
RIACS Workshop on the Veri�cation and

Validation of Autonomous and Adaptive Systems

Charles Pecheur and Willem Visser

RIACS/NASA Ames

Reid Simmons

Carnegie Mellon University

April 26, 2001

1 Introduction

The long-term future of space exploration at NASA is dependent on the full ex-

ploitation of autonomous and adaptive systems: careful monitoring of missions

from earth, as is the norm now, will be infeasible due to the sheer number of

proposed missions and the communication lag for deep-space missions. Mission

managers are however worried about the reliability of these more intelligent sys-

tems. The main focus of the workshop was to address these worries and hence

we invited NASA engineers working on autonomous and adaptive systems and

researchers interested in the veri�cation and validation (V&V) of software sys-

tems. The dual purpose of the meeting was to (1) make NASA engineers aware

of the V&V techniques they could be using and (2) make the V&V community

aware of the complexity of the systems NASA is developing.

The workshop was held 5-7 December 2000 at the Asilomar Conference Cen-

ter in Paci�c Grove (near Carmel) California. It was co-organized by Charles

Pecheur and Willem Visser from the Research Institute for Advanced Com-

puter Science (RIACS) and Reid Simmons from Carnegie Mellon University.

RIACS gave �nancial and administrative support, with Peggy Leising handling

the local arrangements. We invited 42 participants to the workshop with 28

from the V&V community and 14 from the Autonomous and Adaptive system

community; half of the participants were from NASA and the other half from

universities and research labs.

The workshop was run over two days with the �rst being used for the presen-

tation of four NASA autonomous and adaptive system development projects as

well as one talk on the V&V of neural nets used in highway applications. The

second day was used for three technology break-out sessions to discuss V&V

issues of autonomous and adaptive systems. The workshop concluded with an

open discussion on the results of the break-out sessions.

The �ve talks on the �rst day were the following:

1



� Deploying Robust Autonomous Systems: Lessons Learned from

the Remote Agent Experiment by Nicola Muscettola from NASA

Ames Research Center.

� First Steps Towards Neural Net V&V by Rodger Knaus from Instant

Recall, Inc.

� Stability Issues with Recon�gurable Flight Control Using Neural

Generalized Predictive Flight Control by Don Soloway from NASA

Ames Research Center.

� V&V of an Autonomous Agent for Mars Duty at KSC by Peter

Engrand from NASA Kennedy Space Center.

� Distributive Adaptive Control for Advanced Life Support Sys-

tems by David Kortenkamp from NASA Johnson Space Center.

The discussion topics for the break-out sessions were on V&V of Intelligent,

Adaptive and Complex systems. In the rest of the report we �rst highlight

some of the general issues that were raised during these three break-out sessions

as well as in the wrap-up session that followed (section 2) and then give short

summaries of each of the sessions in section 3 (Intelligent Systems), section 4

(Adaptive Systems) and section 5 (Complex Systems). Section 6 contains a

short retrospective on the workshop and the future of the �eld. A full version

of this report can be found online at http://ase.arc.nasa.gov/vv2000.

2 General Issues

Some of the issues that were discussed throughout the workshop range beyond

autonomous and adaptive systems, into the more general �elds of formal veri�-

cation and software engineering. This section cites the more signi�cant ones.

Scalability Lack of scalability is seen as a major obstacle of current veri�ca-

tion methods such as model checking. There is de�nitely a need for improving

and extending these methods in order to be able to address real-size systems.

Since formal methods do not scale well it is most productive to apply formal

methods to only the critical areas, where developers have least con�dence in the

correctness.

Software Engineering Practices Good software V&V starts with a good

software engineering process, including clearly de�ned goals and requirements.

Such practices are not as well established in the autonomy software community

as in the mainstream software industry. Well-documented requirements are

essential for driving the V&V work.

2



Metrics We have to de�ne ways to measure and compare the utility of di�er-

ent veri�cation e�orts. For this, we need quantitative metrics that adequately

address the di�erent factors of the costs and bene�ts of each method. Such

metrics are a necessity to clearly indicate \where you win" by using new ver-

i�cation approaches. It is noteworthy that most of the latest NASA project

funding programs required the mention of such evaluation metrics.

Using Di�erent Techniques It is rarely the case that a single V&V tech-

nique achieves good results on a real-world problem. In most cases, several

techniques (model checking, testing, proofs, static analysis, etc) must be com-

bined together to be able to tackle the complexity of the system to be veri�ed.

Progress in integrating di�erent V&V techniques are therefore crucial.

Certi�cation vs. Debugging V&V techniques can be used to achieve two

complementary purposes: proving a system correct (certi�cation), or proving it

incorrect, i.e. �nding errors (debugging). The terms \veri�cation" vs. \falsi�-

cation" have also been coined. Both eventually help to increase the con�dence

in the reliability of the system, but in di�erent ways. Debugging is done in ear-

lier stages, as part of the development, while certi�cation is rather performed

independently on the �nished product. It should be noted that \easy" V&V

techniques such as model checking are often limited to debugging, because the

state space of real-size systems cannot be completely covered.

Design for Veri�cation V&V can be facilitated if all components are de-

signed with veri�cation in mind. For example, V&V of a fault diagnosis system

is easier if the controlled system has mechanisms to inject or simulate faults.

Run-Time Veri�cation Automatic veri�cation techniques, such as model

checking, can also be useful at run-time, during normal operation. For example,

model checking can be used to check the results of a heuristic AI-based algorithm

such as a planner. This combines the e�ciency of heuristic search with the

robustness and formality of veri�cation.

3 V&V of Intelligent Systems

3.1 Attendance and Scope

This break-out group gathered thirteen people, six of them from NASA. The

topic had been set to veri�cation and validation of intelligent systems. This had

been de�ned as systems based on some form of arti�cial intelligence technique,

such as model-based, rule-based or knowledge-based systems. In accordance

with the theme of the workshop, there was of course an interest in autonomous

and adaptive systems, but the focus was speci�cally on the AI-related issues of

such systems.

3



The moderator (Charles Pecheur) brie
y introduced the topic and presented

some proposed issues, then a lively, free-form debate ensued. The discussion

turned out to be strongly focused on model-based systems. This did not stem

from an intentional orientation or to a perception that such systems are more

relevant to the topic, but rather from a strong involvement of model-based

autonomy specialists in the discussion.

This section reports on discussion topics related to model-based systems.

Many of the more general issues presented above (section 2) also arose along

the discussion.

3.2 V&V of Model-Based Systems

For the purpose of this discussion, a model-based autonomous system is viewed

as a plant (a spacecraft, a robot, etc.) driven by a controller through a com-

mand/sensor feedback loop. The controller itself is based on a generic, AI-based

inference engine that peruses an abstract model of the plant. The engine infers

the appropriate control actions based on the feedback it receives from the plant

and its knowledge about the plant extracted from the model.

As an overall issue, there is a need to de�ne and build experience in the

software engineering process for model-based systems. What are the types of

requirements that a customer would expect; how could these requirements be

conveniently expressed and veri�ed? Can we develop/specialize a theory and

practice of testing for this kind of systems? In this prospect, abstract autonomy

models could provide a good basis for automatic generation of test cases.

A natural approach is to decompose the V&V problem across the three core

components of a model-based system: the plant, the engine and the model.

V&V of the plant is outside the scope of this discussion. V&V of the engine is

a complex task that needs to be addressed, but concerns the designers of that

engine. From the point of view of the application designer, V&V focuses on

the model and how it a�ects the operation of the whole system. This can be

decomposed into two threads:

� How do we build and verify/validate autonomy models?

� Given a \valid" model, how do we verify/validate the resulting autonomous

controller?

Note that because the model concentrates all the application-speci�c knowl-

edge in a very abstract representation, it is potentially more amenable to V&V,

even for larger systems.

There is even a hope that model-based autonomy is \correct by design": if

the model directly captures the speci�cation of the plant, then the correctness

of the controller derives from the correctness of the logic inference principles

implemented in the engine. However, experience shows that authoring auton-

omy models is still a di�cult and error-prone task, and that full correctness

(and completeness) of the engine is not always achieved or even desired, for

4



performance purposes. In practice, both threads above are needed and comple-

mentary.

Part of the di�culty resides in reliably writing complete and consistent mod-

els. Accordingly, tools for checking consistency and completeness would be use-

ful. Some of this di�culty may be inherent to declarative speci�cations, but a

part of it could be alleviated by richer modeling languages too.

The model itself can be further decomposed into the di�erent aspects that it

captures, such as the plant (e.g. the moving range of a camera), the operational

constraints (e.g. do not point the camera towards the Sun) and the goals (e.g.

minimize the delay when the camera moves). Though all three may be expressed

in the same logic formalism, they entail di�erent V&V activities and should

thus be distinguished from each other. Another interesting issue is the fusion

of partial models, involving con
ict resolution principles.

Finally, a comparison can be made with the �eld of classical feedback control.

For linear systems, one can, on mathematical grounds, extrapolate a limited set

of observations to entire regions of the control space. We should investigate

whether the high-level, uniform inference laws used in model-based reasoning

would allow a similar reasoning. This is a very speculative idea, given the com-

plexity and non-linearity of autonomous controllers, but it could dramatically

decrease the cost of veri�cation if it proved successful.

4 V&V of Adaptive Systems

4.1 Attendance and Scope

This break-out group gathered nine participants, four of them from NASA,

around the topic of veri�cation and validation of adaptive systems. In par-

ticular, the group focused on control systems that do learning, either o�-line

(pre-trained) or on-line. While the focus was fairly broad, much of the discus-

sions centered around approaches based on neural networks.

4.2 Introduction

Initial discussion centered on how veri�cation of adaptive systems di�ers from

veri�cation of traditional control systems. One point was made that adaptive

systems have more potential fault modes, and so can behave more unpredictably.

Another point is that most commercial V&V products are based on the software

engineering process, and so are not really appropriate to learning systems, where

the development of the learning program is often secondary to the way it is

trained. It is also the case that most current coverage criteria are process-

oriented, and not product-oriented (this is a problem even for V&V of object-

oriented programs!).

Adaptive systems are mainly used when there is no good model of the plant

{ thus it is hard to determine what to verify against. It was thought that it is

often very di�cult to specify requirements or acceptability criteria for complex

5



adaptive systems. One recurring theme is that adaptive systems often do not

have a good way of telling when they are outside their range of expertise. It was

suggested that other methods (such as putting \wrappers" around the neural

net code) are needed to prevent such systems from trying to operate outside of

their range.

Problems exist for V&V of both o�-line and on-line adaptive systems. For

the former, the idea is to train a system and then verify it. For the latter, the

question is how to do veri�cation when the system can evolve many times after

it is deployed. It was agreed that V&V for on-line adaptive systems is much

harder. We will discuss both, in turn.

4.3 O�-Line Adaptive Systems

It was generally agreed that the best current methods for V&V of o�-line adap-

tive systems are blackbox testing and statistical techniques. While useful, these

techniques are not very satisfying since they cannot make any guarantees about

stability, coverage, etc. There is also the problem of trace-ability { when a bug

is found, it is often di�cult to \point a �nger" at the part (or parts) of the

adaptive system that is responsible. While analysis is possible, the non-linear

nature of most adaptive systems makes formal analysis very di�cult. Current

approaches are either intractable, or make very strict assumptions about the

form of the plant, which are typically not valid.

We discussed several interesting options. One is to try to prove weaker

mathematical results than \standard" stability (e.g., plain stability rather than

the stronger convergence results typically proved for linear systems).

A big problem for adaptive systems is the question of collecting representa-

tive data { how to sample and how to determine whether there are \holes" in

the test data set. One suggestion was to analyze the learned functions to �nd

partitions of the operating regions where the chosen actions are \similar" and

then devise tests for those regions. This could enable guarantees of coverage for

statistical testing. In general, the methodology might be iterative: One would

train a system, analyze it to determine how to choose test data, re-train if it

fails any of those tests, analyze again, etc.

Another option is to investigate learning techniques that may be more amenable

to formal analysis. Neural nets are very widely used, but they are just one of a

whole family of function approximators that can be learned. Di�erent families

of functions have di�erent characteristics in terms of learnability, expressiveness,

sensitivity to noise, etc. It may be worthwhile investigating whether there are

classes of function approximators that are more easily analyzed, and hence could

lead to formal guarantees of safety. For instance, one technique described at the

workshop uses hyperplanes to approximate the functions of interest. A neural

net constructed from a hierarchy of such structures may be both expressive,

yet tractable enough to lend itself to rigorous analysis of its properties. Such

analyses may also aid us in determining how to incorporate domain knowledge

into building such function approximators.

6



4.4 On-Line Adaptive Systems

Three options were discussed for V&V of on-line adaptive systems:

1. Continually doing V&V as the system evolves (on-line V&V).

2. Verifying that the learning technique cannot move from \safe" areas. The

idea here is to demonstrate some sort of monotonicity property { if the

system starts out being safe (shown via o�-line V&V), then prove that it

cannot become unsafe.

3. Certifying classes of systems rather than single instances. The idea here is

that if one could show that a particular structure of neural net is \safe", no

matter what training data it receives, then one can have it adapt without

worry.

In general, we agreed that this is a very hard problem, and that we did not

even understand well what are the desired requirements for on-line adaptive

systems. For instance, it is not clear how to specify the failure modes of the

system in advance, and so it was clear that monitoring plays an important part

in maintaining safety (although it was not clear exactly what that role is). It

was suggested that we may need to restrict the types of learning to keep the

system safe (e.g., not changing the weights of the neural net too rapidly). By

explicitly modeling the adaptation process and the process of environmental

change, we may be able to estimate the parameters needed to ensure that such

safety conditions hold at all times.

The problem may even be unsolvable as stated: if things are changing

rapidly, while it may be feasible to use on-line statistical techniques to detect

when dramatic changes have occurred, it may not be possible to guarantee that

the system remains safe at all times, since adaptation cannot be instantaneous.

For instance, while adapting to hardware failures, the system might, for a short

time, become unstable or unsafe. Is that acceptable, or not? We might want to

require that the system reenters a safe state within T seconds, or that it adapts

at a given speed. This harks back to the point that we do not really understand

what the requirements are for on-line adaptive systems.

Finally, we brie
y touched on the issue of adapting to slow degradation

in the controlled system, as opposed to qualitative, topological changes in the

plant (e.g., due to hardware failures). It was agreed that the latter is generally

a much harder problem to deal with, both for adaptation and for V&V. For

instance, it was suggested that if training occurs even during the performance

phase, perhaps using decaying values of the learning parameters or simulated

annealing, then the system could slowly adapt to such changes. However, there

are well-known problems where neural nets can \forget" old responses, especially

when they are not being trained with a statistically valid sampling of the input

space. It was suggested that this is an area in which formal proofs could give

us insight into some of the design issues for adaptive systems.

7



5 V&V of Complex Systems

5.1 Attendance and Scope

The group contained sixteen people, with a heavy bias towards Veri�cation and

Validation - only two NASA researchers from the autonomy and adaptive �eld

were present. The original topic put forward for discussion was the V&V of sys-

tems with many interacting components, either within one location (e.g. layered

control architectures) and among several locations (homogeneous or heteroge-

neous multi-agent systems).

5.2 Introduction

The discussion took an interesting turn before any meaningful progress could be

made on the stated subject. Basically, a debate ensued on the merits of V&V

in general, rather than just limiting it to complex systems. In the words of one

participant, we spent the whole time justifying the use of formal methods to the

two non-V&V participants of the group.

5.3 Issues

In this section some of the highlights of this discussion will be recounted, but

the majority of the issues was presented in section 2 where we addressed general

issues from the workshop. The discussion was in the form of questions being

raised by the NASA researchers followed by intense discussions. The output of

the session was a list of issues (17 in all) from which we list a selection below.

System Engineering problems are often addressed as Software Engi-

neering \It is like addressing architectural problems that arise with the con-

struction of a bridge as issues of how to engineer blocks of concrete" - Gerard

Le Lann (workshop participant). We should try and learn from other engineer-

ing disciplines, especially in how, for example civil engineers, seem to learn far

better from their mistakes than software engineers do.

V&V is not possible without a formal speci�cation of requirements

for the system under analysis. Stating formal requirements for autonomous and

adaptive systems is hard, and as such, not something often done during system

development at NASA.

Implementation should not be attempted without a provably correct

design. Doing mathematical proofs are hard, even using a theorem prover,

but is worth the e�ort for critical parts of a system. It was also interesting that

comments made after the workshop seemed to indicate that many participants

felt that proofs of correctness are being shunned in favor of automated error-

�nding techniques such as model checking and that this trend is worrying and

should be addressed.

8



Formal methods must be customized to speci�c domains in order to

get maximum bene�t from exploiting domain speci�c information. Domain

speci�c knowledge is one of the best ways to attack the scalability issue of

formal methods.

Compositional Techniques. Just as systems are built up from smaller pieces

one should use compositional reasoning to reduce the complexity of applying

formal methods to a complete system. Unfortunately, it is often the case that

only a global system property is to be veri�ed and then it is very hard to

decompose this property into ones to be shown for components. It is often

easier to compose properties known to hold for local components that hopefully

will imply the desired global property is valid.

Challenge Problem The members of the group felt that one of the most

important issues was for NASA to provide examples of autonomous and/or

adaptive systems that need to be veri�ed in order for the V&V community to try

out their numerous techniques. This would allow both communities to bene�t:

NASA will be in a better position to defend the use of complex systems to

mission managers, and V&V techniques would be improved and evaluated with

respect to new challenging problems from the autonomous/adaptive domain.

6 Conclusions

The feedback after the workshop was very positive, but most of all it was clear

that the problem of V&V of Autonomous and Adaptive systems is a hard one

to solve - especially given that it is even unclear whether V&V of \normal"

systems can be done with any degree of success with current techniques. Given

the importance of this �eld we believe this area will be a fruitful research �eld

for some time to come. Interestingly, in a unrelated event (High Dependability

Computing Consortium Kick-o� workshop at NASA Ames 10-12 January 2000)

one of the main observations made by the Formal Methods working group was

that V&V of Autonomous and Adaptive systems is a long term problem with at

least a 20 year horizon. This independent assessment of the �eld closely mirrors

this workshop's view.

Acknowledgments The organizers of the workshop are very grateful to all

the workshop participants whose comments helped to improve this report. Spe-

cial thanks go to James Caldwell (University of Wyoming), for his general com-

ments, and Rodger Knaus (Instant Recall, Inc), who provided very detailed

feedback on V&V of adaptive systems. We would also like to thank Peggy

Leising for her hard work to make this workshop a reality.

9


