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ABSTRACT
Real-time traffic monitoring has had widespread success via crowd-
sourced GPS data. While drivers benefit from this low-level, low-
latency road information, any high-level traffic data such as road
closures and accidents currently have very high latency as such
systems rely solely on human reporting. Increasing the detail and
decreasing the latency of this information can have significant value.
In this paper we explore this idea by using a camera along with an
in-vehicle computer to run computer vision algorithms that continu-
ously observe the road conditions in high-detail. Abnormalities are
automatically reported via 4G LTE to a local server on the edge,
which collects and stores the data, and relays updates to other vehi-
cles inside its zone. In this paper we develop and test such a system,
which we call LiveMap. We demonstrate its accuracy on detecting
hazards and characterize the system latency achieved.
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1 INTRODUCTION
Over 100-million active users benefit from Waze every month [17].
This crowd-sourced application allows drivers and passengers to
report road events to a collecting entity that merges information and
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Figure 1: a) Left: A screenshot of Waze app with road events
overlayed on GPS navigation map. b) Right: A screenshot of
the Waze hazard reporting interface.

overlays it on GPS navigation maps via the mobile Waze app [4].
Figure 1 shows the Waze app interface.

In 2013 Google purchased Waze for 1.15 billion dollars [17],
which is an indication of the perceived value for its service. Unfor-
tunately the benefits of Waze come at the cost of user distraction,
which is known to be a major source of traffic accidents [5][8].
Since the majority of vehicles have just the driver in the car with
no passengers, Waze reports are typically made by a driver who
incurs distraction in creating and submitting the Waze report. In
short, the service is valuable but dangerous to not only the driver
but also to nearby drivers, pedestrians, and bicyclists. With advances
in computer vision and edge computing, we ask the question: "Can
we have the benefits of Waze without user distraction?" Our ap-
proach to solve this problem utilizes an in-vehicle camera with an
in-vehicle computer termed the Vehicle Cloudlet, to run computer
vision algorithms to observe the road conditions. Abnormalities are
then reported via 4G LTE to a local server on the edge, termed the
Zone Cloudlet. The Zone Cloudlet synthesizes the data, stores it in
a database, and notifies other Vehicle Cloudlets inside its zone of
responsibility. The Zone Cloudlet is situated on the edge in order to
improve bandwidth scalability and provide more localized control
of user data and privacy, as well as for potential national security
reasons to decentralize such information [15]. This is in contrast to
Vehicle-to-Vehicle (V2V) Communication systems [16][21], which
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focus on addressing issues such as immediate collision detection
and avoidance, as well as highway platooning. V2V communication
exhibits additional security concerns, such as message accuracy and
reliability, etc. The Zone Cloudlet in contrast can address such issues
by vetting information before sharing it with other vehicles. Note
that this pipeline would also enable autonomous vehicles to make
reports as well since it does not require a human in the loop. In this
paper we focus on the development of an architecture for such a
system, and demonstrate it detecting hazards such as potholes, which
are frequently found locally for testing.

In prior work [10], we have shown that a 4G LTE network is
sufficient to support such a large-scale system with tens of thousands
of participating vehicles, as demonstrated through simulations in
SUMO [12] (Simulation of Urban Mobility). While that work fo-
cused on the scalability challenges of using LTE, in this work we
focus on the architecture, implementation, and characterization of
the automated hazard reporting system.

2 BACKGROUND AND RELATED WORK
To the best of our knowledge, no previous work has attempted to
create a Waze-like real-time data collection system for road mon-
itoring without a human in the loop. From a broader perspective,
there is a substantial amount of work relating to road condition mon-
itoring [7][18][6][13]. However, none of these can handle the wide
variations in hazard types and durations of events such as accidents,
debris on the road, potholes, etc. Many of these systems focus on
road infrastructure monitoring such as detecting potholes or general
road health inspection.

A common approach for detecting potholes is to use an accelerom-
eter with signal processing. The most notable of these, the Pothole
Patrol [7], utilizes an accelerometer and on-board filtering to de-
termine likely locations of a pothole. Such a system has several
drawbacks, the most significant being that it requires the vehicle to
physically run over the pothole for detection. This is harmful to both
the vehicle and uncomfortable for the driver. For this reason, it is
not uncommon for drivers to swerve in order to deliberately miss
running over a pothole. Furthermore, it is limited to a very specific
type of road monitoring — that is, whatever the car physically hits.
A non-destructive alternative is to instead use image processing.

There has also been prior research in the field of vehicular dis-
tributed network system architectures. CarTel [11] has explored the
development of such a system. They detail and prototype a sys-
tem that utilizes vehicles to collect sensor data, store it locally, and
prioritize the dissemination of sensor data to a local server. The
main disadvantage of their system is that, as described, they have no
significant on-board compute and cannot locally process data-rich
media, such as images. Thus, their system is limited to selective
transmission as the only approach to dealing with low-bandwidth
situations. Furthermore, as it relies on opportunistically connecting
to local Wi-Fi hotspots, it suffers from frequent loss of network
connectivity. The main advantage of LiveMap is that it can process
media rich sensor data such as video feed on-board the vehicle, and
can greatly save bandwidth by transmitting only distilled, interesting
data, thus enabling effective use of relatively low bandwidth, but
ubiquitous 4G LTE networks.

Figure 2: System Overview. Vehicle Cloudlets run hazard de-
tection on live video feed, reporting any hazards to the Zone
Cloudlet for dissemination to other vehicles and for display
through a web interface.

A few companies offer commercial products that are relevant to
our research. Waze [4] utilizes user input in order to add detailed
input to their maps. As previously discussed, the main shortcoming
of such a system is that it creates dangerous situations by distracting
the driver, and tends to incur high latencies and unreliable updates
due to reliance on human reporting. In contrast, LiveMap is safe,
autotmated, and real-time. Another relevant company is Roadbotics
[3]. Roadbotics uses cameras to capture video data of roads from
the windshield, and uploads it to a server where machine learning
algorithms score road conditions over 10-foot intervals. In compari-
son to Roadbotics, LiveMap operates in real-time, is not specific to
detecting road quality, and can generalize to any hazards detectable
through computer vision.

3 SYSTEM ARCHITECTURE
LiveMap is designed to scale to a large number of vehicles [10], and
as such it is critical that our system scales with increased bandwidth
such that we do not saturate the 4G LTE network. Sending video
streams from every vehicle would quickly prove to be intractable,
and moving the Zone Cloudlet to the cloud would also degrade the
scalability of our system. Instead, we harness compute ability both
in the vehicle and in the infrastructure on the edge to reduce network
use.

The key idea behind LiveMap is that it performs the heavy video
analytics computations on-board the vehicle. Each participating
vehicle is required to have an on-board camera and GPS module,
as well as a computer, called the Vehicle Cloudlet. As the vehicle
drives around, it runs a Convolutional Neural Network (CNN) to
detect various hazards. When a hazard is detected with a confidence
level greater than a threshold, the Vehicle Cloudlet reports it to the
Zone Cloudlet via a message containing the GPS coordinates, the
image with bounding box(es) around the hazard(s), as well as the
timestamp and other metadata pertaining to the drive. The Zone
Cloudlet is responsible for handling the incoming data, storing it in
a database, and notifying the vehicles in the vicinity of the hazard.
See Figure 2 for a high-level overview of LiveMap.



Figure 3: Map of Hazards. Icons for each hazard appear real-
time. Clicking on each icon displays more hazard information.

There are several challenges associated with choosing when and
how often to report hazards. One such challenge is in avoiding iden-
tical reports. Imagine a vehicle stuck in traffic behind an accident;
until the accident clears the system will repeatedly detect the same
accident. Now imagine there are many cars that view this accident.
This single event may be reported thousands of times. Such careless
report sending policies would quickly saturate the network with
useless duplicate data.

To address this issue of duplicating data, we employ a policy that
if a vehicle detects a hazard of the same type in close proximity to
one that has previously been reported, it will not send the report. This
achieves the desired result of saving bandwidth by avoiding duplicate
reports, with the small cost of perhaps missing a few instances of
the same class. We argue that this is indeed an acceptable tradeoff
with the following example: Suppose several objects fall from a
truck in one area on the highway, creating hazardous debris. A
car driving by will detect multiple frames of debris, but will only
send one report. In general, this single report for multiple related
hazards should suffice. Another such issue that complicates this
design decision is the issue of hazard removal. Different types of
hazards may have various temporal lifespans. For instance, some
hazards like car accidents are usually cleaned up and removed within
a matter of hours, while potholes can exist for several months. At the
Zone Cloudlet, detecting when a hazard is no longer present can be
tricky. A naive solution would be to wait until reports of the hazard
stop arriving. This idea is flawed due to our previous design decision
to not report duplicate hazards. It is difficult to know if a hazard has
“expired” or if the duplicate elimination policy is preventing further
reports. It is possible the Zone Cloudlet may never hear again about
a long-lasting hazard.

To address this second issue, we use a polling scheme. In this
polling scheme, the Zone Cloudlet occasionally sends a message
to vehicles near a previously-reported hazard asking them if they
still see the hazard, and optionally whether or not to send an image.
The Vehicle Cloudlets then send a “yes” or “no” reply back after
validating the continued presence of the hazard, minimizing the
bandwidth consumed for verifying the hazard presence. The rate at
which such verification polls are sent would be inversely proportional
to the expected duration of the hazard, based on the mean or median
duration of the hazard class type. This can be further optimized

as the system collects more data and can generate more accurate
predictions of when best to poll while minimizing network usage.

4 IMPLEMENTATION
4.1 Zone Cloudlet
The Zone Cloudlet is situated on the edge, and in our experiments is
implemented on a server on the Carnegie Mellon University (CMU)
campus. It has a number of responsibilities, which can be classified
into two main functionalities: 1) hazard message operations and 2)
web server operations. Within the class of hazard message operations,
the Zone Cloudlet must accept and handle incoming hazard reports
from vehicles, and transmit update data to vehicles. See Figure 4.

When the Zone Cloudlet receives a hazard report, it queries its
database for any matching hazards previously reported within the
tolerance of the GPS module (typically around 3-5 meters). If no
active matches are found (i.e., this is not a duplicate report), it adds
the hazard to its database. It then sends a message to all vehicles in
its area of responsibility with the GPS coordinates of the hazard, and
an image of the hazard with a bounding box around it.

For our implementation, we opted to use the Message Queuing
Telemetry Transport (MQTT) protocol, an ISO standard built on
top of TCP/IP [1]. MQTT is a publisher-subscriber-based messag-
ing protocol intended for the “Internet of Things,” and is designed
around the idea that machine-to-machine communication will have
limited network bandwidth and will suffer from intermittent connec-
tivity. This fits our application requirements, since moving vehicles
will invariably be in a dead zone at one time or another, and the
4G LTE network has limited bandwidth. For a Vehicle Cloudlet to
receive updates from the Zone Cloudlet, it simply has to look up
its GPS coordinates, find the nearest Zone Cloudlet, and subscribe
to the updates being published by the Zone Cloudlet. In order to
avoid major safety concerns, we limit communication in LiveMap
as follows: the Zone Cloudlet is the message broker, and the Vehicle
Cloudlets are the clients; no vehicle-to-vehicle communication is
performed, and all messages to the Vehicle Cloudlets must come
from the Zone Cloudlet.

The second class of operations has to do with the presentation
of hazard information, which is done via a web-based interface.
The Zone Cloudlet doubles as a web server, and actively delivers
hazard information on a map overlay to connected web clients. When
a client, say a city official, connects to the web server, the Zone
Cloudlet sends all present hazards to the client, which are displayed
on the map as icons. The user can then click on the icon and have
additional information displayed, such as GPS coordinates and the
image with bounding box of the detected hazard. When a new hazard
is added to the database, a notification is sent via web sockets to
all connected clients in real-time. An example screenshot of the
web-based hazard display is shown in Figure 3. We use Leaflet [2]
as our map serving framework, and Node.js to dynamically deliver
content. This web server display can effectively serve as a quality
control measure. Since the details of all hazards can be displayed on
the map as images with bounding boxes encapsulating the hazards, a
city official can easily verify the accuracy of hazard detections with
a click on each hazard icon. This provides an interface for human
oversight of the system, letting an official reject any false positives
before notifying the appropriate response teams, for example.



Figure 4: System Architecture. The Zone Cloudlet handles in-
coming hazard reports and notifies other vehicles. It also runs
an HTTP server that displays a map of detected hazards.

4.2 Vehicle Cloudlet
The Vehicle Cloudlet performs image processing to find hazards. It
utilizes a Convolutional Neural Network (CNN) to perform object
detection to identify road abnormalities, and then sends a message to
the Zone Cloudlet with accompanying data. When it detects a hazard,
it checks its local database of current hazards for a nearby hazard of
the same type. If it doesn’t find any, it adds it to its database and sends
a message to the Zone Cloudlet. In doing this it avoids repeatedly
sending notifications of known hazards. When the Vehicle Cloudlet
receives a hazard notification from the Zone Cloudlet, it adds it to its
database. In previous work [10] we have shown detection of deer on
the roadside (https://youtu.be/_GrP42359z8). We have also recently
demonstrated the system detecting traffic cones (https://youtu.be/
TToOb2rTNZU), which often signal lane closures. The list of objects
that can be detected is extensible: new object classes can be added to
the system by providing a classifier trained on the object data. Some
other items that may be useful to detect include road closure signs,
road debris, construction equipment, and accidents. New detectors
can be incrementally added as they become available.

Not all types of hazards are of equal importance. Vehicle Cloudlets
would contain a list of hazard types with a possibly dynamic impor-
tance ranking for each hazard type. Hazards that are ranked with
high importance would be sent immediately, while those that are less
serious can be deferred until the Vehicle Cloudlet is connected to
WI-FI in a garage, for example. This feature would save bandwidth
without sacrificing completeness.

The accuracy and recall capability of the sensing is a function
of compute capability, which is a function of cost. We explore the
trade-off between accuracy/recall and cost by experimenting with
two different designs and implementations for the Vehicle Cloudlet.
One configuration is a powerful server with state-of-the-art compute
capability but can run reliably off of a car alternator. We call this the
Big Vehicle Cloudlet (BVC). It can afford to use a more computation-
ally expensive and memory intensive CNN architecture for detection,
employing dual GPUs with high bandwidth and large memory. The
second option uses a mobile phone as the Vehicle Cloudlet, which
has significantly less compute capability and memory, but is an order
of magnitude lower in cost. We term this the Small Vehicle Cloudlet
(SVC). We outline both implementations below and highlight the
key differences between them.

Table 1: Latency Measurements in ms

Config Detection Transmission End-to-end

BVC 38.6 (3.1)
205.6 (50.2)

244.2 (50.3)
SVC+ZC 391.6 (67.1) 597.2 (83.7)

BVC: Big Vehicle Cloudlet, SVC: Small Vehicle Cloudlet
ZC: Zone Cloudlet, std. deviation in parentheses

Note that the latency for BVC is per GPU

4.3 Big Vehicle Cloudlet
The first system we test is a ruggedized server, configured with 2
Intel® Xeon® Processors, 2 Nvidia Tesla V100 GPUs, and a liquid
cooling system. This system configuration can afford to run a large
CNN model with a large number of weights, which is both memory
and compute intensive. On this system, we run Faster R-CNN [14]
as our object detector, which provides state-of-the-art accuracy, but
is computationally demanding. The image processing is run on both
GPUs independently in order to double the processing frame rate.
Each GPU has a copy of the CNN weights and can run inference on
an individual image independently. The output image is the original
image overlaid with bounding boxes indicating where a hazard was
detected. If a hazard is detected and is not a duplicate, the Vehicle
Cloudlet prepares a message and sends it to the Zone Cloudlet. If the
image is not interesting and no hazards were detected, the system
simply discards the image.

This setup provides the best scalability, as we have moved all
of the compute to the vehicle, and the aggregate compute capabil-
ity will scale with number of vehicles. Furthermore, the BVC is
well-positioned to address privacy concerns that arise from record-
ing people in such video feeds. The BVC has enough compute to
denature images as done in [19].

4.4 Small Vehicle Cloudlet
The second system we test uses a smartphone-class device as the
Vehicle Cloudlet. As this platform is not capable of running the large
CNN used for hazard detection, we employ the early discard method
proposed by [20] that uses lightweight computations to selectively
send only the interesting images to the Zone Cloudlet, which would
then run the hazard detection algorithm. The small vehicle cloudlet is
limited to making send-don’t send decisions using a small and simple
neural network model. The expensive hazard detection algorithm is
then run on the Zone Cloudlet. This significantly reduces costs of
the vehicles, but comes at the expense of scalability, since we move
the hazard detection to the centralized Zone Cloudlet.

We implement the Small Vehicle Cloudlet using a Nexus 6 smart-
phone, and run MobileNet [9] as the image classifier. This has sig-
nificantly lower computational requirements than Faster-RCNN, and
can process roughly three frames per second on this platform.

5 EXPERIMENTAL RESULTS
There are three aspects of performance that we consider when
evaluating LiveMap. The first is the end-to-end system latency for
LiveMap given a new hazard. This is the time it takes from the point
at which a vehicle detects a hazard, sends it to the Zone Cloudlet,
and the Zone Cloudlet sends out the newly captured data to nearby
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Figure 5: Examples of pothole detections with bounding boxes.

vehicles. The second evaluation criterion is the hazard detection ac-
curacy and recall. Ideally we want high accuracy (quality detections
with a high ratio of true positives among all detections), as well as
high recall (most hazards are actually reported). Lastly, we need to
quantify the bandwidth savings by moving compute into the vehicle.

System latency can be further broken down into two categories:
1) detection latency, or the time it takes to process a single image,
and 2) message round-trip latency, or the time it takes to send a
message to the Zone Cloudlet and receive an acknowledgement. The
detection latency is dependent on the Vehicle Cloudlet server, while
the transmission latency is the same for both configurations since
they will both be using 4G LTE for transmission. Note that for the
Small Vehicle Cloudlet, the detection latency includes both the local
image classification, which gives a send-don’t send result, as well
as the actual hazard detection code, which places bounding boxes
around hazards, running on the Zone Cloudlet. To test the detection
latency, we simply record the time the system takes to process each
frame over a one minute interval. See Table 1 for Transmission
Latency and Detection Latency results. Note that the Big Vehicle
Cloudlet has two GPUs, but Table 1 shows latency per GPU. On
an end-to-end basis, using the Big Vehicle Cloudlet incurs less than
half of the latency as using the Small Vehicle Cloudlet.

The camera frame rate is 30 fps, therefore the ideal processing
latency is below 33 ms to achieve real-time performance. Per-frame
processing times greater than 33 ms would imply that frames are
dropped, or not processed. By utilizing 2 GPUs and alternating
frames assigned to each, the Big Vehicle Cloudlet can avoid dropping
any frames. While it is great to process every frame, it is often not
necessary in order to detect hazards.

Our second metric attempts to quantify how well the system
actually detects road hazards. We consider this in two different
ways. For the Big Vehicle Cloudlet we measure the mean Average
Precision (mAP), which is a common metric for evaluating bounding-
box-based object detection algorithms. We use the standard mAP50
which defines a correct detection if the intersection over union of the
detected and the ground truth bounding boxes is greater than 50%.
Note that we use this metric to evaluate BVC’s detection algorithm,

Table 2: Detection Results

Config FPS mAP Event Recall Avg. Mbps

BVC 30 52.7 92.3% 0.46
SVC+ZC 2.8 52.7* 84.6% 0.91

BVC: Big Vehicle Cloudlet, SVC: Small Vehicle Cloudlet,
ZC: Zone Cloudlet, *Zone Cloudlet only

which is also run on the Zone Cloudlet for the SVC configuration.
We obtain this metric over all test images.

Frequently a hazard will be encountered more than in just one
frame. In fact, we expect to encounter any given hazard in multiple
frames. Even if detection failed in one frame, the system may still
be able to identify the hazard in another one. To address this, we
employ an event-level recall metric, which we define as the number
of distinct hazards correctly identified over the total number of haz-
ards. For the Big Vehicle Cloudlet we filter out duplicate detections
based on GPS location. If we detect a hazard of the same class in
the same location, we can filter out the message as it was likely the
same instance of the hazard previously detected. Note that we cannot
utilize this for the Small Vehicle Cloudlet, as it simply categorizes
the image as interesting or not interesting, and furthermore runs at a
much slower frame rate.

Deep Neural Networks require large amounts of annotated data
for training. For our prototype, it was not feasible to collect a large
training set of accidents or debris on the road. Rather, we focused our
proof-of-concept on detecting hazards for which we could collect
data, namely potholes. We annotated approximately 3,000 pothole
images to train our detector from a set of set of driving videos we
collected. Data collected consists of footage in the greater Pittsburgh
region across various lighting and weather conditions, as well as
from various viewpoints. We kept aside a portion of the data for
testing. We show the metrics in Table 2 and example positive de-
tections in Figure 5. Due to the limited processing rate of the SVC
configuration, many frames are dropped. This reduces its consumed
bandwidth, but also reduces its event recall.

Finally, the third metric is the average bandwidth saved by uti-
lizing compute in-vehicle. We run both the Big and Small Vehicle
Cloudlets on the same recorded driving video, and record the amount
of data transferred over TCP. We compare these to a third baseline
option, in which the compressed H.264 video is streamed to a cen-
tral server for processing. Figure 6 summarizes our results. Here,
the video stream rate of the baseline is plotted as a red line. The
GPS-based duplicate suppression is heavily dependent on the speed
of the vehicle, and the rate at which we encounter hazards. There-
fore, we test the Big Vehicle Cloudlet with several different radii
parameters for redundant hazard checking, ranging from 1 meter to
25 meters. We show the theoretical best detector as the green star in
the bottom right for reference, which exhibits perfect accuracy and
recall, as well as the lowest possible bandwidth (i.e., each unique
hazard is reported exactly once). Note that the consumed bandwidth
is inversely proportional to the detection accuracy.

We can see that the Big Vehicle Cloudlet performs the best in
terms of recall with GPS filtering of radii 1m, 3m, and 5m. Using a
larger GPS filtering radius decreases bandwidth consumed at the cost
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of hazard recall. The Small Vehicle Cloudlet provides a reasonable
compromise between the two. The SVC requires more bandwidth
since it uses a "filtering out" approach, and sends the image without
knowing what the predicted class type is due to its limited memory
and compute capabilities. We cannot use such spatial filter strategies
because the SVC does not know what class of hazard was just de-
tected. This is the main drawback of such a filtering out approach,
and it therefore tends to send images more frequently on average.
Additionally, since it operates at a low frame rate, it may be suscep-
tible to missing hazards that are only visible briefly, a situation not
reflected by these experiments. Overall, moving compute inside the
vehicle reduces the average bandwidth consumed by around 95%
compared to the baseline. Streaming the data costs nearly 9 Mbps
uplink while our system used less than 0.5 Mbps with 5 meter GPS
filtering. Extrapolating from this, if the average vehicle is driven
for 1 hour a day, over the course of a month streaming video would
require approximately 121 GB per vehicle, whereas our method
would consume only 6.3 GB.

In Figure 6 we can see that even the theoretical "perfect detector,"
which exhibits perfect precision and recall, still sends a significant
amount of data detecting potholes. Further restricting the report rate
for non-urgent hazards would further reduce this number as well, as
potholes in some cities may be categorized as non-urgent and can be
transmitted when connected to WI-FI.

6 CONCLUSION
We have proposed a system architecture, LiveMap, that automates
the detection and reporting of road hazard information utilizing in-
vehicle compute and recent advances in computer vision. We have
built and demonstrated a prototype system using both powerful and
modest in-vehicle computers coupled with edge computing services.
Both variants are able to detect and report potholes with no human
involvement. Furthermore, we reduce the bandwidth consumed by
such a system by over twenty-fold compared to video streaming
to the cloud for processing. Future work includes expanding the
types of hazards we can detect as well as developing reporting
protocols to allow prioritization of hazard classes, and efficient
dissemination of collected hazard information. In order to address
privacy concerns, we plan on utilizing the compute in the BVC
to selectively blur license plates and faces in images. We plan on

adding such functionality to the first production release of LiveMap.
Another future goal is to develop algorithms that are able to reliably
fuse together reports of the same hazard from different vehicles that
are off due to GPS inaccuracies and localization inaccuracies, and
yet can determine that perhaps a line of traffic cones is signaling a
road closure. Lastly, there is value in being able to detect street-view
changes, not just hazards. Such examples include detecting new or
removed buildings, road signs, and more. We plan on investigating
these aspects in future versions of LiveMap.
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