
Towards Scalable Edge-Native Applications
Junjue Wang

Carnegie Mellon University
junjuew@cs.cmu.edu

Ziqiang Feng
Carnegie Mellon University

zf@cs.cmu.edu

Shilpa George
Carnegie Mellon University

shilpag@cs.cmu.edu

Roger Iyengar
Carnegie Mellon University

raiyenga@cs.cmu.edu

Padmanabhan Pillai
Intel Labs

padmanabhan.s.pillai@intel.com

Mahadev Satyanarayanan
Carnegie Mellon University

satya@cs.cmu.edu

ABSTRACT
Latency-sensitive edge-native applications may be the key
to commercial success of edge infrastructure. However, suc-
cess in the form of widespread deployment of such applica-
tions poses its own challenges. These applications are edge-
dependent by definition, and therefore cannot simply fail over
to the cloud if the edge is overloaded. In this paper, we pro-
pose an adaptation-based strategy to allow scaling up the
number of concurrent edge-native applications on a resource-
limited cloudlet and wireless network. We demonstrate up to
40% reduction in offered load with minimal impact on latency
on a variety of cognitive assistance tasks over non-adaptive
approaches. Our approach is able to gracefully degrade and
maintain quality of service for a subset of applications in the
face of severely loaded conditions.

CCS CONCEPTS
• Computer systems organization→ n-tier architectures;
Real-time system architecture; • Human-centered comput-
ing→Ubiquitous and mobile computing systems and tools.

KEYWORDS
Wearable Cognitive Assistance, Cloudlet, Edge Computing,
Resource Management, Mobile Computing, Gabriel

ACM Reference Format:
Junjue Wang, Ziqiang Feng, Shilpa George, Roger Iyengar, Padman-
abhan Pillai, and Mahadev Satyanarayanan. 2019. Towards Scalable
Edge-Native Applications. In SEC ’19: ACM/IEEE Symposium on
Edge Computing, November 7–9, 2019, Arlington, VA, USA. ACM,
New York, NY, USA, 14 pages. https://doi.org/10.1145/3318216.
3363308

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the
owner/author(s).
SEC ’19, November 7–9, 2019, Arlington, VA, USA
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6733-2/19/11.
https://doi.org/10.1145/3318216.3363308

1 Introduction
Elasticity is a key attribute of cloud computing. When load
rises, new servers can be rapidly spun up. When load subsides,
idle servers can be quiesced to save energy. Elasticity is vital
to scalability, because it ensures acceptable response times
under a wide range of operating conditions. To benefit, cloud
services need to be architected to easily scale out to more
servers. Such a design is said to be “cloud-native.”

In contrast, edge computing has limited elasticity. As its
name implies, a cloudlet is designed for much smaller physi-
cal space and electrical power than a cloud data center. Hence,
the sudden arrival of an unexpected flash crowd can over-
whelm a cloudlet and its wireless network. Since low end-to-
end latency is a prime reason for edge computing, shifting
load elsewhere (e.g., the cloud) is not an attractive solution.
How do we build multi-user edge computing systems that pre-
serve low latency even as load increases? That is our focus.

Our approach to scalability is driven by the following obser-
vation. Since compute resources and wireless capacity at the
edge cannot be increased on demand, the only paths to scala-
bility are (a) to reduce offered load, or (b) to reduce queueing
delays through improved end-to-end scheduling. Otherwise,
the mismatch between resource availability and offered load
will lead to increased queueing delays and hence increased
end-to-end latency. Both paths require the average burden
placed by each user on the cloudlet and the wireless channel
to fall as the number of users increases. This, in turn, implies
adaptive application behavior based on guidance received
from the cloudlet or inferred by the user’s mobile device. In
the context of Figure 1, scalability at the left is achieved very
differently from scalability at the right. The relationship be-
tween Tier-3 and Tier-2 is non-workload-conserving, while
that between Tier-1 and other tiers is workload-conserving.

With rare exceptions, reducing offered load is only possible
with application assistance. Scalability at the edge is thus only
achievable for applications that have been designed with this
goal in mind. We refer to applications that are specifically
written for edge computing as edge-native applications. These
applications are deeply dependent on services that are only

https://doi.org/10.1145/3318216.3363308
https://doi.org/10.1145/3318216.3363308
https://doi.org/10.1145/3318216.3363308


SEC ’19, November 7–9, 2019, Arlington, VA, USA Wang et al

low-

latency

high-

bandwidth

wireless

network

Tier 2

Static & Vehicular
Sensor Arrays

Microsoft 
Hololens Magic Leap

AR/VR Users

Drones

Tier 3

CloudletsCloudlets

Oculus Go

Intel
Vaunt

ODG-8

LuggableLuggable

VehicularVehicular

Coffee ShopCoffee Shop

MiniMini--datacenterdatacenter

Wide-Area Network

Tier 1

From left to right, this tiered model represents a hierarchy of increasing physical size, compute
power, energy usage, and elasticity. Tier-3 represents IoT and mobile devices; Tier-2 represents
cloudlets; and Tier-1 represents the cloud. We use “Tier-2” and “cloudlet” interchangeably in the
paper. We also use “Tier-3” to mean “mobile or IoT device.”

Figure 1: Tiered Model of Computing

PubSub

Wearable device

User assistance

Control
Module

Sensor streams

Sensor control Context 

Inference

Cloudlet

User Guidance
Module

Cognitive
Modules

Sensor flows

Cognitive flows

VM or container
boundary

Wireless
first hop

…

OCR

Object 
detection

Face
detection

(Source: Chen et al [4])

Figure 2: Gabriel Platform

available at the edge (such as low-latency offloading of com-
pute, or real-time access to video streams from edge-located
cameras), and are written to adapt to scalability-relevant guid-
ance. For example, an application at Tier-3 may be written
to offload object recognition in a video frame to Tier-2, but
it may also be prepared for a return code indicating that a
less accurate (and hence less compute-intensive) algorithm
than normal was used because Tier-2 is heavily loaded. Al-
ternatively, Tier-2 or Tier-3 may determine that the wireless
channel is congested; based on this guidance, Tier-3 may re-
duce offered load by preprocessing a video frame and using
the result to decide whether it is worthwhile to offload further
processing of that frame to the cloudlet. In earlier work [13],
we have shown that even modest computation at Tier-3 can
make surprisingly good predictions about whether a specific
use of Tier-2 is likely to be worthwhile.

Edge-native applications may also use cross-layer adap-
tation strategies, by which knowledge from Tier-3 or Tier-2
is used in the management of the wireless channel between
them. For example, an assistive augmented reality (AR) ap-
plication that verbally guides a visually-impaired person may
be competing for the wireless channel and cloudlet resources
with a group of AR gamers. In an overload situation, one
may wish to favor the assistive application over the gamers.
This knowledge can be used by the cloudlet operating sys-
tem to preferentially schedule the more important workload.
It can also be used for prioritizing network traffic by using
fine-grain network slicing, as envisioned in 5G [5].

Since the techniques for reducing offered workload are
application-specific, we focus on a specific class of edge-
native applications to validate our ideas. Our choice is a class
of applications called Wearable Cognitive Assistance (WCA)
applications [10]. They are perceived to be “killer apps” for
edge computing because (a) they transmit large volumes of
video data to the cloudlet; (b) they have stringent end-to-end

latency requirements; and (c) they make substantial compute
demands of the cloudlet, often requiring high-end GPUs. We
leverage unique characteristics of WCA applications to re-
duce offered load through graceful degradation and improved
resource allocation.

Our contributions are as follows:
• An architectural framework for WCA that enables grace-

ful degradation under heavy load.
• An adaptation taxonomy of WCA applications, and

techniques for workload reduction.
• A cloudlet resource allocation scheme based on degra-

dation heuristics and external policies.
• A prototype implementation of the above.
• Experimental results showing up to 40% reduction in

offered load and graceful degradation in oversubscribed
edge systems.

2 Background
2.1 Wearable Cognitive Assistance
Amplifying human cognition in real time through low-latency
wireless access from wearable devices to infrastructure re-
sources was first presented as science fiction in 2004 [29]. The
building blocks for this vision came into place by 2014, en-
abling the first implementation of this concept in Gabriel [10].
In 2017, Chen et al [4] described a number of applications of
this genre, quantified their latency requirements, and profiled
the end-to-end latencies of their implementations. In late 2017,
SEMATECH and DARPA jointly funded $27.5 million of re-
search on such applications [26, 34]. At the Mobile World
Congress in February 2018, wearable cognitive assistance
was the focus of an entire session [28]. For AI-based military
use cases, this class of applications is the centerpiece of “Bat-
tlefield 2.0” [7]. By mid-2019, WCA was being viewed as a
prime source of “killer apps” for edge computing [30, 31].



Towards Scalable Edge-Native Applications SEC ’19, November 7–9, 2019, Arlington, VA, USA

2.2 Gabriel Platform
Our work is built on the Gabriel platform [4, 10], shown in
Figure 2. The Gabriel front-end on a wearable device per-
forms preprocessing of sensor data (e.g., compression and en-
coding), which it streams over a wireless network to a cloudlet.
The Gabriel back-end on the cloudlet has a modular structure.
The control module is the focal point for all interactions with
the wearable device. A publish-subscribe (PubSub) mecha-
nism decodes and distributes the incoming sensor streams to
multiple cognitive modules (e.g., task-specific computer vi-
sion algorithms) for concurrent processing. Cognitive module
outputs are integrated by a task-specific user guidance mod-
ule that performs higher-level cognitive processing such as
inferring task state, detecting errors, and generating guidance
in one or more modalities (e.g., audio, video, text, etc.).

The original Gabriel platform was built with a single user
in mind, and did not have mechanisms to share cloudlet re-
sources in a controlled manner. It did, however, have a token-
based transmission mechanism. This limited a client to only
a small number of outstanding operations, thereby offering a
simple form of rate adaptation to processing or network bottle-
necks. We have retained this token mechanism in our system,
described in the rest of this paper. In addition, we have ex-
tended Gabriel with new mechanisms to handle multitenancy,
perform resource allocation, and support application-aware
adaptation. We refer to the two versions of the platform as
“Original Gabriel” and “Scalable Gabriel.”

2.3 Example Gabriel Applications
Many applications have been built on top of the Gabriel plat-
form. Recent papers [4] [3] describe these applications, along
with detailed analysis of their end-to-end latency. For exam-
ple, the LEGO application guides a user to construct a Lego
model, step by step, continuously monitoring the task with
computer vision, and providing instructions when it has de-
tected that the user has completed a step. POOL assists a user
in aiming a pool cue stick. PING PONG suggests hitting a
ball to the left or right to win a rally in table tennis. FACE
recognizes a face that has appeared in a scene, searches the
user’s personal database, and whispers the person’s name.
IKEA helps a user to assemble an IKEA lamp step by step.

These applications run on multiple wearable devices such
as Google Glass, Microsoft HoloLens, Vuzix Glass, and ODG
R7. At a high level, the cloudlet workflows of these applica-
tions are similar, and consist of two major phases. The first
phase uses computer vision to extract a symbolic, idealized
representation of the state of the task, accounting for real-
world variations in lighting, viewpoint, etc. The second phase
operates on the symbolic representation, implements the logic
of the task at hand, and occasionally generates guidance for
the user. In most WCA applications, the first phase is far more
compute intensive than the second phase.

Supply 

Estimation

Demand 

Prediction

Resource MonitorTier-3

Client 1

Intelligent Sampling

Fidelity

Task Graph Partition

Semantic Dedup

Planner

Worker

Tier-2

Policy Maker

Low Latency

Network

Cloudlet Worker

Supply 

Estimation

Demand 

Prediction

Resource Monitor

Latency Fairness Utility

Client 2

Client 3

Figure 3: System Architecture

3 Architecture and Adaptation Strategy
The original Gabriel platform has been validated in meeting
the latency bounds of WCA applications in single-user set-
tings [4]. Scalable Gabriel aims to meet these latency bounds
in multi-user settings, and to ensure performant multitenancy
even in the face of overload. We take two complementary ap-
proaches to scalability. The first is for applications to reduce
their offered load to the wireless network and the cloudlet
through adaptation. The second uses end-to-end scheduling
of cloudlet resources to minimize queueing and impacts of
overload. We embrace both approaches, and combine them
using the system architecture shown in Figure 3. We assume
benevolent and collaborative clients in this paper, and leave
the handling of malicious users to future work.

3.1 System Architecture
We consider scenarios in which multiple Tier-3 devices con-
currently offload their vision processing to a single cloudlet
over a shared wireless network. The devices and cloudlet
work together to adapt workloads to ensure good performance
across all of the applications vying for the limited Tier-2 re-
sources and wireless bandwidth. This is reflected in the system
architecture shown in Figure 3.

Monitoring of resources is done at both Tier-3 and Tier-2.
Certain resources, such as battery level, are device-specific
and can only be monitored at Tier-3. Other shared resources
can only be monitored at Tier-2: these include processing
cores, memory, and GPU. Wireless bandwidth and latency are
measured independently at Tier-3 and Tier-2, and aggregated
to achieve better estimates of network conditions.



SEC ’19, November 7–9, 2019, Arlington, VA, USA Wang et al

This information is combined with additional high-level
predictive knowledge and factored into scheduling and adap-
tation decisions. The predictive knowledge could arise at the
cloudlet (e.g., arrival of a new device, or imminent change in
resource allocations), or at the Tier-3 device (e.g., application-
specific, short-term prediction of resource demand). All of
this information is fed to a policy module running on the
cloudlet. This module (described in detail in Section 5) is
guided by an external policy specification and determines
how cloudlet resources should be allocated across compet-
ing Tier-3 applications. Such policies can factor in latency
needs and fairness, or simple priorities (e.g., a blind person
navigation assistant may get priority over an AR game).

A planner module on the Tier-3 device uses current re-
source utilization and predicted short-term processing demand
to determine which workload reduction techniques (described
in Section 3.3) should be applied to achieve best performance
for the particular application given the resource allocations.

3.2 Adaptation Goals
For the applications of interest in this paper, the dominant
class of offloaded computations are computer vision opera-
tions, e.g., object detection with deep neural networks (DNNs),
or activity recognition on video segments. The interactive na-
ture of these applications precludes the use of deep pipelining
that is commonly used to improve the efficiency of streaming
analytics. Here, end-to-end latency of an individual operation
is more important than throughput. Further, it is not just the
mean or median of latency, but also the tail of the distribu-
tion that matters. There is also significant evidence that user
experience is negatively affected by unpredictable variability
in response times. Hence, a small mean with short tail is the
desired ideal. Finally, different applications have varying de-
grees of benefit or utility at different levels of latency. Thus,
our adaptation strategy incorporates application-specific util-
ity as a function of latency, as well as policies maximizing
the total utility of the system.

3.3 Leveraging Application Characteristics
WCA applications exhibit certain properties that distinguish
them from other video analytics applications studied in the
past. Adaptation based on these attributes provides a unique
opportunity to improve scalability.

Human-Centric Timing: The frequency and speed with
which guidance must be provided in a WCA application often
depends on the speed at which the human performs a task
step. Generally, additional guidance is not needed until the
instructed action has been completed. For example, in the
RibLoc assistant (a medical training application), drilling a
hole in bone can take several minutes to complete. During
the drilling, no further guidance is provided after the initial

instruction to drill. Inherently, these applications contain ac-
tive phases, during which an application needs to sample and
process video frames as fast as possible to provide timely
guidance, and passive phases, during which the human user is
busy performing the instructed step. During a passive phase,
the application can be limited to sampling video frames at a
low rate to determine when the user has completed or nearly
completed the step, and may need guidance soon. Although
the durations of human operations cannot be predicted and
must be considered random variables, many have empirical
lower bounds. Adapting sampling and processing rates to
match these active and passive phases can greatly reduce of-
fered load. Further, the offered load across users is likely to
be uncorrelated because they are working on different tasks or
different steps of the same task. If inadvertent synchronization
occurs, it can be broken by introducing small randomized de-
lays in the task guidance to different users. These observations
suggest that proper end-to-end scheduling can enable effec-
tive use of cloudlet resources even with multiple concurrent
applications.

Event-Centric Redundancy: In many WCA applications,
guidance is given when a user event causes visible state
change. For example, placing a lamp base on a table trig-
gers the IKEA Lamp application to deliver the next assembly
instruction. Typically, the application needs to process video
at a high frame rate to ensure that such state change is de-
tected promptly, leading to further guidance. However, all
subsequent frames will continue to reflect this change, and
are essentially redundant, wasting wireless and computing
resources. Early detection of redundant frames through care-
ful semantic deduplication and frame selection at Tier-3 can
reduce the use of wireless bandwidth and cloudlet cycles on
frames that show no task-relevant change.

Inherent Multi-Fidelity: Many vision processing algo-
rithms can tradeoff fidelity and computation. For example,
frame resolution can be lowered, or a less sophisticated DNN
used for inference, in order to reduce processing at the cost
of lower accuracy. In many applications, a lower frame rate
can be used, saving computation and bandwidth at the ex-
pense of response latency. Thus, when a cloudlet is burdened
with multiple concurrent applications, there is scope to select
operating parameters to keep computational load manage-
able. Exactly how to do so may be application-dependent.
In some cases, user experience benefits from a trade-off that
preserves fast response times even with occasional glitches
in functionality. For others, e.g., safety-critical applications,
it may not be possible to sacrifice latency or accuracy. This
in turn translates to lowered scalability of the latter class of
application, and hence, a need for more powerful cloudlets
and possibly different wireless technology in order to service
multiple users.



Towards Scalable Edge-Native Applications SEC ’19, November 7–9, 2019, Arlington, VA, USA

Question Example Load-reduction Technique

1 How often are instructions given, com-
pared to task duration?

Instructions for each step in IKEA lamp assembly
are rare compared to the total task time, e.g., 6
instructions over a 10 minute task.

Enable adaptive sampling based on
active and passive phases.

2 Is intermittent processing of input
frames sufficient for giving instructions?

Recognizing a face in any one frame is sufficient
for whispering the person’s name.

Select and process key frames.

3 Will a user wait for system responses
before proceeding?

A first-time user of a medical device will pause
until an instruction is received.

Select and process key frames.

4 Does the user have a pre-defined
workspace in the scene?

Lego pieces are assembled on the lego board. In-
formation outside the board can be safely ignored.

Focus processing attention on the re-
gion of interest.

5 Does the vision processing involve iden-
tifying and locating objects?

Identifying a toy lettuce for a toy sandwich. Use tracking as cheap approximation
for detection.

6 Are the vision processing algorithms in-
sensitive to image resolution?

Many image classification DNNs limit resolu-
tions to the size of their input layers.

Downscale sampled frames on de-
vice before transmission.

7 Can the vision processing algorithm
trade off accuracy and computation?

In image classification, MobileNet is computa-
tionally cheaper than ResNet, but less accurate.

Change computation fidelity based
on resource utilization.

8 Can IMUs be used to identify the start
and end of user activities?

User’s head movements are of significantly higher
magnitude when searching for a Lego block.

Enable IMU-based frame suppres-
sion.

9 Is the Tier-3 device powerful enough to
run parts of the processing pipeline?

A Jetson TX2 can run MobileNet-based image
recognition in real-time.

Partition the vision pipeline between
Tier-3 and Tier-2.

Table 1: Application characteristics and corresponding applicable techniques to reduce load

3.4 Adaptation-Relevant Taxonomy
The characteristics described in the previous section largely
hold for a broad range of WCA applications. However, the
degree to which particular aspects are appropriate to use for ef-
fective adaptation is very application dependent, and requires
a more detailed characterization of each application. To this
end, our system requests a manifest from the developers de-
scribing an application. This manifest is a set of yes/no or
short numerical responses to the questions in Table 1. Using
these as a basis, we construct a taxonomy of WCA applica-
tions (shown in Figure 4), based on clusters of applications
along dimensions induced from the checklist of questions.
In this case, we consider two dimensions – the fraction of
time spent in “active” phase, and the significance of the pro-
vided guidance (from merely advisory, to critical instructions).
Our system varies the adaptation techniques employed to the
different clusters of applications. We note that as more ap-
plications and more adaptation techniques are created, the
list of questions can be extended, and the taxonomy can be
expanded.

4 Techniques for Workload Reduction
In this section, we focus on techniques to reduce cloudlet
workload. We first discuss the intuition and mechanisms of
the techniques and then present micro-benchmarks applying
these techniques to example applications.

Ikea Stool

Importance of Instructions

F
ra

ct
io

n
 o

f 
T

im
e 

A
ct

iv
e 

RibLoc

Ikea Lamp

Lego

Disktray

Sandwich

Draw

Pool

Ping-pong

Workout

Face

Figure 4: Design Space of WCA Applications

4.1 Adaptive Sampling
The processing demands and latency bounds of a WCA appli-
cation can vary considerably during task execution because
of human speed limitations. When the user is awaiting guid-
ance, it is desirable to sample input at the highest rate to
rapidly determine task state and thus minimize guidance la-
tency. However, while the user is performing a task step, the
application can stay in a passive state and sample at a lower
rate. For a short period of time immediately after guidance is



SEC ’19, November 7–9, 2019, Arlington, VA, USA Wang et al

Video Stream

S

time

Event

Processing Delay

Latency Bound

Sampled Frames

k=4

Figure 5: Dynamic Sampling Rate for LEGO

given, the sampling rate can be very low because it is not hu-
manly possible to be done with the step. As more time elapses,
the sampling rate has to increase because the user may be
nearing completion of the step. Although this active-passive
phase distinction is most characteristic of WCA applications
that provide step-by-step task guidance (the blue cluster in the
lower right of Figure 4), most WCA applications exhibit this
behavior to some degree. As shown in the rest of this section,
adaptive sampling rates can reduce processing load without
impacting application latency or accuracy.

We use task-specific heuristics to define application active
and passive phases. In an active application phase, a user is
waiting for instructions or is close to needing instructions;
therefore the application needs to be “active” by sampling
and processing at high frequencies. On the other hand, appli-
cations can run at low frequency during passive phases when
an instruction-triggering event is unlikely to occur.

We use the LEGO application to show the effectiveness of
adaptive sampling. By default, the LEGO application runs
in the active phase. The application enters passive phases
immediately following the delivery of an instruction, since the
user is going to take a few seconds searching and assembling
Lego blocks. The length and sampling rate of a passive phase
is provided by the application to the framework. We provide
the following system model as an example of what can be
implemented. We collect five LEGO traces with 13739 frames
as our evaluation dataset.

Length of a Passive Phase: We model the time it takes
to finish each step as a Gaussian distribution. We use maxi-
mum likelihood estimation to calculate the parameters of the
Guassian model.

Lowest Sampling Rate in Passive Phase: The lowest
sampling rate in passive phase still needs to meet the applica-
tion’s latency requirement. Figure 5 shows the system model
used to calculate the largest sampling period S that still meets
the latency bound. In particular,

(k − 1)S + processinд_delay ≤ latency_bound

k represents the cumulative number of frames an event needs
to be detected in order to be certain an event actually occurred.
The LEGO application empirically sets this value to 5.

0 20

Time in Passive Phase (s)

5

10

15

20

25

30

Sa
m

pl
in

g
R

at
e

(H
z)

(a) Passive Sampling Rate

0 50 100

Experiment Time (s)

0

5

10

15

20

25

30

Sa
m

pl
e

R
at

e
(H

z)

(b) Trace Sampling Rate

Figure 6: Adaptive Sampling Rate

Adaptation Algorithm: At the start of a passive phase,
we set the sampling rate to the minimum calculated above.
As time progresses, we gradually increase the sampling rate.
The idea behind this is that the initial low sampling rates
do not provide good latency, but this is acceptable, as the
likelihood of an event is low. As the likelihood increases
(based on the Gaussian distribution described earlier), we
increase sampling rate to decrease latency when events are
likely. Figure 6(a) shows the sampling rate adaptation our
system employs during a passive phase. The sampling rate is
calculated as

sr =min_sr + α ∗ (max_sr −min_sr ) ∗ cd f _Gaussian(t )

sr is the sampling rate. t is the time after an instruction has
been given. α is a recovery factor which determines how
quickly the sampling rate rebounds to active phase rate.

Figure 6(b) shows the sampling rate for a trace as the
application runs. The video captures a user doing 7 steps of
a LEGO assembly task. Each drop in sampling rate happens
after an instruction has been delivered to the user. Table 2
shows the percentage of frames sampled and guidance latency
comparing adaptive sampling with naïve sampling at half
frequency. Our adaptive sampling scheme requires processing
fewer frames while achieving a lower guidance latency.

4.2 IMU-based Passive Phase Suppression
In many applications, passive phases can often be associated
with the user’s head movement. We illustrate with two ap-
plications here. In LEGO, during the passive phase, which
begins after the user receives the next instruction, a user typi-
cally turns away from the Lego board and starts searching for
the next brick to use in a parts box. During this period, the
computer vision algorithm would detect no meaningful task
states if the frames are transmitted. In PING PONG, an active
phase lasts throughout a rally. Passive phases are in between
actual game play, when the user takes a drink, switches sides,
or, most commonly, tracks down and picks up a wayward ball



Towards Scalable Edge-Native Applications SEC ’19, November 7–9, 2019, Arlington, VA, USA

Trace
Sample

Half Freq
Adaptive
Sampling

1 50% 25%
2 50% 28%
3 50% 30%
4 50% 30%
5 50% 43%

(a) Percentage of Frames Sampled

Guidance Delay
(frames±stddev)

Sample Half Freq 7.6 ± 6.9
Adaptive Sampling 5.9 ± 8.2

(b) Guidance Latency

Table 2: Frames Sampled and Guidance Latency

0 500 1000 1500 2000
Frame Sequence

Passive

Active

Ground Truth Suppressed frames by IMU

(a) LEGO

0 500 1000 1500 2000
Frame Sequence

Passive

Active

Ground Truth Suppressed frames by IMU

(b) PING PONG

Figure 7: Accuracy of IMU-based Frame Suppression

from the floor. They are associated with a much larger range
of head movements than during a rally when the player gener-
ally looks toward the opposing player. Again, the frames can
be suppressed on the client to reduce wireless transmission
and load on the cloudlet. In both scenarios, significant body
movement can be detected through Inertial Measurement Unit
(IMU) readings on the wearable device, and used to predict
such passive phases.

For each frame, we get a six-dimensional reading from the
IMU: rotation in three axes, and acceleration in three axes.
We train an application-specific SVM to predict active/passive
phases based on IMU readings, and suppress predicted passive
frames on the client. Figure 7(a) and (b) show an example
trace from LEGO and PING PONG, respectively. Human-
labeled ground truth indicating passive and active phases is

Suppressed Max Delay of
Passive Frames (%) State Change Detection

Trace 1 17.9% 0
Trace 2 49.9% 0
Trace 3 27.1% 0
Trace 4 37.0% 0
Trace 5 34.1% 0

(a) LEGO

Suppressed Loss of
Passive Frames (%) Active Frames (%)

Trace 1 21.5% 0.8%
Trace 2 30.0% 1.5%
Trace 3 26.2% 1.9%
Trace 4 29.8% 1.0%
Trace 5 38.4% 0.2%

(b) PING PONG

Table 3: Effectiveness of IMU-based Frame Suppression

shown in blue. The red dots indicate predictions of passive
phase frames based on the IMU readings; these frames are
suppressed at the client and not transmitted. Note that in
both traces, the suppressed frames also form streaks. In other
words, a number of frames in a row can be suppressed. As
a result, the savings we gain from IMU is orthogonal to that
from adaptive sampling.

Although the IMU approach does not capture all of the
passive frames (e.g., in LEGO, the user may hold his head
steady while looking for the next part), when a passive frame
is predicted, this is likely correct (i.e., high precision, moder-
ate recall). Thus, we expect little impact on event detection
accuracy or latency, as few if any active phase frames are
affected. This is confirmed in Table 3, which summarizes
results for five traces from each application. We are able to
suppress up to 49.9% of passive frames for LEGO and up
to 38.4% of passive frames in case of PING PONG on the
client, while having minimal impact on application quality —
incurring no delay in state change detection in LEGO, and
less than 2% loss of active frames in PING PONG.

5 Cloudlet Resource Allocation
A complementary method to improve scalability is through ju-
dicious allocation of cloudlet resources among concurrent ap-
plication services. Resource allocation has been well explored
in many contexts of computer systems, including operating
systems, networks, real-time systems, and cloud data centers.
While these prior efforts can provide design blueprints for
cloudlet resource allocation, the characteristics of edge-native
applications emphasize unique design challenges.



SEC ’19, November 7–9, 2019, Arlington, VA, USA Wang et al

Locate 

Board

Find Lego 

Block

Perspective 

Correction

Identify 

Colors

Output Output Output Output

Output

Figure 8: LEGO Processing DAG

The ultra-low application latency requirements of edge-
native applications are at odds with large queues often used to
maintain high resource utilization of scarce resources. Even
buffering a small number of requests may result in end-to-end
latencies that are several multiples of processing delays, hence
exceeding acceptable latency thresholds. On the other hand,
when using short queues, accurate estimations of throughput,
processing, and networking delay are vital to enable efficient
use of cloudlet resources. However, sophisticated computer
vision processing represents a highly variable computational
workload, even on a single stream. For example, as shown in
Figure 8, the processing pipeline for LEGO has many exits,
resulting in highly variable execution times.

To adequately provision resources for an application, one
approach is to leave the burden to developers, asking them
to specify and reserve a static number of cores and amount
of memory needed for the service. However, this method is
known to be highly inaccurate and typically leads to over-
reservation in data-centers. For cloudlets, which are more
resource constrained, such over-reservation will lead to even
worse under-utilization or inequitable sharing of the available
resources. Instead, we seek to create an automated resource
allocation system that leverages knowledge of the application
requirements and minimizes developer effort. To this end, we
ask developers to provide target Quality of Service (QoS) met-
rics or a utility function that relates a single, easily-quantified
metric (such as latency) to the quality of user experience.
Building on this information, we construct offline application
profiles that map multidimensional resource allocations to
application QoS metrics. At runtime, we calculate a resource
allocation plan to maximize a system-wide metric (e.g., total
utility, fairness) specified by the cloudlet owner. We choose
to consider the allocation problem per application rather than
per client in order to leverage statistical multiplexing among
clients and multi-user optimizations (e.g., cache sharing) in
an application.

5.1 System Model
Figure 9 shows the system model we consider. Each appli-
cation is given a separate input queue. Each queue can feed
one or more application instances. Each application instance
is encapsulated in a container with controlled resources. In
this model, with adequate computational resources, clients
of different applications have minimal sharing and mainly
contend for the wireless network.

App1

App1

App2

(FPS, latency)

Only request flow is shown.

Figure 9: Resource Allocation System Model

We use a utility-based approach to measure and compare
system-wide performance under different allocation schemes.
For WCA, the utility of a cloudlet response depends on both
the quality of response and its QoS characteristics (e.g., end-
to-end latency). The total utility of a system is the sum of all
individual utilities. A common limitation of a utility-based
approach is the difficulty of creating utility functions. One
way to ease such burden is to position an application in the
taxonomy described in Section 3.4 and borrow from similar
applications. Another way is to calculate or measure appli-
cation latency bounds, such as through literature review or
physics-based calculation as done in [4].

The system-wide performance is a function of the follow-
ing independent variables: (a) the number of applications and
the number of clients of each application; (b) the number of
instances of each application; and, (c) the resource alloca-
tion for each instance. Although (a) is not under our control,
Gabriel is free to adapt (b) and (c). Furthermore, to opti-
mize system performance, it may sacrifice the performance
of certain applications in favor of others. Alternatively, it may
choose not to run certain applications at all.

5.2 Application Utility and Profiles
We build application profiles offline in order to estimate la-
tency and throughput at runtime. First, we ask developers to
provide a utility function that maps QoS metrics to applica-
tion experience. Figure 10(a) and Figure 11(a) show utility
functions for two applications based on latency bounds iden-
tified by [4] for each request. Next, we profile an application
instance by running it under a discrete set of cpu and mem-
ory limitations, with a large number of input requests. We
record the processing latency and throughput, and calculate
the system-wide utility per unit time. We interpolate between
acquired data points of <system utility, resources> to produce
continuous functions. Hence, we effectively generate a multi-
dimensional resource to utility profile for each application.

We make a few simplifying assumptions to ensure profile
generation and allocation of resources by utility are tractable.
First, we assume utility values across different applications
are comparable. Furthermore, we assume utility is received
on a per-frame basis, with values that are normalized between



Towards Scalable Edge-Native Applications SEC ’19, November 7–9, 2019, Arlington, VA, USA

370 1000
Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

U
til

ity

(a) Utility For FACE

CPUs
0

2
4

6
8

10

Mem
ory

0
1

2
3

4
5

6
7

8

A
vg

U
til

ity

0

1

2

3

4

5

(b) Profile for FACE

Figure 10: FACE Application Utility and Profile

75 100 125 150
Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

U
til

ity x=95 x=105

(a) Utility For POOL

CPUs
0

2
4

6
8

10

Mem
ory

0
1

2
3

4
5

6
7

8

A
vg

U
til

ity

0

5

10

15

20

(b) Profile for POOL

Figure 11: POOL Application Utility and Profile

0 and 1. Each frame that is sent, accurately processed, and
replied within its latency bound receives 1, so a client running
at 30 FPS under ideal conditions can receive a maximum
utility of 30 per second. This clearly ignores variable utility of
processing particular frames (e.g., differences between active
and passive phases), but simplifies construction of profiles and
modeling for resource allocation; we leave the complexities
of modeling content-based variable utility to future work.
Figure 10(b) and Figure 11(b) show the generated application
profiles for FACE and POOL. We see that POOL is more
efficient than FACE in using each unit of resource to produce
utility. If an application needs to deliver higher utility than a
single instance can, our framework will automatically launch
more instances of it on the cloudlet.

5.3 Resource Allocation
Given the workload of concurrent applications running on a
cloudlet, and the number of clients requesting service from
each application, our resource allocator determines how many
instances to launch and how much resource (CPU cores, mem-
ory, etc.) to allocate for each application based on an external
policy specified by cloudlet operators. We describe an ex-
ample policy below, which maximizes the system-wide total
utility. Other types of policies, such as max-min fairness, can

also be enforced by our allocation mechanism. In addition, we
assume queueing delays are limited by the token mechanism
described in the Gabriel framework [10], which limits the
number of outstanding requests on a per-client basis.

As described earlier, for each application a ∈ {FACE,
LEGO, PING PONG, POOL, . . . }, we construct a resource to
utility mapping ua : r→ R for one instance of the application
on cloudlet, where r is a resource vector of allocated CPU,
memory, etc. We formulate the following optimization prob-
lem which maximizes the system-wide total utility, subject to
a tunable maximum per-application limit:

max
{ka,ra }

∑
a

ka · ua (ra )

s.t.
∑
a

ka · ra ≼ r̂

0 ≼ ra ∀a

ka · ua (ra ) ≤ γ · ca ∀a

ka ∈ Z

(1)

In above, ca is the number of mobile clients requesting
service from application a. The total resource vector of the
cloudlet is r̂. For each application a, we determine how many
instances to launch — ka , and allocate resource vector ra
to each of them. A tunable knob γ regulates the maximum
utility allotted per application, and serves to enforce a form of
partial fairness (no application can be given excessive utility,
though some may still receive none). The larger γ is, the more
aggressive our scheduling algorithm will be in maximizing
global utility and suppressing low-utility applications. By
default, we setγ = 10, which, based on our definition of utility,
roughly means resources will be allocated so no more than
one third of frames (from a 30FPS source) will be processed
within satisfactory latency bounds for a given client.

Solving the above optimization problem is computation-
ally difficult. We thus use an iterative greedy allocation algo-
rithm as follows: for each application profile ua (r), we find
the resource point that gives the highest ua (r)

|r | , i.e., utility-
to-resource ratio. Denote this point as r∗a . We start with the
application with the largest ua (r∗a )

|r∗a |
. We allocate ka application

instances, each with resource r∗a , such that ka is the largest
integer with ka ·ua (r∗a ) ≤ γ ·ca . If there are leftover resources,
we move to the application with the next highest utility-to-
resource ratio and repeat the process.

To implement resource reservation and enforcement, we
leverage the cpu-shares and memory-reservation
control options of Linux Docker containers. These limit a
container’s resource utilization only when there is contention,
but allow it to use as much left-over resources as needed.



SEC ’19, November 7–9, 2019, Arlington, VA, USA Wang et al

Original Gabriel Total
Scalable Gabriel Total

Original Gabriel Active
Scalable Gabriel Active

2 4 6 8
CPU Cores

0

5000

10000

15000

Fr
am

es

(a) PING PONG

2 4 6 8
CPU Cores

(b) LEGO

2 4 6 8
CPU Cores

(c) POOL

Figure 12: Effects of Workload Reduction

Exp Number of Clients
# Total FACE LEGO POOL PING IKEA

PONG
1 15 3 3 3 3 3
2 20 4 4 4 4 4
3 23 5 5 4 4 5
4 25 5 5 5 5 5
5 27 5 6 6 5 5
6 30 5 7 6 6 6
7 32 5 7 7 7 6
8 40 8 8 8 8 8

Table 4: Resource Allocation Experiments

6 Evaluation
We use five WCA applications, including FACE, PING PONG,
LEGO, POOL, and IKEA for evaluation [4] [3]. These appli-
cations are selected based on their distinct requirements and
characteristics to represent the variety of WCA apps. IKEA
and LEGO assist users step by step to assemble an IKEA
lamp or a Lego model. While their 2.7-second loose latency
bound is less stringent than other apps, the significance of
their instructions is high, as a user could not proceed without
the instruction. On the other hand, users could still continue
their tasks without the instructions from FACE, POOL, and
PING PONG assistants. For POOL and PING PONG, the
speed of an instruction is paramount to its usefulness. For
example, any instruction that comes 105ms after a user action
for POOL is no longer of value.

6.1 Effectiveness of Workload Reduction
We first evaluate the effectiveness of all of the workload
reduction techniques explored in Section 4. For this set of
experiments, we use a single application and a static resource
allocation. We use four Nexus 6 mobile phones as clients, con-
necting to a cloudlet over a Wi-Fi link. We run PING PONG,

15 20 23 25 27 30 32 40
Total Number of Clients

0

5000

10000

To
ta

lU
til

ity

Original Gabriel
Scalable Gabriel

Figure 13: Total Utility with Increasing Contention

LEGO, and POOL applications one at a time with 2, 4, 6, and
8 cores available on the server. Figure 12 shows the total num-
ber of frames processed with and without workload reduction.
Note that although the offered work is greatly reduced, the
processed frames for active phases of the application have
not been affected. Thus, we confirm that we can significantly
reduce cloudlet load without affecting the critical processing
needed by these applications.

6.2 Effectiveness of Resource Allocation
We next evaluate resource allocation on a server machine with
2 Intel® Xeon® E5-2699 v3 processors, totaling 36 physical
cores running at 2.3 Ghz (turbo boost disabled) and 128 GB
memory. We dedicate 8 physical cores (16 hyperthreads) and
16 GB memory as cloudlet resources using cgroup. We run
8 experiments with increasing numbers of clients across five
concurrent applications with a total of 15 to 40 clients. The
breakdown of the number of clients used for each experiment
is given in Table 4. We use offline-generated application pro-
files discussed in Section 5 to optimize total system utility.
Figure 13 shows how the system-wide total utility changes
as we add more clients to the workload, under the original
Gabriel approach and the scalable Gabriel approach. We see
that original Gabriel’s total utility drops more than 40% as
contention increases, since every client contends for resources
in an uncontrolled fashion. All applications suffer, but the
effects of increasing latencies are vastly different among dif-
ferent applications. In contrast, scalable Gabriel maintains a
high level of system-wide utility by differentially allocating
resources to different applications based on their sensitivity
captured in the utility profiles.

Figure 14 and Figure 15 provide insights into how scalable
Gabriel strikes the balance. Latencies are better controlled as
resources are dedicated to applications with high utility, and
more clients are kept within their latency bounds. Of course,



Towards Scalable Edge-Native Applications SEC ’19, November 7–9, 2019, Arlington, VA, USA

FACE LEGO PING PONG POOL IKEA

15 20 23 25 27 30 32 40
Total Number of Clients

Tight
bound

Loose
bound

N
or

m
al

iz
ed

L
at

en
cy

(a) Original Gabriel

15 20 23 25 27 30 32 40
Total Number of Clients

Tight
bound

Loose
bound

N
or

m
al

iz
ed

L
at

en
cy

(b) Scalable Gabriel

Note: These are 90th percentiles of response latency, normalized by
per-application tight and loose bounds [4]

Figure 14: Effects of Resource Allocation on Latency

with higher contention, fewer frames per second can be pro-
cessed for each client. Original Gabriel degrades applications
in an undifferentiated fashion. Scalable Gabriel, in contrast,
tries to maintain higher throughput for some applications at
the expense of the others, e.g. LEGO up to 25 clients.

6.3 Effects on Guidance Latency
We next evaluate the combined effects of workload reduction
and resource allocation in our system. We emulate many users
running multiple applications simultaneously. All users share
the same cloudlet with 8 physical cores and 16 GB memory.
We conduct three experiments, with 20 (4 clients per app),
30 (6 clients per app), and 40 (8 clients per app) clients.
Each client loops through pre-recorded video traces with
random starting points. Figure 16 and Fig 17 show per client
frame latency and FPS achieved. The first thing to notice is
that concurrently utilizing both sets of techniques does not
cause conflicts. In fact, they appear to be complementary
and latencies remain in better control than using resource
allocation alone.

The previous plots consider per request latencies. The ul-
timate goal of our work is to maintain user experience as
much as possible and degrade it gracefully when overloaded.

FACE LEGO PING PONG POOL IKEA

15 20 23 25 27 30 32 40
Total Number of Clients

0

5

10

15

20

A
vg

FP
S

pe
rC

lie
nt

(a) Original Gabriel

15 20 23 25 27 30 32 40
Total Number of Clients

0

5

10

15

20

A
vg

FP
S

pe
rC

lie
nt

(b) Scalable Gabriel

Figure 15: Effects of Resource Allocation on Throughput

FACE LEGO PING PONG POOL IKEA

20 30 40
Total Number of Clients

Tight
bound

Loose
bound

N
or

m
al

iz
ed

L
at

en
cy

20 30 40
Total Number of Clients

Tight
bound

Loose
bound

N
or

m
al

iz
ed

L
at

en
cy

(a) Original Gabriel (b) Scalable Gabriel

Note: These are 90th percentiles of response latency, normalized by
per-application tight and loose bounds [4]

Figure 16: Combined Effects on Response Latency

For WCA applications, the key measure of user experience
is guidance latency, the time between the occurrence of an
event and the delivery of corresponding guidance. Figure 18
shows boxplots of per-application guidance latencies for the
concurrent application experiments above. The red line de-
notes the application-required loose bound. It is clear that our
methods control latency significantly better than the baseline.
Scalable Gabriel is able to serve at least 3x the number of



SEC ’19, November 7–9, 2019, Arlington, VA, USA Wang et al

FACE LEGO PING PONG POOL IKEA

20 30 40
Total Number of Clients

0

5

10

15

A
vg

FP
S

pe
rC

lie
nt

20 30 40
Total Number of Clients

0

5

10

15

A
vg

FP
S

pe
rC

lie
nt

(a) Original Gabriel (b) Scalable Gabriel

Figure 17: Combined Effects on Throughput

clients when moderately loaded while continuing to serve half
of the clients when severely loaded. In these experiments, the
utility is maximized at the expense of the FACE and IKEA
application, which provides the least utility per resource con-
sumed. At the highest number of clients, scalable Gabriel
sacrifices the LEGO application to maintain the quality of
service for the other two. This differentiated allocation is re-
flected in Figure 19. In contrast, with original Gabriel, none
of the applications are able to regularly meet deadlines.

7 Related Work
Although edge computing is new, the techniques for scalabil-
ity examined in this paper bear some resemblance to work
that was done in the early days of mobile computing, and
more recent cloud management work.

Odyssey [25] and extensions [8] proposed upcall-based
collaboration between a mobile’s operating system and its
applications to adapt to variable wireless connectivity and
limited battery. Exploration of tradeoffs between application
fidelity and resource demand led to the concept of multi-
fidelity applications [32]; such concepts are relevant to our
work, but the critical computing resources in our setting are
those of the cloudlet rather than the mobile device.

Several different approaches to adapting application fidelity
have been studied. Dynamic sampling rate with various heuris-
tics for adaptation have been tried primarily in the context of
individual mobile devices for energy efficiency [19, 21, 22,
35]. Semantic deduplication to reduce redundant processing
of frames have been suggested by [12, 13, 17, 38]. Similarly,
previous works have looked at suppression based on motion
either from video content [20, 23] or IMUs [15]. Others have
investigated exploiting multiple deep models with accuracy
and resource tradeoffs [11, 16]. While most of these efforts

Original Gabriel
Scalable Gabriel

Latency Bound

(a
)F

A
C

E

20 30 40
Number of Clients

1000

2000

3000

In
st

.D
el

ay
(m

s)

(b
)L

E
G

O

20 30 40
Number of Clients

5000

10000

15000

20000

In
st

.D
el

ay
(m

s)

(c
)P

IN
G

PO
N

G

20 30 40
Number of Clients

200

400

600

800

In
st

.D
el

ay
(m

s)

(d
)P

O
O

L

20 30 40
Number of Clients

0

500

1000

1500

2000

In
st

.D
el

ay
(m

s)

(e
)I

K
E

A

20 30 40
Number of Clients

2500

5000

7500

10000

In
st

.D
el

ay
(m

s)

Figure 18: Guidance Latency



Towards Scalable Edge-Native Applications SEC ’19, November 7–9, 2019, Arlington, VA, USA

FACE LEGO PING PONG POOL IKEA

20

30

40

C
lie

nt
s

Figure 19: Fraction of Cloudlet Processing Allocated

were in mobile-only, cloud-only, or mobile-cloud context, we
explore similar techniques in an edge-native context.

Partitioning workloads between mobile devices and the
cloud have been studied in sensor networks [24], throughput-
oriented systems [6, 36], for interactive applications [2, 27],
and from programming model perspectives [1]. We believe
that these approaches will become important techniques to
scale applications on heavily loaded cloudlets.

Dynamic resource allocation schemes on the cloud for
video processing have been well explored [9, 18, 33]. More
recently, profile-based adaptation of video analytics [14, 16,
37] focused on throughput-oriented analytics applications on
large clusters or in the cloud. In contrast, our goals focus on
interactive performance on relatively small edge deployments.

8 Conclusion and Future Work
More than a decade ago, the emergence of cloud computing
led to the realization that applications had to be written in a
certain way to take full advantage of elasticity of the cloud.
This led to the concept of “cloud-native applications” whose
scale-out capabilities are well matched to the cloud, as well
as tools and techniques to easily create such applications.

The emergence of edge computing leads to another in-
flection point in application design. In particular, it leads
to “edge-native applications” that are deeply dependent on
attributes such as low latency or bandwidth scalability that
can only be obtained at the edge. However, as this paper has
shown, edge-native applications have to be written in a way
that is very different from cloud-native applications if they
are to be scalable.

This is the first work to show that cloud-native implemen-
tation strategies that focus primarily on dynamic scale-out
are unlikely to be effective for scalability in edge computing.
Instead, edge-native applications need to adapt their network
and cloudlet resource demand to system load. As the total
number of Tier-3 devices associated with a cloudlet increases,
the per-device network and cloudlet load has to decrease.
This is a fundamental difference between cloud-native and
edge-native approaches to scalability.

In this paper, we explore client workload reduction and
server resource allocation to manage application quality of

service in the face of contention for cloudlet resources. We
demonstrate that our system is able to ensure that in over-
loaded situations, a subset of users are still served with good
quality of service rather than equally sharing resources and
missing latency requirements for all.

This work serves as an initial step towards practical re-
source management for edge-native applications. There are
many potential directions to explore further in this space. We
have alluded to some of these earlier in the paper. One ex-
ample we briefly mentioned is dynamic partitioning of work
between Tier-3 and Tier-2 to further reduce offered load on
cloudlets. In addition, other resource allocation policies, es-
pecially fairness-centered policies, such as max-min fairness
and static priority can be explored when optimizing overall
system performance. These fairness-focused policies could
also be used to address aggressive users, which are not con-
sidered in this paper. While we have shown offline profiling
is effective for predicting demand and utility for WCA ap-
plications, for a broader range of edge-native applications,
with ever more aggressive and variable offload management,
online estimation may prove to be necessary. Another area
worth exploring is the particular set of control and coordina-
tion mechanisms to allow cloudlets to manage client-offered
load directly. Finally, the implementation to date only con-
trols allocation of resources but allows the cloudlet operating
system to arbitrarily schedule application processes. Whether
fine-grained control of application scheduling on cloudlets
can help scale services remains an open question.

ACKNOWLEDGEMENTS
We thank our shepherd, Eyal de Lara, and the anonymous reviewers for
their guidance in improving the presentation of our work. This research was
supported in part by the National Science Foundation (NSF) under grant
number CNS-1518865 and by the Defense Advanced Research Projects
Agency (DARPA) under Contract No. HR001117C0051. Additional support
was provided by Intel, Vodafone, Deutsche Telekom, Verizon, Crown Castle,
Seagate, VMware, MobiledgeX, and the Conklin Kistler family fund. Any
opinions, findings, conclusions or recommendations expressed in this mate-
rial are those of the authors and do not necessarily reflect the view(s) of their
employers or the above-mentioned funding sources.

REFERENCES
[1] Rajesh Krishna Balan, Mahadev Satyanarayanan, So Young Park, and

Tadashi Okoshi. 2003. Tactics-based remote execution for mobile com-
puting. In Proceedings of the 1st international conference on Mobile
systems, applications and services. ACM, 273–286.

[2] Tiffany Yu-Han Chen, Lenin Ravindranath, Shuo Deng, Paramvir Bahl,
and Hari Balakrishnan. 2015. Glimpse: Continuous, real-time object
recognition on mobile devices. In Proceedings of the 13th ACM Con-
ference on Embedded Networked Sensor Systems. ACM, 155–168.

[3] Zhuo Chen. 2018. An Application Platform for Wearable Cognitive
Assistance. Ph.D. Dissertation. Carnegie Mellon University.

[4] Zhuo Chen, Wenlu Hu, Junjue Wang, Siyan Zhao, Brandon Amos,
Guanhang Wu, Kiryong Ha, Khalid Elgazzar, Padmanabhan Pillai,
Roberta Klatzky, Dan Siewiorek, and Mahadev Satyanarayanan. 2017.



SEC ’19, November 7–9, 2019, Arlington, VA, USA Wang et al

An Empirical Study of Latency in an Emerging Class of Edge Comput-
ing Applications for Wearable Cognitive Assistance. In Proceedings of
the Second ACM/IEEE Symposium on Edge Computing. Fremont, CA.

[5] Luis M. Contreras and Diego R. Lopez. 2018. A Network Ser-
vice Provider Perspective on Network Slicing. IEEE Softwariza-
tion (January 2018). https://sdn.ieee.org/newsletter/january-2018/
a-network-service-provider-perspective-on-network-slicing.

[6] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman,
Stefan Saroiu, Ranveer Chandra, and Paramvir Bahl. 2010. MAUI:
making smartphones last longer with code offload. In Proceedings of
the 8th international conference on Mobile systems, applications, and
services. ACM, 49–62.

[7] Zak Doffman. 2018. Battlefield 2.0: How Edge Artificial Intelligence
is Pitting Man Against Machine. Forbes (November 2018).

[8] Jason Flinn and Mahadev Satyanarayanan. 1999. Energy-aware Adap-
tation for Mobile Applications. In Proceedings of the Seventeenth ACM
Symposium on Operating systems Principles. Charleston, SC.

[9] Tom ZJ Fu, Jianbing Ding, Richard TB Ma, Marianne Winslett, Yin
Yang, and Zhenjie Zhang. 2015. DRS: dynamic resource scheduling for
real-time analytics over fast streams. In 2015 IEEE 35th International
Conference on Distributed Computing Systems. IEEE, 411–420.

[10] Kiryong Ha, Zhuo Chen, Wenlu Hu, Wolfgang Richter, Padmanab-
han Pillai, and Mahadev Satyanarayanan. 2014. Towards Wearable
Cognitive Assistance. In Proceedings of ACM MobiSys.

[11] Seungyeop Han, Haichen Shen, Matthai Philipose, Sharad Agar-
wal, Alec Wolman, and Arvind Krishnamurthy. 2016. Mcdnn: An
approximation-based execution framework for deep stream processing
under resource constraints. In ACM MobiSys’16. ACM, 123–136.

[12] Kevin Hsieh, Ganesh Ananthanarayanan, Peter Bodik, Shivaram
Venkataraman, Paramvir Bahl, Matthai Philipose, Phillip B Gibbons,
and Onur Mutlu. 2018. Focus: Querying large video datasets with
low latency and low cost. In 13th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 18). 269–286.

[13] Wenlu Hu, Brandon Amos, Zhuo Chen, Kiryong Ha, Wolfgang Richter,
Padmanabhan Pillai, Benjamin Gilbert, Jan Harkes, and Mahadev Satya-
narayanan. 2015. The Case for Offload Shaping. In Proceedings of
HotMobile 2015. Santa Fe, NM.

[14] Chien-Chun Hung, Ganesh Ananthanarayanan, Peter Bodik, Leana
Golubchik, Minlan Yu, Paramvir Bahl, and Matthai Philipose. 2018.
Videoedge: Processing camera streams using hierarchical clusters. In
Symposium on Edge Computing (SEC). IEEE, 115–131.

[15] Puneet Jain, Justin Manweiler, and Romit Roy Choudhury. 2015. Over-
lay: Practical mobile augmented reality. In MobiSys’15. ACM, 331–
344.

[16] Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodik, Siddhartha
Sen, and Ion Stoica. 2018. Chameleon: scalable adaptation of video
analytics. In Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication. ACM, 253–266.

[17] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei
Zaharia. 2017. Noscope: optimizing neural network queries over video
at scale. VLDB’17 10, 11 (2017), 1586–1597.

[18] Ahmed S Kaseb, Anup Mohan, and Yung-Hsiang Lu. 2015. Cloud
resource management for image and video analysis of big data from net-
work cameras. In 2015 International Conference on Cloud Computing
and Big Data (CCBD). IEEE, 287–294.

[19] Nicholas D Lane, Emiliano Miluzzo, Hong Lu, Daniel Peebles,
Tanzeem Choudhury, and Andrew T Campbell. 2010. A survey of
mobile phone sensing. IEEE Communications 48, 9 (2010), 140–150.

[20] Kiron Lebeck, Eduardo Cuervo, and Matthai Philipose. [n. d.]. Collab-
orative Acceleration for Mixed Reality. ([n. d.]).

[21] Konrad Lorincz, Bor-rong Chen, Geoffrey Werner Challen, Atanu Roy
Chowdhury, Shyamal Patel, Paolo Bonato, Matt Welsh, et al. 2009.

Mercury: a wearable sensor network platform for high-fidelity motion
analysis.. In SenSys, Vol. 9. 183–196.

[22] Konrad Lorincz, Bor-rong Chen, Jason Waterman, Geoff Werner-Allen,
and Matt Welsh. 2008. Resource aware programming in the pixie os. In
Proceedings of the 6th ACM conference on Embedded network sensor
systems. ACM, 211–224.

[23] Saman Naderiparizi, Pengyu Zhang, Matthai Philipose, Bodhi Priyan-
tha, Jie Liu, and Deepak Ganesan. 2017. Glimpse: A programmable
early-discard camera architecture for continuous mobile vision. In Mo-
biSys’17. ACM, 292–305.

[24] Ryan Newton, Sivan Toledo, Lewis Girod, Hari Balakrishnan, and
Samuel Madden. 2009. Wishbone: Profile-based Partitioning for Sen-
sornet Applications.. In NSDI, Vol. 9. 395–408.

[25] Brian D. Noble, M. Satyanarayanan, Dushyanth Narayanan, J. Eric
Tilton, Jason Flinn, and Kevin R. Walker. 1997. Agile Application-
Aware Adaptation for Mobility. In Proceedings of the 16th ACM Sym-
posium on Operating Systems Principles. Saint-Malo, France.

[26] John Oakley. 2018. Intelligent Cognitive Assistants (ICA) Workshop
Summary and Research Needs. https://www.nsf.gov/crssprgm/nano/
reports/ICA2_Workshop_Report_2018.pdf.

[27] Moo-Ryong Ra, Anmol Sheth, Lily Mummert, Padmanabhan Pillai,
David Wetherall, and Ramesh Govindan. 2011. Odessa: enabling inter-
active perception applications on mobile devices. In MobiSys’11. ACM,
43–56.

[28] Tiernan Ray. 2018. An Angel on Your Shoulder: Who Will Build A.I.?
Barron’s (February 2018).

[29] Mahadev Satyanarayanan. 2004. Augmenting Cognition. IEEE Perva-
sive Computing 3, 2 (April-June 2004).

[30] Mahadev Satyanarayanan and Nigel Davies. 2019. Augmenting Cogni-
tion through Edge Computing. IEEE Computer 52, 7 (July 2019).

[31] Mahadev Satyanarayanan, Guenter Klas, Marco Silva, and Simone
Mangiante. 2019. The Seminal Role of Edge-Native Applications.
In Proceedings of the 2019 IEEE International Conference on Edge
Computing (EDGE). Milan, Italy.

[32] Mahadev Satyanarayanan and Dushyanth Narayanan. 1999. Multi-
Fidelity Algorithms for Interactive Mobile Applications. In Proceedings
of the 3rd International Workshop on Discrete Algorithms and Methods
for Mobile Computing and Communications (DialM). Seattle, WA.

[33] Krisantus Sembiring and Andreas Beyer. 2013. Dynamic resource
allocation for cloud-based media processing. In Proceeding of the 23rd
ACM Workshop on Network and Operating Systems Support for Digital
Audio and Video. ACM, 49–54.

[34] Sherry Stokes. 2018. New Center Headquartered at Carnegie Mel-
lon Will Build Smarter Networks To Connect Edge Devices to
the Cloud. https://www.cmu.edu/news/stories/archives/2018/january/
conix-research-center.html.

[35] Narseo Vallina-Rodriguez and Jon Crowcroft. 2012. Energy manage-
ment techniques in modern mobile handsets. IEEE Communications
Surveys & Tutorials 15, 1 (2012), 179–198.

[36] Shanhe Yi, Zijiang Hao, Qingyang Zhang, Quan Zhang, Weisong Shi,
and Qun Li. 2017. Lavea: Latency-aware video analytics on edge com-
puting platform. In Proceedings of the Second ACM/IEEE Symposium
on Edge Computing. ACM, 15.

[37] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik, Matthai Phili-
pose, Paramvir Bahl, and Michael J Freedman. 2017. Live video
analytics at scale with approximation and delay-tolerance. In NSDI’17.

[38] Tan Zhang, Aakanksha Chowdhery, Paramvir Victor Bahl, Kyle
Jamieson, and Suman Banerjee. 2015. The design and implementation
of a wireless video surveillance system. In Proceedings of the 21st An-
nual International Conference on Mobile Computing and Networking.
ACM, 426–438.

https://sdn.ieee.org/newsletter/january-2018/a-network-service-provider-perspective-on-network-slicing
https://sdn.ieee.org/newsletter/january-2018/a-network-service-provider-perspective-on-network-slicing
https://www.nsf.gov/crssprgm/nano/reports/ICA2_Workshop_Report_2018.pdf
https://www.nsf.gov/crssprgm/nano/reports/ICA2_Workshop_Report_2018.pdf
https://www.cmu.edu/news/stories/archives/2018/january/conix-research-center.html
https://www.cmu.edu/news/stories/archives/2018/january/conix-research-center.html

	Abstract
	1 Introduction
	2 Background
	2.1 Wearable Cognitive Assistance
	2.2 Gabriel Platform
	2.3 Example Gabriel Applications

	3 Architecture and Adaptation Strategy
	3.1 System Architecture
	3.2 Adaptation Goals
	3.3 Leveraging Application Characteristics
	3.4 Adaptation-Relevant Taxonomy

	4 Techniques for Workload Reduction
	4.1 Adaptive Sampling
	4.2 IMU-based Passive Phase Suppression

	5 Cloudlet Resource Allocation
	5.1 System Model
	5.2 Application Utility and Profiles
	5.3 Resource Allocation

	6 Evaluation
	6.1 Effectiveness of Workload Reduction
	6.2 Effectiveness of Resource Allocation
	6.3 Effects on Guidance Latency

	7 Related Work
	8 Conclusion and Future Work
	References

