk).

The same trick can be used to transform the O(log n) pop and catenate

path-copying algorithm mentioned in the introduction into one with cost

O(log k) per operation. This will work even if the length bound is doubled(k,+,

= 2k,) rather than being squared at each iteration.

4. The Finger Tree Method

The idea of the finger tree method is to modify the list-of-trees method of

Section 3 by replacing the list of collapsible trees~ by a balanced binary tree.

Each leaf of this balanced tree is the root of one of the collapsible trees. We

retain the invariant that each successive collapsible tree is more than twice the

size of its predecessor. In the list-of-trees method, tlhe catenation operation

linked one collapsible tree at a time until the next onle was too big, and then
catenated the remainder of the O(log n)-length list of collapsible trees by

copying the list. The point in the list of collapsible trees at which the algorithm

stops linking and starts catenating is called the split point. The finger tree

method uses the same split point, but takes advantage of the balanced tree

structure to streamline the process of transferring the collapsible trees.

The algorithm to catenate a structure B to the right of a structure A works

roughly as follows: Find the split point in B. Split the balanced binary tree of B
in two at the split point, creating Bl and B.. Link BI onto the rightmost

collapsible tree of A. Join the binaty trees of A and B, together. All of the

steps will be done in a fully persistent fashion, and tihey all will be shown to

take time and space proportional to the depth of the balanced binary tree,

which is O(log log n).

4.1 R~D-BLAcK TREES. A red-black tree [Guibas and Sedgewick 1980:

Tarjan 1983b] is a binary tree in which each internal nctdes has pointers to both

L For brewty we suppress the “c” of “’c-collapsibility” when wc wish to avoid specifying a constant.
Wc shall show later that all the trees that we call collapsible are actually 4-collapsible.
3 The uttemal nodes of o binary tree have two children, and the external }zodes or [ea{ws of the tree

have no children. Every node of a binary tree is either an internal node or a Icaf.

952 J. R. DRISCOLL ET AL.

of its childreni and a one bit field storing the color of the node, which is either

red or black.

The colors of the nodes satisfy the following three conditions: (a) Every leaf

is black; (b) Every red node has a black parent (or is the root): (c) Every path

from the root to a leaf contains the same number of black nodes. For purposes

of analyzing red–black trees, it is convenient to assign to each node an integral

rank that is a function of the coloring of the tree. The rank of each leaf is O,

and the rank of an internal node is equal to the rank of its red children (if any)

and one greater than that of its black children (if any). We can interpret the

constraints on the coloring of the tree with respect to the ranks of the nodes as

follows: (1) The rank of each leaf is O; (2) The rank of each node that is the

parent of a leaf is 1; (3) In traversing from a node to its parent, the rank

increases by O or 1; (4) In traversing from a node to its grandparent, the rank

increases by 1 or 2.

The depth of a red–black tree is the maximum number of internal nodes on

a path from the root to a leaf. The following lemma (which is a slightly

modified form of Lemma 4.1 of Tarjan’s monograph [Tarjan 1983 b]) shows that

the depth of a red–black tree with ~z leaves is O(log n), and will be useful to us

later for other purposes.

LR’WA 3. Tile subtree rooted at a node of rank r in a red–black tree contains

at least 2 t [eales.

PROOF. If r = O, then the node is a leaf, and the lemma holds. If r > (),

then the node is internal and has hvo children of rank at least r – 1. By

induction, each of these is the root of a subtree with at least 2’”– 1 leaves. ❑

The fundamental operations that we shall need to apply to these trees are

inserting a new leaf, deleting a leaf, splitting a tree into two, and joining two

trees together. The split operation takes as input a red–black tree along with a

particular leaf 1, and produces two red–black trees, one containing all the

leaves to the left of 1, and one containing 1 and all the leaves to the right of f.

The join operation is the inverse of split. It produces a new red–black tree

whose leaves are those of the first input tree, followed by those of the second

input tree. Algorithms exist to perform all ot’ these operations in time O(log /z)

(where n is the number of leaves in all of the trees involved in the operation).

The bottom-up algorithms for insertion and deletion [Tarjan 1983a; 1983b]

can roughly be described as follows: A constant amount of restructuring occurs

in the vicinity of the change, then color changes are made on some initial part

of the path from the change to the root of the tree, then up to three rotations
are done at the top of this path of color changes.

A finger search tree is a data structure for representing a list of elements—one

of which is a special element called the finger-that allows very efficient

accesses, insertions and deletions in the vicinity of the finger.h In particular,

these three operations can be performed in time O(logd), where d is the

~ Parent pointers may also be included lf needed They are not needed in our application.
A rotation is a local restructuring operation in a binary tree that maintams the symmetric order

of the leaves and changes the depths of various nodes,
h For example, see Brown and TarJan [1!)80]. Guibas et al. [1977], Kosaraju [1981], and Tsakalidis
[1984].

Fully Persistent Lists with Catenation 953

distance in the list between the finger and the location of the operation. The

method of Tsakalidis [1984] is particularly useful for our purposes.

In Tsakalidis’s method, each element of the list is a leaf in a red–black tree.

We assume throughout this discussion that the finger is the leftmost leaf of the

tree.’ The leftmost path of internal nodes of the tree (along with the internal

nodes adjacent to this path) are represented in a special way, but the rest of

the tree is just as it would be in a red–black tree.

Tsakalidis’s representation of the leftmost path and adjacent internal nodes

is called the spine. We make use of this data structure without explicitly

describing it here. It has the following important properties: (1) The spine

consists of nodes with a bounded number of fields; (2) Each node of the spine

(except for one entry node) is pointed to only by nodes of the spine; (3) The

indegree of any node (the number of pointers to it) is bounded by a constant

(independent of the size of the tree); (4) An insertion or deletion operation in

the finger search tree causes only a constant number of pointers and fields in

the spine to change. This is a consequence of an implicit representation of the

colors, and of the 0(1) restructuring insertion and deletion algorithms in

red–black trees.

These four properties allow us to make this data structure fully persistent by

the node-copying method [Driscoll et al. 1989] using only constant space per

insertion and deletion, while preserving the O(log d) running time for these

operations.

4.2 THE REPRESENTATION. We are now ready to describe our representa-

tion of lists. The list is partitioned into consecutive blocks of elements of sizes

b,, b~,. . . . b~. These sizes are arbitrary, subject to the constraint that b,+, >2 b,
for all 1< i < k. Each block of elements is stored in the leaves of a 4-

collapsible tree. Each of these collapsible trees is stored according to the basic

representation described in Section 2, and the root of each tree stores its size.

A persistent version of Tsakalidis’s structure—which we shall call the finger

tree—connects the collapsible trees together. The roots of the collapsible trees

are the leaves of the finger tree. The internal nodes (except those in the spine

data structure) of the finger tree are represented as standard persistent

memory elements. As usual, a pointer from one of these nodes to another (or

to the root of a collapsible tree) is actually a version number. The spine is

stored as a fully persistent version of Tsakalidis’ ephemeral representation of

the spine.

To find the split point efficiently we store additional information in the

internal nodes of the finger tree (except those in the spine). In such a node x,

whose descendants are collapsible trees of sizes b,, b,+ ~,..., b,, we store the

following information: S, = ~, ~ ~~, bl (thenumber of leaves that are descen-

dants of this node) and QX = max, ~ ~~ ~{bl – 2 ~, ~., < lb~}. These quantities

can be maintained efficiently under any local restructuring of the tree since, if

1 and r are the left and right child, respectively, of a node x, we have

SX = Sl + S, and Q. = max{Q1, Q, – 2S1}.
This completes the static description of our data structure. It remains to

describe and analyze pop and catenate.

7 In our application we only need this special case. Furthermore, such a solution can be adapted
to allow an arbitra~ finger location by maintaining two such trees.

954 J. R. DRISCOLL ET AL.

4.3 POP. We first observe that the leftmost collapsible tree can be deleted

from the structure (or a new leftmost collapsible tree can be inserted into the

structure) persistently in constant time and space. This is because the opera-

tion on the finger tree is taking place within a constant distance of the finger (O

or 1 for deletion and insertion, respectively), and because the values of S, and

Q. can be updated in constant time. (Since we do not store these values for

nodes in the spine, no updating of these is needed. It is possible, however, that

because of the rotations that occur we may introduce a new node outside of

the spine for which we must compute these values. This can be done using the

update rule above. There are only 0(1) such nodes.)

To perform pop, delete the leftmost collapsible tree from the finger tree.

Delete the leftmost leaf from it, and apply four pull operations. If the resulting

tree is empty, the operation is complete. If it is not empty, then insert the

collapsible tree back into the finger tree. All of these steps take constant time

and use constant space.

The resulting structure still satisfies all of the required structural constraints;

decreasing bl maintains bz > 2b1, and deleting one element from a 4-

collapsible tree and applying four pulls leaves a 4-collapsible tree.

4.4 CATENATE. We describe a catenation method that has the property that

the time (and space) required is proportional to the depth of the finger trees

involved (which is O(log log n) for forming a list of length ~Z), and that

maintains all the structural constraints above.

The first step of the algorithm is to transform the two finger trees into

red–black trees, in which each internal node is represented by a standard

persistent memory element and is endowed with a color and values for S, and

Q,. This transformation can be done in time and space proportional to the size

of the spine of a finger tree, which is proportional to the depth of the finger

tree. The colors can be extracted from their implicit representation in the

spine, and the data values can be computed from those of their children, which

are available.

Let the two structures to be catenated be A and B, and let the collapsible

trees of A be Al, A~,. ... Af of sizes al, az,. ... af, and the collapsible trees
of Bbe Bt, Bz, Bk of sizes bl, bl, ..., bk. The split point is defined to be

the least i > 1 such that b, > 2 (af + ~]s, s, -1 b,) (or equivalently 2a~ < b,
.

Z&, <[-l ,b). If this inequality is not true for any i s k, then the split

point is defined to be k + 1. We can now describe how to determine if the split

point is in a subtree T rooted at the node x given Sl (the total size of the trees

to the left of the subtree T) and af. If 2a~ < QX – 2 S1, then a point i satisfying

the above inequalities is in T‘. otherwise, there is no such point in T. Using
this test, it is easy to locate the split point in time proportional to the depth of

the red–black tree: merely walk down from the root (updating S1), always

choosing the leftmost option that contains a point satisfying the inequality. The

leaf we reach in this way is the split point.

Once the split point i has been found, we split the red–black tree at this

point, creating a new red–black tree TI with collapsible trees B, ,Bz, B,_,,
and a new red–black tree ~ with collapsible trees B,, B,+,, B~. (If the split

point is k + 1, then ~ is empty. If the split point is 1, then T, is empty.) We

now change the representation of the leftmost path of T1 into a single

persistent memory element, link the resulting structure to the right of Af, and

Fully Persistent Lists with Catenation 955

call the result A;. (The change in representation is required to guarantee the

collapsibility of A;.) The link forming A’f occurs deep in the red –black tree of

A. Making such a change persistent requires that all the nodes on the path

from Af to the root be changed (just as in path-copying). Furthermore, the S,

and Q, fields of all the nodes on this path must be updated. The cost of these
changes is proportional to the depth of the red–black tree. Finally, we join the

new version of the red–black tree of A with the red–black tree of T., and

transform the resulting red–black tree into a finger tree (by building the

spine).x The process is shown schematically in Figure 5.

The O(log log n) bound on the time and space cost of catenate follows

immediately from the structural constraints on these trees. It remains to prove

that these constraints are preserved by our algorithm.

In the data structure resulting from a catenation, each collapsible tree is

more than twice the size of its predecessor. To verify this, we need only

check the two places where this constraint might be violated. These are

between Af_ ~ and A; and between A; and B,. The former place satisfies the

constraint since a; > a~. By our choice of the split point, we know that b, >

2(af + bl + oco + b,_ ~) = 2a;, which proves that the latter point also satisfies

the constraint.

The only remaining detail is to show that the tree A} is 4-collapsible. This

requires a more detailed analysis of the structure of red–black trees and

properties of the pull operation.

LEMMA 4. Let 1 be the ith leaf (i > 2) of a red--black tree. The distance
between 1 and the nearest internal node on the left path is at most 2~log il.

PROOF. Let r = [log il. Let x be the deepest node on the left path of the

red–black tree that is of rank r. By Lemma 3, the subtree rooted at x contains

at least 2’ leaves. These leaves are consecutive starting from the leftmost leaf.

Since 2’> i, this subtree must contain 1, so x is an ancestor of 1.

In traversing the path from 1 toward the root of the tree, the first step goes

from a node of rank O to one of rank 1. Subsequently, every pair of steps

increases the rank by at least 1. Therefore, after 2r + 11steps, a node of rank at

least r + 1 must be reached. Since .x is on this path and has rank r, itmust

have been passed. Therefore, x is reached after at most 2r steps. ❑

LEMMA 5. For any j (1 s j s i – 1),let 1be the number of leales to the left of

B] in A). The number of pulls that must be applied to A’~ until a state is reached in
which B] and all the leaues to the left of B] are adjacent to the root of the tree is at
most 21.

PROOF. Let F be the tree (reached by applying pulls to A’f) in which B,

and all of the 1 leaves to the left of Bj are adjacent to the root. (See Figure 6.)

XIn linking Tl into Af, we have in a sense mixed apples and oranges, since the memory elements

of the nodes of Tr contain color and size fields. After the link is done, the data in these fields is
no longer needed. No harm is done by the presence of this extra useless information in the tree.
A slightly different approach is to completely avoid the use of the persistent memory architecture
in the nodes of the red–black tree. This approach works, but a different non-uniformity results

when the link is done. Now the resulting tree contains a mixture of nodes, some of which are
ordinary red–black tree nodes, while others are persistent nodes. It is too expensive to clean up
the entire tree immediately. Instead the pop algorithm must replace the red–black nodes by

persistent nodes gradually as they are encountered.

956 J. R. DRISCOLL ET AI..

4s++4$+
Af ‘k

&.&&
Af B 1-1 ‘k

AI A2
Af

El B
(-1

FIG. 5. The top picture above shows the mltial trees .4 and B. The center plcturc IS an

intermediate point m catcrrating A and B The bottom picture shows the find result,

I

k “
P pulls

Af

---- . .

% ‘J
B

!-1

FIG. 6. The process of transforming ,4’, to F by applying p pulls,

Let p be the number of pulls required to reach this state starting from tree A\.

Our goal is to bound p by 21.
The stripped tree S is obtained by starting with A; and deleting all nodes that

are not ancestors of a leaf in B, or a leaf to the left of B,. The path from the

root of BJ to the root of S is a rightmost path of S. (See Figure 7.) Let d be

the distance between the root of B~ and the root of S (or equivalently the root

of A;). Let q be the number of nodes on this path that have only one child.

(Although all internal nodes in A; have at least two children, this may not be
true in S.)

Let F‘ be the stripped form of F. We shall now evaluate p‘. the number of

pulls required to transform S into F‘. Each pull either increases the degree of

the root by one or deletes an internal node with one child. Therefore,

p‘ = (degree of root of F’) – (degree of root of S) + q

= 1 + 1 + q – (degree ofrootof S)

sl+l+q–2=l+q–l.

What is the relationship between p and p‘ ? Stripping accelerates the pulling

process by at most one for every node on the path from the parent of the root

of B] to the root of S, except for the root and the nodes on this path with one

Fully Persistent Lists with Catenation 957

s

%y
d

,..

%

‘J

child. This is because

promotes the subtree

FIG. 7. The stripped

for the nodes with

immediately to the

tree S.

more than one child, the pull that

left of the path also promotes the

subtree containing B,. This extra promotion may not happen in the pull

sequence in the unstrapped tree. (It depends on whether stripping removed a

subtree to the right of the node or not.) To summarize, we have

p<p’+d–l–q<l+d–2.

Now we observe that d < j + 2. Lemma 4 shows that the distance between

the root of BJ and the root of T[(after the leftmost path of T1 is made

into a single memory element) is at most 2[log j]. It is easy to verify that

2[log jl s j + 1 for all j >2. For j = 1, the distance between the root of BI

and the root of A~f is 2. This completes the proof of the observation.

Also note that] s 1, since each of Af, B,, Bz, BJ_, has at least one leaf.

Combining these observations gives

p<l+d–2< l+j+2–2<l+j <21. ❑

LEMMA 6. The tree A; is 4-collapsible.

PROOF. The number of pulls required to transform F (of the previous

lemma) into a tree in which all the leaves of B, are adjacent to the root is at

most b,. By the choice of the split point, we know that b, <21.
When repeatedly applying pop to the tree A}, by the time the first 1 leaves

have been deleted, 41 pulls have been done. By Lemma 5, the first 21 of these

pulls suffice to create the tree F, and the remaining ones suffice to collapse Bj.

Thus, by the time any leaves of BJ need to be popped, all of the leaves of BJ

are adjacent to the root.
We now consider the entire process of popping A’f. The first af POPS work

because the tree Af is 4-collapsible. It follows from the discussion above that

by the time all of the leaves of Af have been popped, all of the leaves Of Bl

are adjacent to the root. By the time these leaves have been deleted, all the

leaves of Bz are adjacent to the root. This argument applies for all B,, so we

conclude that A; is 4-collapsible. ❑

As before, we can convert the O(log log n) catenation time to amortized

O(log log k). In the previous version, each k, was squared, thereby doubling

logzk,. Here, we choose k, = 22”, thereby doubling log log k, at each new

guess. Truncation can be used to ensure that the height of the finger tree is

O(log log k,). (From a practical perspective, an additional detail to be consid-

ered is that the size of the guesses grows so rapidly that some guess may

become too large to represent and manipulate efficiently in a real computer. If

this happens, just truncate the lists at the maximum representable size. In such

a setting, it is unlikely that the number of operations would exceed the size of

the largest representable number.)

958 J. R. DRISCOLL ET AL.

5. Remarks

We have shown how to make lists persistent under the operations of pop and

catenate, where any two versions of a list may be catenated. Although the time

bounds for the operations are low, we have left a variety of interesting open

problems to explore.

A large amount of machinery was used to achieve the O(log log k) result,

which means that it is probably not very useful in practice, Is there a simpler

method to achieve the same bound? From a practical perspective the best

method to use is perhaps path-copying in a binary search tree, with the

doubling trick mentioned at the end of Section 3.

There is no nontrivial lower bound known for this problem. Our intuition is

that there may well be a way of catenating in constant time. It is an intriguing

open problem to find such a method.

Another direction for future work is to make other data structures conflu-

ently persistent. A close relative of our lists is the catenatable deque, which

allows pops from both ends. We have devised an alternative way of represent-

ing catenatable lists that extends to the problem of catenatable deques, with

somewhat worse resource bounds. The idea is to use red–black trees with lazy

recoloring [Driscoll et al. 1989] to represent the deques, with certain paths

in the trees themselves represented by balanced search trees. The resulting

data structure supports pop from either end and catenate in time and space

O(log log n), or amortized time and space O(log log k) using a variant of the

list truncation trick. The amortization in this and in all our O(log log k) results

can be eliminated by using incremental rebuilding of the clata structures.

Since the conference version of the present paper appeared, work by

Buchsbaum and Tarjan [1993] has shed additional light on the problem of

catenable deques. They use a bootstrapping technique to represent a catenable

deque by a balanced tree in which certain paths are themselves represented by

catenable deques. The best version of their method has an 0(1) worst-case

time bound for catenate and an O(log”k) worst-case time bound for a pop

from either end of a deque. By combining their method with ours, one can

obtain for the single-ended problem worst-case bounds of 0(1) for pop and

O(log(’ ‘k) for catenate for any constant Z. Note that our method gives O(1)

time for pop, while theirs gives 0(1) time for catenate, but obtaining both

simultaneously remains an open problem.

A bigger challenge is to devise a general technique for automatically making

ephemeral combinable data structures confluently persistent. Such a result

would be very useful in the implementation of high-level languages. It would

allow, for instance, the efficient passing of large linked data structures as

call-by-value parameters since the data structure would not need to be copied.
but could be modified by means of persistence at low cost per change.

,4CKNOWLEDGMENT. Although the problem addressed in this paper appeared

as an open problem in Driscoll et al. [1 989], we were motivated to pursue it

actively by Mark Krentel, who pointed out its application to continuations.

REFERENCES

BROWN, M R., .ANOT4RJ~N, R. E. 1980. Design and analysis ot a data structure for representing
sorted lists. SI/lM J. C’mnpu[. 9 (1980), 594–614.

BUCIISRAI IM, A. L., AND T~RJ,A,N, R. E. 1993. Conflucntly persistent dequcs vi~ data structural

Full yPemisten tLists with Catenation 959

boot-strapping. In proceedings of thedth AnnL!al ACM-SIAM SynLposLL~nzotzDiscrete Algoritlott,s.

ACM, New York, pp. 155-164.

CHAZELLE, B. 1985. How to search in history. Inf. Control 77, 77-99.

CcLL~, R. 1986. Searching and storing similar lists. J. Algorithms 7, 202-220.
DIETZ, P. F. 1989. Fully persistent arrays. Proceedings of the 1989 Workshop 00 Algoz’ithms and

Datzr Structures (Ottawa, Ont., Canada). Lecture Notes in ConLpatw Science, Vol. 382. Springer-

Verlag, New York, pp. 67-74.

DOBKIN, D. P., AND MUNRO, J. I. 1985. Efficient uses of the past. J. Algonthrns 6, 455-465.
DRISCOLL, J., SARNAK, N., SLE.ATOR,D., AND TARJAN, R. 1989. Making data structures persistent.

J. Cmrzpat Syst. Ski. 38, 86-124.
FELLEISEN, M., WAND, M., Fmmh!m, D. P., AND DUBA, B. F. 1988. Abstract continuations: A

mathematical semantics for handling full functional jumps. In Proceedings of the 1988 ACM

Co/zference on Lisp and Functional Programming (Snowbird, UT, July 25-27). ACM, New York,
pp. 52-62.

GUIBAS, L. J., MC’CREIGHT, E. M., PLASS, M. F., AND ROBERTS, J. R. 1977. A new representation
for linear lists. In Proceeding of the 9th Annual ACM Symposium on Theoy of Computing

(Boulder, Co., May 2-4). ACM, New York, pp. 49-60.
GUItJAS, L. J., AND SEDGEWICK, R. 1980. A dichromatic framework for balanced trees. In

Proceedings of the 21st Armual IEEE Symposium on the Foundations of Computer SCivz~c. IEEE,
New York, pp. 8-21.

HOOD, R.. ~ND MBLVILLE, R. 1981. Real-time queue operations in pure LISP. Iof. Proc. Lett.
73, 50-54.

KOSARAJU, R. 1981. Localized search in sorted lists. In Proceedings of the 13t/z Annual ACIJ’

Symposium on Theo~ of Computing (Milwaukee, Wis., May 11- 13). ACM, New York, pp.
62–69.

KRIJNEN, T., AND MEERTENS, L. G. L. T. 1983. Making B-trees work for B. IW 21983, The

Mathem~tical Centre. Amsterdam, The Netherlands.

MYERS, E. W. 1982. AVL dags. Tech. Rep. TR 82-9. Dept. Computer Science, Univ. Arizona,
Tucson, Az.

M} ERS, E. W. 1983. An applicative random-access stack. Inf. Proc. Lett. 17, 241-248.

MYERS, E. W. 1984. Efficient applicatwe data types. In Corz@wue Record of the Ilth AWZUU1
ACM Symposnun on Pri)zcip[es of Programmmg Langz~ages (Salt Lake City, Ut.. June 15-18).

ACM, New York, pp. 66-75.

OVERM~RS, M. H. 1981. Searching in the past, II: General Transforms. Tech. Rep.RUU-CS-81 -9.
Department of Computer Science. Univ. Utrecht, Utrecht, The Netherlands.

REPS, T., T~IT~LBAUM, T., AND D~MEIW, A. 1983. Incremental context-dependent analysis for
Ianguwge based editors. .4CM Trans. Prog. Lang. Systenz.s5, 449-477.

S4RNAK, N. 1986. Persistent Data Structures. Ph.D. disscrtationl. Department of Computer
Science, New York Univ., New York.

SWAR~, G. F. 1985. Efficient Algorithms for Computing Geometric Intersections. Tech. Rep.
85-01-02, Department of Computer Science, Univ. Washington, Seattle, Wash.

T.ARJAN. R. E. 1983a. Updating a balanced search tree in 0(1) rotations, [nf. Proc. Lett. 16,

?53–257.

T,IRJAN, R. E. 1983b. Data structures UM[network algorithms. Society for Industrial and Applied
Mathematics, Philadelphia, Pa,

TS~KALIDIS, A. K. 1984. An optimal implementation for localized search. A 84/06, Fachbereich

Angewandte Mathcmatik und Informatik. Universitiit des Saarlaudes, Saarbrhken, West Ger-
many.

RECEIVED 1.4N[I.ARY 1992; REVISED JULY 1993; ACCEPTED JUI.Y 1993

Jourrml of the ,\<wc]at,cm tot Comput,.g Mwh, nery, Vd JI. No 5. Septemhcr 1W4

