
Non-Parametric Fault Identification for Space Rovers

Vandi Verma, John Langford, Reid Simmons

fvandi, jcl, reidsg@cs.cmu.edu

Carnegie Mellon University

5000 Forbes Ave.

Pittsburgh PA 15213

Abstract

Autonomous fault detection is prerequisite for autonomous

system repair which is of great value for spacecraft where

human intervention is expensive, slow, unreliable, and oc-

casionally impossible. We present a method which suc-

cessfully achieves autonomous fault detection in simula-

tion. The approach uses a nonparametric estimate of the

system state updated based upon sensor measurements.

Our system does state estimation using a decision-theoretic

generalization of particle filters which takes into account

the difference in utility of fault detection vs. fault nonde-

tection.

1 Introduction

In the last ten years, three space missions have disap-

peared before reaching Mars – Mars Observer, Mars Cli-

mate Orbiter and Mars Polar Lander.

On August 21, 1993 the transmitters on the Mars Ob-

server were turned off during the final approach to Mars

to protect the components against shock from the pressur-

ization sequence. After the transmitter was turned off the

tanks were supposed to be pressurized and then the trans-

mitters turned back on and communications with Earth re-

sumed, but no further signals were ever received on Earth.

The hypothesis is that a small amount of nitrogen tetrox-

ide may have leaked through the check valves during the

11 month voyage to Mars and condensed in the pressur-

ization lines. During pressurization, the oxidant would

have mixed with the monomethylhydrazine fuel, causing

combustion and rupture of the fuel lines. The resultant

high-pressure expulsion of gases through the rupture would

have started the spacecraft spinning uncontrollably and

making communication with Earth impossible.

Mars Climate Orbiter, the next of NASA’s Mars mis-

sions, was supposed to enter orbit around Mars on Septem-

ber 23rd, but ground controllers did not receive a sig-

nal as scheduled. The spacecraft was supposed to pass

about 150 kilometers above the surface of Mars and use

the atmosphere to slow itself down enough to enter or-

bit. Data from the stations tracking the spacecraft shows

that the spacecraft passed only about 60 kilometers above

the surface of Mars. This was because there was an er-

ror in the spacecraft’s trajectory that made it crash into

Mars instead of going into orbit. The error was caused

by the failed translation of English units into metric units

in a segment of ground-based, navigation-related mission

software. Later it was found that by comparing Doppler

and range solutionswith those computed using only Doppler

or range data a discrepancy could have been detected in

time for corrective action [10].

In the case of Mars Polar Lander, it is hypothesized

that a faulty sensor made it turn off its landing thrusters

before had actually landed. The sensor was triggered by

the legs unfolding instead of waiting until they actually

touched down on the surface of Mars. Since the engine

turned off too soon, the spacecraft fell to the surface at

about 50 miles per hour, and crash-landed [11].

A number of the future space exploration missions in-

clude rovers. Detecting faults in the rover domain is an

even more complex problem. This is because the environ-

mental interactions are unpredictable and ill modeled, and

sensors tend to be very noisy.

A perfect example of this is the Dante II robot [1].

In 1994, Dante II was deployed in a remote Alaskan vol-

cano to demonstrate remote robotic exploration. While

ascending out of the crater, it encountered steep slope and

cross-slope conditions that changed the system dynamics.

Failure to account for this resulted in the robot falling on

its side. Dante II was unable to self-right and had to be

rescued by helicopter.

All these examples show that faults manifest them-

selves in subtle ways that can only be detected by con-

tinuously monitoring the dynamics of the system. They

also show that the system dynamics tend to be different in

different operating conditions. For example, for a rover,

high power draw on flat ground may be a cause for con-

cern, but on a slope that might be perfectly acceptable.

The general problem is estimating unobservable dis-



crete modes of a system from noisy measurements of con-

tinuous variables. In the case of a rover, the continu-

ous variables correspond to the estimated continuous state

based on the available sensor data, such as temperature,

speed and motor current. The discrete modes correspond

to rover states such as “stuck wheel”, “broken gear”, and

“normal operation”.

Typically, rovers have limited power and computational

resources. In addition, the measurements of continuous

variables are noisy and influenced by the external envi-

ronment. Thus, we need an algorithm for estimating the

discrete modes in real time from noisy measurements of

continuous variables. We must also take into account the

fact that faults are usually very low probability events.

In this paper, we investigate how faults and special

conditions can be identified autonomously and robustly.

Experiments with a rover simulator provide evidence that

this approach works.

Our approach is based on a probabilistic technique

known as particle filtering [2, 6, 8, 12], also called the

condensation algorithm [4] and Markov Chain Monte Carlo

(MCMC) [3, 14]. In particle filtering weighted samples,

called particles, are used to nonparametrically approx-

imate distributions. The next section describes this in

greater detail. Particle filters provide a computationally

tractable approach to estimating the state of such hybrid

systems.

The remainder of the paper is in the following format:

1. General discussion of various approaches.

2. A review of particle filters.

3. A generalization of particle filters for high cost/low

probability events motivated by decision theory.

4. A description of the rover we will simulate.

5. Experimental results from the simulation.

2 Approaches to State Estimation

We formalize the problem by viewing the state of the sys-

tem as a vector consisting of a discrete component corre-

sponding to the fault and operational modes, and a contin-

uous component corresponding to the continuous state of

the system. Since we have a discrete component as well

as a continuous one, we cannot apply traditional state es-

timation techniques, such as Kalman Filtering [5]. This

is because Kalman filters track continuous state under the

assumption of a unimodal distribution. A common way

of tracking a system with discrete and continuous com-

ponents is to use a bank of Kalman filters [5, 13]. But

since failures may occur in any combination, the number

of Kalman filters may grow exponentially.

[15] developed an extension that used a POMDP to

represent the discrete states of the system. The dynamics

within each discrete state are represented using a Kalman

filter. This work is a clever way of representing hybrid

state. But each Kalman filter can only represent a uni-

modal posterior. Capturing the full posterior is intractable

since there are potentially an exponential number of hy-

pothesis to track. The method therefore tracks only a finite

number of most likely hypotheses.

[7] represent the posterior with a mixture of gaussians,

where each gaussian represents a hypothesis being tracked.

Instead of selecting a subset of hypotheses at each time

step, they collapse similar gaussians. This method pro-

vides a good approximation of the posterior. It makes the

assumption that it is feasible to enumerate all the possible

hypotheses.

[16] is a qualitative model based technique for fault

diagnosis. This approach was successfully used in the

spacecraft domain, but it has turned out to be unsuitable

for the rover domain because it relies on the system tran-

sitioning occasionally from one steady state to another.

Thus, it cannot account for the frequent transitions of a

rover that are caused by the continuous interactions with

the environment.

[9] was one of the first to propose a Bayesian track-

ing approach for tracking hybrid systems. This approach

uses factored sampling techniques, but does not track low

probability events well.

3 Particle Filtering

Filtering is defined as the problem of estimating the state

of a dynamic system from sensor measurements. As the

state evolves, the system receives a sequence of sensor

measurements o
1

; o

2

; : : : ; o

t

where o
i

represents the ob-

servation at time step i. Control inputs a
1

; a

2

; : : : ; a

t

act

to alter the state evolution. Filtering estimates the state of

the system, s
t

, at time t as the posterior distribution:
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This is also known as the time t belief state, Bel
t

. In

our approach, the state, s
t

=< c

t

; d

t

>, consists of two

components: the continuous state variables, c
t

, and the

discrete fault modes, d
t

.

Bayesian Filtering simplifies the filtering problem by

assuming that the system state evolves in a Markovian

way. A Markovian system is one in which past and fu-

ture states are conditionally independent given the current

state. The Markovian assumption will allow us to esti-

mate the state recursively. The initial belief is initialized

based on prior knowledge. Often, a uniform prior is cho-

sen for simplicity. In addition, we will make the Hidden



Markov Model assumption that our observations are given

by a probability distribution.

We are trying to estimate equation (1). s
t

is a vector of

continuous and discrete variables. Applying Bayes rule,

we get:
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where, � is a normalizing constant independent of the

state.

Since the observations are given under the Hidden Markov

Model assumption this implies that:
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Here, we have broken the state s

t�1

down into contin-

uous, c
t�1

, and discrete, d
t�1

, components for explicit-

ness.

Using the Markovian property, (4) may be simplified

to:
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To implement the recursive Bayesian filter in equa-

tion (5), the probability distributions required are:

1. state transition p(s

t

�

�

s

t�1

; a

t�1

)

2. observation p(o

t

�

�

s

t

)

3. initial belief Bel
0

.

Since there are a large number of components that can

fail, in any combination, at any time, there are potentially

an exponential number of discrete states. Tracking the full

posterior is intractable for any feasible system. We there-

fore use an approximation technique called particle filter-

ing that using a set of weighted samples called particles,

P

t

= (s

ti

; w

ti

)

1�i�N

, approximates the belief Bel
t

.

This approach has several benefits. It is non-parametric

and can represent a wide range of distributions. Both dis-

crete and continuous variables can be represented with

a single particle filter. Particle filters are easily imple-

mented. This is because there is no need to specify a

posterior based on the full prior, instead a posterior distri-

bution needs to be specified for a finite state represented

by a sample. A forward simulation of rover kinematics is

sufficient for this purpose. Since the accuracy of results

can be traded for computational efficiency, particle filters

can be used in any-time algorithms. One of the reasons

for the efficiency is that in many cases the computational

complexity does not heavily degrade as the dimension of

the state space increases.

Simple particle filters [3] estimate the probability dis-

tribution Bel
t

based on the data, which consists of mea-

surements and actions taken by the system. We can think

of each particle s
ti

as a hypothesis about the current state

of the system. Starting from an initial particle set P
0

, at

each step the next particle set P
t

is obtained from the pre-

vious one P

t�1

by a recursive update. This is done by

sampling P
t

from the state transition probability. In effect

we are sampling from the distribution,

Q
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This distribution is also known as the proposal distribu-

tion. This proposal distribution is not exactly the distribu-

tion from equation (5) that we are trying to estimate. To

take into account the fact that we have sampled from the

wrong distribution, the samples are likelihood weighted

by the ratio of the desired distribution to the proposal dis-

tribution:
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This gives an updated set of N weighted samples. We can

now transform this into an unweighted set of samples by

resampling according to the weights.

The recursive update takes into account the actions

taken and maintains the particles according to the distri-

bution of our Bayesian belief state. By design, a simple

particle filter tracks well the most likely state of the sys-

tem. This means that if we use a particle filter directly for

fault identification, it will track well the hypotheses rep-

resenting a nominal state of the system and poorly detect

the unlikely fault states. This drawback is further compli-

cated by the fact that the size of the discrete component



of the state space is exponential in the number of sub-

systems that can fail, since every possible combination of

failures of subsystems could occur. Thus, when applied to

a complex system with many failure modes an algorithm

based on particle filters could experience sample impover-

ishment. In other words, the particle set P
t

would approx-

imate the probability distribution of the belief state inef-

ficiently because most particles would represent similar

states and no particles would represent unlikely (though

important) states. This motivates an improvement to par-

ticle filters which we discuss next.

4 Decision Theoretic Particle Filters

We want a system which will allow us to detect the im-

portant states. In order to find such a system we can look

at the principles of decision theory. In decision theory,

for every state and every action (such as the action to re-

cover from a fault state), there is some expected future

loss l(S;A). The goal then is to choose the action which

minimizes future expected loss. Given a distribution over

states, the expected future loss for an action, A is:

r(A) =

Z

S

l(S;A)p(S)dS

With standard particle filters, we can attempt to estimate

r(A) using Monte-Carlo integration with particles. How-

ever, Monte Carlo integration may converge only very

slowly because low probability events might have a very

high loss associated with them.

Can we achieve quicker convergence for an estimate

of r(A)? The answer, somewhat surprisingly, is “yes”. In

general, for a Monte-Carlo integration of two functions:
Z

S

f(S)g(S)ds

quicker convergence can be found by drawing samples

from a distribution proportional to f(S)g(S). In fact, the

constant of proportionality is the result of the integration.

To apply this approach efficiently, we will only be able

to keep around one sample set rather then a sample set

for every possible action. We can describe the relative

importance of states using a utility function, u(S), which

might be derived from a decision theoretic loss function,

l(S;A) in several ways. Now, if we keep our samples

according to a distribution proportional to u(S)p(S), we

expect quicker convergence for monte-carlo integrations

of the risk of reporting or not reporting faults.

How do we keep a sample set with a distribution pro-

portional to u(S)p(S)? We seek a simple recursive rule

which will allow us to maintain particles according to this

distribution. First, assume that at time t�1, we have parti-

cles distributed according to u(s
t�1

)p(s

t�1

). In general,

we already have a state transition rule, p(s
t

js

t�1

; a

t�1

)

which will allow us to generate new states at time t given

the state at time t� 1. Using samples drawn according to

u(s

t�1

)p(s

t�1

), we can generate states according to:

u(s

t�1

)p(s

t

)

We can then easily adjust this distribution by reweighting

our samples with the ratio:

u(s

t

)

u(s
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A resampling of the distribution will now generate sam-

ples according to:

u(s

t

)p(s

t

)

as desired. In fact, the sample/reweight/resample can all

be done in one step (with lower variance) by drawing from

a “transition probability” which has the reweighting built

into it:
u(s

t
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u(s
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)

p(s

t
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s
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Integration of observations is unaffected by this approach

and is done in the same manner as for standard particle

filters.

Theoretically, we should alter our initial distribution

of samples so as to mimic a distribution proportional to

our prior times u(S). However, it is simply more conve-

nient to pretend that our prior is uniform in u(S)p(S).

Experiments in (section 6) show that the efficiency of

fault detection is significantly improved by this approach.

5 Example Domain

Figure 1: The Hyperion Robot.

The example domain used in this paper is the Hyperion

robot (Fig. 1). Hyperion is a mobile robot being devel-

oped at Carnegie Mellon University. It will demonstrate



autonomous solar powered navigation on Devon Island in

the Arctic, in July 2001.

Fig. 2 shows a top view of the robot. Hyperion has

four actuated wheels. The back frame is rigid and the

front is steerable, but not actuated. W1, W2, W3 and

W4 are the four wheels and v1, v2, v3 and v4 are their

respective translational velocities. � is the steering angle

and �, which is not shown in the diagram is the rotation

of the frame, i.e. rotation with respect to world coordi-

nates. R

x

and R

y

represent x and y coordinates in the

rover frame and s

x

and s

y

represent the x and y coordi-

nates in the steering frame. L is the wheel base or rover

length and B is the track or rover width.

For the purpose of this paper, we are looking at a small

subset of possible failures. We are interested in determin-

ing if any of the four wheel motors is faulty, any wheel is

stuck and locked, or if any of the drive gears are broken.

This is important because in the event of any of the above

faults, the commanded velocity at one or more wheels

may have to be altered to achieve the desired motion. The

problem is to determine if any one of these faults occurs

given the commanded velocity at each wheel, noisy mea-

surements of the position and orientation of the rover, and

the steering angle reported by the steering potentiome-

ter. For the purpose of this paper, we use a simple lin-

B

L
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Rx

α

Sy
Sx

W1

W2

W4W3

v1

v2

v3 v4

Figure 2: Top view of Hyperion.

earized kinematic model of Hyperion. This is reasonable

since sensor measurements come in at 5Hz and the mo-

tion of the rover is almost linear between consecutive sen-

sor measurements. The wheel positions, P
1

; P

2

; P

3

and

P

4

of each wheel in the rover coordinate frame are as fol-

lows:
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The instantaneous motion of the robot is represent by the

vector ~

M = [�x;�y;��;��]

T. The kinematic equa-

tions for the instantaneous motion at each wheel are:
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The rover simulator used in the paper minimizes wheel

slip for any given set of commanded velocities.

6 Experiment

The ten discrete states that we estimate are – wheel1 or

wheel2 motor or gear broken, wheel3 broken, wheel4 bro-

ken, wheel1 locked stuck, wheel2 locked stuck, wheel3

locked stuck, wheel4 locked stuck, wheel3 gear broken,

wheel4 gear broken. The reason that wheel1 or wheel2

motor or gear broken are lumped together as a single fault

is because when either of the front wheels cannot be con-

trolled, there is no way to control the heading of the rover

and the mission will have to be aborted. Aggregating

faults that result in the same response reduces the dimen-

sionality of the state space. On the other hand if a motor

on one of the back wheels is determined to be broken, then

the control input may be modified to produce the desired

motion.

The dynamics of the rover are different in each of

these discrete states. The dynamics within each discrete



state are represented with a set of equations. The con-

tinuous variables used to track system dynamics are rep-

resented by the vector ^

C = [x; y; �; �]

T and control by

A = [u

1

; u

2

; u

3

; u

4

]

T, where the u

i

s are commanded

wheel velocities.

The system belief state is represented with a set of N

weighted samples, P
t

= (s

ti

; w

ti

)

1�i�N

. Here each sam-

ple is in any one of just 10 discrete states (no multiple

failures) and has a value for each of the continuous vari-

ables s
i

=

�
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T

, where

d 2 fnormal, wheel1 or wheel2 motor or gear bro-

ken, wheel3 broken, wheel4 broken, wheel1 locked stuck,

wheel2 locked stuck, wheel3 locked stuck, wheel4 locked

stuck, wheel3 gear broken, wheel4 gear broken g . The

initial discrete state is assumed to be the normal operation

state and each sample has weight 1

N

.

At each time step, the sample s

ti

is updated to get

sample s
t+1 i

. We first do the discrete state transition by

drawing a sample from the discrete state transition func-

tion:

d
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The dynamics represented by the discrete state at t+1 are

used to estimate the continuous state c
t+1 i

by drawing a

sample according to:

c
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� p(c
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The samples are then weighted by the likelihood of

the sample given the sensor measurement. The sensor

measurement is the rover pose in (x; y; �) from GPS and

the steering angle � from the steering potentiometer. The

measurement matrix is ~

O = [x; y; �; �].

These N samples are normalized so that the weights

sum to 1 and the process recurses.

For the experiment, first the rover is driven with a va-

riety of different control inputs in the normal operation

mode. At the 17th timestep, wheel3 is stuck and locked

against a rock. Wheel3 is then driven in the backward

direction, which causes it to get unstuck and the rover re-

turns to the normal operation mode. It continues to oper-

ate normally until the gear on wheel4 breaks at the 30th

timestep. This fault is not recoverable and the controller

just alters its input based on this state. In this experiment

we do not look at multiple simultaneous failures, but they

can easily be included by extending the model. Fig. 3

shows the commanded velocity at each wheel and Fig. 4

shows the rover position. For clarity this figure shows the

pose at only a select few timesteps. Fig. 5 shows the re-

sults obtained by using a simple particle filter, with hybrid

state, for this experiment. Even for a simple experiment

with 10 discrete states and 4 continuous variables, a large
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−4 −3 −2 −1 0 1 2 3 4

0

1

2

3

4

5

6

Rover position at time step 1, 10, 22 and 35

 x −>

y
 −

>

Figure 4: Rover position at time step 1, 10, 22 and 35.

number of samples were required before it was possible

to track fault 10. The reason is that faults are low prob-

ability events and when the state is approximated using a

small sample set, none of the samples transition to the true

state. This simple particle filter does not scale well. For

the purpose of fault detection, the low probability fault

states are very important to track. We handle this by for-

ward sampling based on the utility and probability of the

next state transition rather than just the probability of the

next state transition. Fig. 6 shows the results with this

method. The figure shows the most likely state estimate,

the sample variance of the filter, the error in the estimate

over 100 repetitions of the experiment. It also shows the

variance of this error over a 100 repetitions of the exper-

iment. With 100 samples the filter was able to track the
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Figure 5: Results with a simple particle filter. Here

(1)normal, (2)wheel1 or wheel2 motor or gear bro-

ken, (3)wheel3 broken, (4)wheel4 broken, (5)wheel1

locked stuck, (6)wheel2 locked stuck, (7)wheel3 locked

stuck, (8)wheel4 locked stuck, (9)wheel3 gear broken,

(10)wheel4 gear broken

.

fault states reasonably well and with a 1000 samples it

erred only once.

7 Conclusion

The algorithm proposed succeeds at non-parametric fault

identification in our simple domain using only limited real-

time computation. The most important step for future

work is scaling this approach up to larger domains, show-

ing that it can handle multiple faults and doing (inherently

expensive) validation tests on real robots. We anticipate

that it will work well in many other fault identification

domains and the decision theoretic extension to particle

filters may be of interest beyond the fault identification

problem.

We are currently working on implementation and test-

ing with a real robot.
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