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Abstract
In this paper we present a new method of signal process-

ing for robust speech recognition using multiple microphones.
The method, loosely based on the human binaural hearing sys-
tem, consists of passing the speech signals detected by multiple
microphones through bandpass filtering and nonlinear halfwave
rectification operations, and then cross-correlating the outputs
from each channel within each frequency band. These oper-
ations provide rejection of off-axis interfering signals. These
operations are repeated (in a non-physiological fashion) for the
negative of the signal, and an estimate of the desired signal is
obtained by combining the positive and negative outputs. We
demonstrate that the use of this approach provides substantially
better recognition accuracy than delay-and-sum beamforming
using the same sensors for target signals in the presence of ad-
ditive broadband and speech maskers. Improvements in rever-
berant environments are tangible but more modest.
Index Terms: robust speech recognition, binaural hearing, au-
ditory processing, speech enhancement

1. Introduction
The need for speech recognition systems and spoken language
systems to be robust with respect to their acoustical environ-
ment has become more widely appreciated in recent years. Re-
sults of several studies have demonstrated that even automatic
speech recognition systems that are designed to be speaker in-
dependent can perform very poorly when they are tested using a
different type of microphone or acoustical environment from the
one with which they were trained, even in a relatively quiet of-
fice environment. Applications such as speech recognition over
telephones, in automobiles, on a factory floor, or outdoors de-
mand an even greater degree of environmental robustness. The
proposed paper describes a novel algorithm for combining the
outputs of multiple microphones that improves the recognition
accuracy of automatic speech recognition systems.

In recent years, the use of arrays of microphones has be-
come increasingly popular as a means to improve automatic
speech recognition accuracy in situations where a signal and
competing noise sources are spatially separated. Several dif-
ferent types of array processing strategies have been applied to
speech recognition systems. The simplest such system is the
delay-and-sum beamformer as used by the work of Flanagan
and his colleagues (e.g. [1]). In delay-and-sum systems, steer-
ing delays are applied at the outputs of the microphones to com-
pensate for arrival time differences between microphones to a
desired signal, reinforcing the desired signal over other signals
present.

A second approach is to use an adaptive algorithm based on

minimizing mean square energy, such as the Frost or the Grif-
fiths-Jim algorithm [2]. These algorithms can provide nulls in
the direction of undesired noise sources, as well as greater sen-
sitivity in the direction of the desired signal, but they assume
that the desired signal is statistically independent of all sources
of degradation. Consequently, they generally do not perform
well in environments when the distortion is at least in part a
delayed version of the desired speech signal as is the case in
many typical reverberant rooms. The LIMABEAM algorithm
developed by Seltzer et al. [3] represents an interesting new
approach to optimal array processing for speech recognition in
which the objective of the adaptation is to minimize distortion
of the features used in speech recognition, rather than wave-
form distortion. A variant of this algorithm that uses subband
processing [4] has demonstrated some improvement in speech
recognition accuracy in reverberant environments.

The algorithm described in this paper is based on a third
type of processing, which is loosely motivated by the cross-
correlation-based processing in the human binaural system.
The human auditory system is a remarkably robust recogni-
tion system for speech in a wide range of environmental con-
ditions, and in recent years an increasing number of researchers
have developed signal processing strategies for speech recogni-
tion systems that are based on human binaural processing (e.g.
[5, 6, 7]). These approaches, as well as others reviewed in [8]
typically use short-time Fourier transformation to decompose
incoming speech into components that are localized in time and
frequency and subsequent binaural analysis to determine which
time-frequency components are most likely to belong to the
target speaker. The enhanced speech is then obtained by per-
forming short-time Fourier synthesis only on the components
of the input that are likely to be dominated by the desired sig-
nal. The algorithm described in this paper, on the other hand,
relies on nonlinear processing motivated by the auditory sys-
tem to obtain an enhanced representation of the desired signal
and reconstructs the enhanced signal using all time-frequency
components of the input.

We describe our new cross-correlation-based algorithm in
the following section, and we describe the impact of the algo-
rithm on automatic speech recognition accuracy in Sec. 3.

2. Polyaural processing
The human binaural system is well known for its ability to lo-
calize and separate sound sources according to their direction
of arrival, as well as for its ability to improve the intelligibility
of speech signals in reverberant environments [9]. Because of
these extraordinary capabilities, many useful characterizations
have been developed to describe how the binaural system oper-
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Figure 1: Schematic diagram of polyaural processing. Although
only two microphones are depicted, the processing is extensible
to an arbitrary number of microphones.

ates (e.g. [10, 11]). To begin, signals entering the ears are first
processed by the peripheral auditory system, which is typically
modeled by a bank of bandpass filters followed by nonlinear
processing of the outputs of the filters that includes halfwave
rectification. Binaural processing is typically modeled as an
interaural cross-correlation of the outputs of peripheral audi-
tory fibers that are matched in terms of their best frequency
of response (or in other words, an interaural cross-correlation
of matching channels of the bandpass filterbank). Some re-
searchers also argue that a second level of cross-correlation is
also performed across frequency, which serves to emphasize
those components of the binaural response that are consistent
over frequency or “straight” [12]. Reviews such as [10] dis-
cuss in detail how these representations are useful for various
attributes of classical binaural processing that are studied in the
psychophysical literature.

In developing the processing algorithm for the present work
we were interested in obtaining a representation that would in-
clude the normal binaural processing, but do so in a fashion that
is extensible to more than two “ears”, and that would enable us
to recover a continuous waveform. We refer to this approach
as “polyaural”, or extended binaural processing. Polyaural pro-
cessing is accomplished by the process that is summarized in
Fig. 1. Specifically, the incoming signals undergo the following
stages of processing:

1. The signals to the left and right mics (which generally
contain multiple components with different delays from
mic to mic) are passed through a bank of bandpass filters.
We used conventional Gammatone filters for this pur-
pose as implemented in Slaney’s auditory toolbox [13].

2. The phase differences of the filters are compensated
for by time-reversing the original filter outputs, passing
them through the filter bank again, and time-reversing
the final outputs. (This is equivalent to convolving
the original filter outputs with the same filter in time-
reversed form, effectively providing zero-phase filtering
in each channel.)

3. The phase-compensated outputs are passed through a
half-wave rectifier that has zero response for negative in-
put and that raises its input to the νth power when the in-
put is positive. ν is typically a small integer. The phase-
compensated filter outputs are also negated and passed
through similar half-wave rectifiers in parallel channels.

4. The positive and negative rectifier outputs are cross-
correlated separately. This is accomplished by imposing
a delay to compensate for the relative propagation delay
(if any) of the desired signal to the mics and then multi-
plying across channels.

5. The cross-correlated outputs are optionally correlated a
second time across a limited range of frequencies to pro-
vide the straightness weighting. Regardless of whether
or not straightness weighting is employed, the result-
ing outputs are passed through a nonlinearity of power
1/NMν where N is the number of microphones, M is
the number of straightness weighting channels, and ν is
the order of the rectification imposed in Step 3. The in-
tended effect is that of restoring the desired signal to its
original value.

6. The positive and negative components are added to-
gether.

7. The output signals are passed through a second bank of
bandpass filters.

8. The final filters are phase compensated as before.

9. The resulting signals are combined across frequency.

Steps 1 and 3 are intended to model the auditory periphery
(in a rather crude fashion), with Step 2 added to maintain phase
coherence over frequency for the optional straightness weight-
ing in Step 5. Step 4 represents the interaural correlation that
is a major feature of many models of binaural interaction. The
halfwave processing of the negative portions of the signals de-
scribed in Steps 3 through 6 and depicted in the right side of
Fig. 1 for these steps is grossly non-physiological, of course.
This processing has been included to permit the reconstruction
of a complete waveform with both positive and negative val-
ues. The second bandpass filtering and phase compensation in
Steps 8 and 9 are included to attenuate the many spurious dis-
tortion components that are introduced by the discontinuities in
the derivatives of off-axis signal components produced by the
half-wave rectification and cross-correlation.

The phase compensation of the peripheral filters in Step
2, while not needed in theory if straightness weighting is not
used, has been found to be quite useful in practice, most likely
because the filters have overlapping frequency responses, and
phase compensation reduces the likelihood of uncontrolled de-
structive or constructive interference among adjacent frequency
channels.

This series of operations, if executed properly, has the effect
of leaving the desired signal intact if it is presented in isolation.
Signals arriving from the side, on the other hand, tend to be
attenuated because the disparity in arrival times causes the time



periods during which both signals are positive (or negative) to
be limited, which reduces the output of the cross-correlation.

As an example of the efficacy of this processing, we
provide in the Proceedings examples of speech enhanced by
polyaural processing using a generalization to the two-mic im-
plementation described above in the form of an array of 11
logarithmically-spaced sensors in the manner of Flanagan et al.
[1], as described in Sec. 3 below. The signals are digitally
combined in a fashion that corresponds to a dominant source
arriving from a direction along the perpendicular bisector to the
array, and a second source arriving at an angle of approximately
45 degrees to one side. The examples compare delay-and-sum
processing, and polyaural processing with and without straight-
ness weighting. These examples are also available online [14].

3. Experimental Results
We describe in this section the results of initial experiments in-
tended to assess the extent to which the polyaural processing de-
scribed in the previous section can improve speech recognition
accuracy beyond the level of accuracy obtained using simple
delay-and-sum beamforming. We first describe the procedures
that were used in all experiments and then discuss our initial
recognition results with additive noise and in simulated rever-
berant environments.

3.1. Experimental Procedures

Speech recognition was measured using the well known
DARPA Resource Management (RM1) database using the
Carnegie Mellon Sphinx-3 system, which is available in open
source form at http://cmusphinx.org.

The system was implemented using 3-state continuous
HMMs, 1000 senones, and 8 Gaussian mixtures for the out-
put densities. The models were trained using a subset of the
speaker independent portion of the RM1 database containing
1600 utterances, recorded in a clean environment using a close-
talking microphone at a sampling rate of 16 kHz. Evaluation
results were obtained using a subset of the speaker-independent
RM1 test set containing 600 randomly-selected utterances with
a total of 5681 words.

The environments used in the present study were digitally
simulated, with the input device presumed to be an 11-element
logarithmic array of the type proposed by Flanagan [1]. This ar-
ray consisted of four nested 5-element arrays with inter-element
spacings of 3 cm, 6 cm, 9 cm, and 12 cm, respectively, using
shared microphones where possible. As discussed in [1], these
sub-arrays each process input in different frequency bands, en-
abling the beamwidth in the look direction to remain more con-
stant over a wide range of frequencies than would be possible
with a simple linear array.The target speaker was assumed to be
standing along the perpendicular bisector of the line defined by
the array elements, and the interfering source (when there was
one) was assumed to be located at an azimuth of approximately
45 degrees. Consequently, the sample delay between the center
microphone and its closest neighbors is one sample.

3.2. Performance in the presence of additive disturbances

Using the simulated physical topology described above, we
measured the word error rate (WER) obtained when an interfer-
ing source was white noise or when it was a second speaker. The
specific interfering speaker was selected at random, so the target
and interfering speakers were of the same gender for some but
not all of the trials. The white noise samples used were obtained
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Figure 2: Speech recognition accuracy in the presence of in-
terfering noise as a function of SNR. The target speech is at
an azimuth of 0 degrees relative to the normal to the plane of
the array, and the interfering source arrives at approximately
45 degrees. Percentage WER is depicted for a single micro-
phone (diamonds), delay-and-sum beamforming (triangles), di-
rect correlation processing (squares), and correlation process-
ing with “straightness” weighting (circles). See text for details.
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Figure 3: Same as Figure 2, except that WER is measured in the
presence of speech maskers.

from the Noisex-92 database.
The target speech and the interfering signals were combined

at SNRs of 0, 10, and 20 dB, as measured directly from the
energies of the target and interference. In our experiments, the
interfering source had little effect on recognition accuracy for
SNRs above 20 dB with the array processing.

Figure 2 depicts the WER obtained using four types
of processing: a single omnidirectional microphone (dia-
monds), a simple Flanagan delay-and-sum array (triangles), the
physiologically-motivated cross-correlation processing without
weighting for “straightness” (squares), and the cross-correlation
processing with the additional straightness weighting (circles).
As has been reported previously, array processing provides a
dramatic improvement compared to processing with a single
microphone, even in the simple delay-and-sum configuration.
Nevertheless, the cross-correlation based processing provides
a relative improvement in WER of about 18.6 percent at 10 dB
SNR and 24.7 percent at 0 dB. Stated another way, the use of the
cross-correlation processing provides an effective improvement
in SNR of roughly 2-4 dB at SNRs of 0 to 5 dB. The straightness
weighting appears to have little effect on the results, at least for
these data.
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Figure 4: Similar to the previous two figures, except that WER
is measured in simulated reverberant environments with the
source and array separated by 2 m. See text for details.

Figure 3 depicts similar results, except that speech maskers
from the RM1 database are used rather than the noise maskers
in Fig. 2. As in the case with the noise maskers, the microphone
array processing is quite effective in separating the sources
and the correlation-based processing provides even greater de-
creases in relative WER, approximately 22.0 and 32.3 percent
at 10 dB and 0 dB, respectively.

3.3. Performance in reverberant environments

We also examined the ability of the correlation-based process-
ing to provide substantial gains in recognition accuracy in very
difficult reverberant environments. We simulated the effects
of room reverberation using the image method [15] using the
publicly-available package rirwhich can be downloaded from
http://2pi.us/rir.html.

We simulated a room with dimensions 5m x 4m x 3m (W x
L x H), with the microphone array located exactly in the mid-
dle of the room, perpendicular to the width. The speaker is
located perpendicular to the array, at distances of 1 and 2 me-
ters from the array, and the uniform reflectance of the surfaces
of this “shoebox” model of a room was manipulated to provide
reverberation times of 300 to 500 ms.

Figure 4 displays representative results from these simu-
lations, with 2 meters separating the source and microphones.
Polyaural provided more modest but decreases in relative er-
ror rate of 7.1 percent and 6.4 percent at reverberation times of
400 and 500 ms, respectively. Trends at the 1-m distance were
similar but differences between conditions were smaller in mag-
nitude.

4. Discussion and Conclusions
In this paper we have introduced the “polyaural processing”
method of improving speech recognition accuracy in the pres-
ence of spatially-separated interfering sources and in reverber-
ant environments. In this procedure, parallel frequency chan-
nels are processed in a nonlinear fashion to enhance the desired
signal and suppress interfering components from other direc-
tions. The proposed method provides very substantial improve-
ments in recognition accuracy compared to baseline delay-and-
sum processing in the presence of interfering speech and broad-
band sources. Improvements in accuracy in reverberant envi-
ronments are also tangible but more modest.
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[5] K. J. Palomäki, G. J. Brown, and D. L. Wang, “A binau-
ral processor for missing data speech recognition in the
presence of noise and small-room reverberation,” Speech
Communication, vol. 43, no. 4, pp. 361–378, 2004.

[6] N. Roman and D. L. Wang, “Binaural tracking of multi-
ple moving sources,” in Proceedings of the IEEE Interna-
tional Conference on Acoustics, Speech and Signal Pro-
cessing, vol. V, 2003, pp. 149–152.

[7] N. Roman, D. L. Wang, and G. J. Brown, “Speech segre-
gation based on sound localization,” Journal of the Acous-
tical Society of America, vol. 114, no. 4, pp. 2236–2252,
2003.

[8] R. M. Stern, D. Wang, and G. Brown, “Binaural sound
localization,” in Computational Auditory Scene Analysis,
G. Brown and D. Wang, Eds. Wiley and IEEE Press,
2006.

[9] J. Blauert, Spatial Hearing. Cambridge, MA: MIT Press,
1997, revised edition.

[10] R. M. Stern and C. Trahiotis, “Models of binaural interac-
tion,” in Hearing, ser. Handbook of Perception and Cog-
nition, B. C. J. Moore, Ed. Academic (New York), 1995,
ch. 10, pp. 347–386.

[11] H. S. Colburn and A. Kulkarni, “Models of sound lo-
calization,” in Sound Source Localization, ser. Springer
Handbook of Auditory Research, R. Fay and T. Popper,
Eds. Springer-Verlag, 2005, ch. 8, pp. 272–316.

[12] R. M. Stern and C. Trahiotis, “The role of consistency
of interuaral timing over frequency in binaural lateraliza-
tion,” in Auditory physiology and perception, Y. Cazals,
K. Horner, and L. Demany, Eds. Pergamon Press, Ox-
ford, 1992, pp. 547–554.

[13] M. Slaney, Auditory Toolbox (V.2), 1998. [Online].
Available: http://www.slaney.org/malcolm/pubs.html

[14] R. M. Stern, E. Gouvêa, and G. Thattai, Ex-
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