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Abstract— Identification of regions in space that a robotic
manipulator can reach in a given amount of time is important
for many applications, such as safety monitoring of industrial
manipulators and trajectory and task planning. However, due
to the high-dimensional configuration space of many robots,
reasoning about possible physical motion is often intractable.

In this paper, we propose a novel method for creating a
reachability grid, a voxel-based representation that estimates the
minimum time needed for a manipulator to reach any physical
location within its workspace. We use up to second-degree
constraints on joint motion to model motion limits for each joint
independently, followed by successive voxel approximations
to map these limits on to the robot’s physical workspace.
Results using a simulated manipulator indicate that our method
can produce accurate reachability grids in real-time, even for
robots with many degrees of freedom. Furthermore, errors are
almost exclusively biased towards producing more optimistic
reachability estimates, which is a desirable characteristic for
many applications.

I. INTRODUCTION

Modeling the motion of robotic manipulators is an open
problem in robotics. Globally, manipulators are constrained
to their workspace, the set of all reachable regions, and
within a workspace, some regions may be reached quickly,
whereas others require a longer time. Knowing which regions
are reachable in a short amount of time, which are more
distant, and which are wholly unreachable is useful both
to the robot, which must plan its movements according to
its limitations, and to outside agents, which may need to
take possible robot motions into account when planning their
own movements. However, finding these regions is made
difficult by the high-dimensional configuration space of most
manipulators.

A key application is manipulator safety monitoring in
unconstrained environments, which requires a conservative
estimation of regions into which a manipulator may enter in
the near future in order to re-adjust or stop motion when-
ever humans might enter the robot’s workspace [3]. Other
possible applications include trajectory and task planning,
as manipulators can use motion bounds to prioritize closer
objectives over farther ones, or use the estimated time as a
distance heuristic in motion planning.

How much time is needed for a robot to reach a given
position depends on constraints on its joint motion, usually
enforced by the controller based on mechanical and power
limitations. Constraints usually take the form of limited joint
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Fig. 1. Reachability grid for a 7 degree-of-freedom manipulator. Orange
regions require more time to reach than red regions.
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Fig. 2. Reachability grid illustration for 2 degree-of-freedom planar arm. a)
Reachability in joint space. b) Reachability in metric space. Arm is drawn
in current pose (θ0, φ0).

positions, velocities, and/or accelerations, though higher-
order terms such as jerk limits are sometimes used. These
constraints allow reasoning about how much time is required
to reach a given joint pose given an initial position and
velocity. Figure 2a shows an example map of reachability
times in joint space, using constant joint velocity limits.

However, targets and obstacles are represented in physical
(metric) space rather than joint space. This means that to
have useful reachability information, we need to compute
the robot’s workspace and map minimum reachable times
for corresponding joint values into it. Figure 2b shows



the example robot’s workspace with associated minimum
reachable times. While this is straightforward for a simple
robot such as this, real robots often have joint spaces that
are too high-dimensional to exhaustively search all possible
poses. For example, Figure 1 shows a reachability grid
for a 7 degree-of-freedom (DoF) arm. While the physical
space swept out by the arm is small, the corresponding 7-
dimensional joint space is too large to work with directly.

We solve this problem by collapsing the swept volume
of each link to an intermediate voxel approximation before
considering it in the computation of previous links, which
allows us to avoid searching the entire high-dimensional joint
space and instead calculate bounds for each joint indepen-
dently. The drawback is that it may produce optimistic times
in some cases, as it cannot reason about self-collisions and
obstacles. However, the general solution is intractable for
high-DoF manipulators, and given that approximations are
required, optimism is desirable for many applications, such
as robot safety monitoring and A* planning heuristics.

Depending on the application, we may care about measur-
ing regions that are reachable by any part of the manipulator
(e.g., safety), or regions reachable by just the end effector
(e.g., planning). Our experiments focus on the safety ap-
plication, measuring reachability with respect to the entire
manipulator, but results would apply equally to modeling
the position of the end effector.

In this paper, we present a novel algorithm for producing
a reachability grid, a voxel grid containing, for each cell in
a robot’s workspace, the minimum amount of time needed to
reach it. Our approach consists of two parts: first, we produce
an invertible joint motion model that uses second-order
constraints to determine time bounds for each individual
joint. Second, we map these models into a robot’s workspace
using a recursive voxel-based workspace approximation.

Since this is an approximate algorithm, we empirically
measure the accuracy and computational speed of the ap-
proach on a simulated 4 DoF manipulator. Our results
indicate that accurate reachability grids can be computed in
real-time, even for robots with many degrees of freedom, and
that approximation errors are minor and almost exclusively
biased towards optimistic reachability estimates.

A. Prior work

Zacharias et al [9], [11] have used reachability grids
to model possible robot motion and object manipulability.
Their approach has the advantage of considering end effector
orientation as well as position, but it cannot operate in real
time, and assumes an analytical solution for the inverse
kinematics of the manipulator. Others have used voxelization
for estimation of swept volume, similar to how we compute
the volume swept by a robot link [1].

There has also been significant work in robot workspace
estimation, a key component of our work. Several works
deal with workspace solutions tailored to specific manipula-
tors [5], [8]. Others have explored more general analytical
approaches [2], [6], [10]. Rastegar and Deravi studied the
effect of joint motion constraints on workspaces [7].
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Fig. 3. Maximum motion bound fmax(t) and minimum motion bound
fmin(t) (Eq 3) for a single manipulator joint. Joint has initial position θ0
and initial angular velocity ω0. Bounds increase quadratically until velocity
limit is reached, at which point bounds increase linearly until the final
position limit.

However, none of these approaches operate in real time,
and application of any workspace-based method would have
to be run many times on varying sets of joint constraints to
give a full reachability grid.

II. BOUNDING JOINT MOTION

In order to bound the time needed to reach any given joint
position, we first require a set of a priori motion constraints
for each joint. These constraints may consist of:

1) Constrained joint angle θ ∈ [θmin, θmax]
2) Constrained joint velocity ω ∈ [ωmin, ωmax]
3) Constrained joint acceleration α ∈ [αmin, αmax]

Any subset of these constraints may be used; absent con-
straints are assumed to be infinite. In principle, we could
also use other constraints, such as jerk limits, but these are
not analytically invertible so it is preferable to avoid them,
if possible.

Using the above constraints and a given initial joint
position θ0 and velocity ω0, we can use piecewise functions
to place bounds [fmin(t), fmax(t)] on the joint motion as a
function of t. Upper and lower trajectory bounds for a sample
joint are shown in Figure 3.

As long as the joint velocity ω is below the maximum
ωmax, we assume maximum acceleration and the upper
bound is governed by the trajectory quadratic

θ0 + ω0t+
1

2
αmaxt

2. (1)

This holds for all t ≤ t1 where t1 is the time at which
ω = ωmax:



t1 =
ωmax − ω0

αmax
(2)

For t > t1, θ rises linearly with slope ωmax until θmax

is reached at time t2 (unless θmax is reached prior to t1, in
which case this linear segment does not exist). This gives
the piecewise maximum bound function fmax(t):

fmax(t) =


θ0 + ω0t+ 1

2αmaxt
2 if t ≤ min(t1, t2)

fmax(t1) + ωmax(t− t1) if t1 < t ≤ t2
θmax otherwise

.

(3)
The minimum bound fmin(t) is derived similarly using

(θmin, ωmin, αmin).
These bounds provide, for some given maximum

time bound tmax, a corresponding joint range
[fmin(tmax), fmax(tmax)] over which to compute
reachability. In practice, tmax is set to an application-
specific value corresponding to the maximum useful time
horizon. To compute the entire workspace we can let
tmax →∞, in which case the range is [θmin, θmax].

Finally, in order to compute the minimum reachable time
for some joint configuration, we also need to compute the
inverse t = f−1(θ), i.e., given a joint value, find the
minimum time needed to reach it.

As long as we use at most second-order constraints,
the bounds are analytically invertible. In case of multiple
solutions, we take the lowest non-negative time:

f−1max(θ) = {min t | t ≥ 0, fmax(t) = θ} (4)

The true minimum reachable time for a joint angle is then
given by the lesser of the min or the max bound:

f−1(θ) = min(f−1max(θ), f−1min(θ)) (5)

Since we assume constraints for different joints are in-
dependent, any robot pose now has a minimum reachable
time equal to the maximum value of f−1(θ) across all
joints. In the next section, we present a workspace estimation
algorithm that uses these bounds to produce a reachability
grid in metric space.

III. WORKSPACE ESTIMATION

The straightforward brute-force approach to mapping joint
poses into a workspace would be to sample the entire joint
space at regular intervals and save the minimum time value
found for each voxel. However, as the size of the joint
space is exponential in the number of joints, this method
is intractable for high-DoF manipulators.

We instead present an algorithm that uses successive voxel
approximations to sweep each joint independently across its
range of motion [fmin(tmax), fmax(tmax)]. Our approach is
based on the insight that, once we have the workspace for one
link calculated in its reference frame, we can calculate the
workspace of the previous link recursively by treating the last
link’s workspace as an attached rigid body. Accordingly, we
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Fig. 4. Workspace reachability grid computation. a) Point-cloud repre-
sentation of last link is swept through its range of motion. b) Swept cloud
is voxelized. c) Reduced cloud extracted from voxel grid. d) First link is
added to reduced cloud and swept through its range of motion. e) Final
reachability grid is obtained by voxelizing point cloud with minimum time
in each voxel.

can use roughly the following steps to compute a reachability
grid:

1) Sweep point-cloud representation of last link (end
effector) through the range of motion of the last joint

2) Reduce swept cloud by collapsing to intermediate
voxel grid

3) Attach reduced point cloud as rigid body to end of link
n− 1 and repeat

4) After all links are swept, voxel grid for base link is
final reachability grid

Figure 4 illustrates these steps, and pseudocode is shown
in Algorithm 1. All intermediate point clouds and voxel
grids must store the estimated minimum reachable time t
associated with each point p and voxel v, respectively.

Note that the algorithm assumes known point cloud repre-
sentations of all manipulator links. In practice, a suitable
cloud can be produced from a triangle mesh model by
sampling the enclosed volume at a density equal to, or greater
than, that of the output reachability grid. If reachability is
being calculated for only the end effector instead of the entire
manipulator body, then no initial point cloud representation
is needed and a single point at the end effector will suffice.



Algorithm 1 Reachability grid workspace computation
cloud← ∅
finalGrid← fill(∞)
for link = n to 1 do
cloud.addPoints(cloud(link), 0) {t = 0 at θ = θ0}
subGrid← fill(∞)
for θ = fmin(tmax) to fmax(tmax) step ∆θ do {See
eq. 3,6}

for all (p, t) in cloud do
p′ ← rotate(p, θ)
t′ ← max(t, f−1(θ)) {See eq. 5}
if link > 1 then
v ← subGrid.getVoxelByPoint(p′)

else
v ← finalGrid.getVoxelByPoint(p′)

end if
v.t← min(v.t, t′)

end for
end for
if link > 1 then
cloud← voxelCenters(subGrid)

end if
end for
return finalGrid

a) Subvoxelization ratio b) Step factor
Fig. 5. Parameters used in workspace estimation. a) Subvoxelization ratio is
of the voxel size used in cloud reduction (red) to that of the final reachability
grid (blue). Ratio shown is 1/2. b) Step factor is maximum point motion
between steps of θ during sweep, as a fraction of final voxel size. Factor
shown is ≈ 1.

The point cloud reduction at each joint allows this to
run efficiently, even on high DoF manipulators for which
an exhaustive search would be impossible. If all points
were kept at each stage, the number of points in the cloud
would increase exponentially with each manipulator link,
making the computation intractable beyond a few degrees
of freedom. Given a robot with n degrees of freedom, each
of which has ψ angular range of motion, our grid reduction
algorithm runs in linear time, O(nψ), whereas a brute-force
solution requires exponential time, O(ψn).

A. Approximation errors

The approximation speedup does come at the cost of
induced error, as every time we collapse a point cloud into an

intermediate voxel grid, every point will move to the nearest
voxel center. To minimize this effect, we typically want to
use a smaller grid for the intermediate grid (i.e., subGrid in
Algorithm 1) than the final reachability grid (finalGrid in
Algorithm 1). As we shrink the intermediate voxel size, we
can approach zero error, but in doing so point clouds reduce
less and performance approaches that of brute-force.

An additional source of error is in sweeping through the
possible angles for each joint. We have to choose how finely
to sample these angles; coarser sampling will mean faster
computation and smaller clouds, but at the cost of possible
skipped regions.

To control these factors, we introduce two parameters,
as illustrated in Figure 5, that we can use to trade off
between accuracy and computational speed. Both parameters
are normalized to the final reachability grid cell size.

1) The subvoxelization ratio is the ratio of the voxel size
of the intermediate grids to the voxel size of the final
grid.

2) The step factor bounds the step size used when
sweeping the point cloud through a joint’s range of
motion.

The step parameter ∆θ is set based on the step factor s such
as to limit motion of all points p around the joint axis a to
some fraction of the voxel size v:

∆θ =
sv

max(a× p)
(6)

We expect the subvoxelization ratio to have a significant
effect on error, much more so than the step factor. Voxeliza-
tion can shift points at most half the diagonal length of a
voxel for each link, so we get a maximum displacement
error bound ε for an n-DoF manipulator and a subvoxel
length l of ε ≤

√
3
2 nl. However, in practice the error will

be much less than this. In the next section, we examine the
error rate empirically, and test the effect of our approximation
parameters on accuracy and computation speed.

IV. EXPERIMENTAL METHODS

All tests used a simulated 4-DoF manipulator with two
pitch and two roll joints, as shown in Figure 6. This arm
was chosen because computing ground truth for a higher-
DoF arm is prohibitively slow. The arm is 1m long at full
extension, and the calculated reachability grid has a voxel
width of 5cm. All computation was single-threaded and
executed on an Intel Core 2 Quad desktop computer with
2GB of RAM. For robot simulation and visualization, we
used the OpenRAVE simulator [4].

Reachability grids were gathered at 10 randomly selected
poses. Joint constraints consisted of a maximum speed of
|ω| ≤ 1rad/s. There were no position or acceleration con-
straints. Reachability was computed out to tmax = 0.5s,
giving a total freedom of 1 radian in each joint.

For each test pose, a ground truth reachability grid was
computed using a uniformly sampled brute-force search of
the joint space. The step factor when calculating ground truth



Fig. 6. Test 4-DoF manipulator with observed errors. Red voxels are false
positives (present only in estimated grid), blue voxels are false negatives
(present only in ground truth), and the green voxels are correct (present in
both estimated and ground truth). Parameters used to generate this image
are 0.5 for both subvoxelization ratio and step factor.

grids was 0.4, ensuring a worst-case distance between sweep
steps of 2cm.

Comparison grids were generated with subvoxelization
ratios ranging from 0.1 to 1.0, and step factors ranging from
0.1 to 1.5, both at 0.025 increments. False positives and
negatives were measured by comparing the full measured
workspace against the ground truth grid, i.e., we compared
the set of all voxels with minimum reachable time t ≤ 0.5s.

V. EXPERIMENTAL RESULTS

Results indicate that our approach does produce an accu-
rate workspace estimate, particularly at low subvoxelization
ratios. Figure 6 shows an example of errors observed for
our 4-DoF test arm. Figure 7 shows precision, recall, and
processing time as a function of the subvoxelization ratio
and step factor parameters, averaged over all 10 test poses.

The primary effect of the approximation errors appears
to be a slight dilation of the robot workspace, particularly
near the end of the manipulator chain. As shown in Figure
6, false positives are more common at the end, while false
negatives are uncommon and present only near the base. This
is unsurprising, as the large number of points approximated
at each step will naturally cause a diffusion effect, which
is pronounced with more successive approximations. This
means that areas near the end effector will see the most
growth due to being moved at every step in the kinematic
chain. For most subvoxelization ratios, false positives were
no farther than 1 voxel (5cm) from their true locations,
but for ratios above about 0.8 some were as distant as 2
voxels. In the reachability grid, the net effect of this dilation
is a consistent underestimation of reachability times, the
magnitude of which is dependent on the size of the dilation.

Fig. 7. Experimental results for reachability grid computation. a) Precision,
b) Recall, and c) Log CPU processing time, as a function of subvoxelization
ratio and step factor parameters (see Figure 5).

As expected, when varying parameters, the subvoxeliza-
tion ratio has the most significant effect on overall perfor-
mance. Errors are markedly lower for small ratios, but at the
cost of dramatically longer processing times, as the number
of subvoxels in the workspace is proportional to the cube of
their size. In practice, we found that using a ratio of about
a half voxel gave a good trade-off between performance and
accuracy.

As is shown in Figure 7(a,b) certain structured error
appears at subvoxelization ratios close to, but under, 1,
most noticeably at 0.975. This is due to the relationship
between the voxel positions in the intermediate grid and the
final grid. When there is a small difference in size between
the intermediate and final voxels, the relative positions of
voxel centers will be consistently biased over large regions
of space, meaning that, depending on the position of the
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Fig. 8. Precision-recall curves generated by varying step factor at selected
subvoxelization ratios.

manipulator workspace, boundaries may grow or shrink
considerably. In practice, this means that subvoxelization
ratios close, but not equal, to 1 should be avoided, if possible.

Varying the step factor does not have a clear-cut effect on
overall accuracy, but lower values appear to produce a more
generous workspace estimate, whereas higher values produce
a more conservative estimate. This is because lower ratios
produce larger point clouds, which will naturally diffuse to
create larger workspaces. Precision-recall curves generated
by varying the step factor are shown in Figure 8. Step factors
significantly above 1 run the risk of skipping over regions
and may cause gaps in the swept volume. However, due to
the cloud diffusion effect and the fact that the step factor is
a worst-case distance, we did not observe this below factors
of about 1.25. The step factor does not have a major effect
on speed unless very small values are used (computation
time should vary with its reciprocal). We found that a step
factor of about 1 gave a good trade-off between precision
and recall.

For robots with higher degrees of freedom than our test
robot, we would expect the maximum displacement error,
and correspondingly the false positive rate, to increase lin-
early with the number of degrees of freedom. However, this
is difficult to verify empirically due to the intractability of
computing ground truth reachability for high-DoF robots.
That said, we have used our approach on a 7-DoF arm (as
shown in Figure 1) and results appear consistent with those
seen at the 4-DoF level. The video accompanying this paper
demonstrates reachability for the 7-DoF arm as it sweeps
through a series of motions, as computed in real-time at 10hz.

VI. CONCLUSIONS AND FUTURE WORK

Our results indicate that reachability grids are a fast and
accurate way to compute motion bounds, even for high
degree-of-freedom manipulators. Errors typically result in a
displacement of no more than a few voxels away from true
locations. The algorithm can run in real-time for even high-
dimensional manipulators, is easily parallelizable, and many
of the operations could be implemented on graphics hardware
for further speedups.

The fact that our approach does not take collisions into
account, combined with approximations in the workspace
estimation, often results in underestimates of reachability
times but rarely or never results in overestimates. This
makes it particularly well-suited to applications that require
an optimistic estimate of reachability, such as robot safety
monitoring and A* path planning heuristics.

While positional bounding as we have demonstrated here
is sufficient for some applications, many manipulation tasks
need to take end effector orientation into account as well. In
principle our approach should work in a higher-dimensional
space, but performance will be reduced significantly, so
further study is needed to demonstrate its suitability.

Another key limitation of our approach is that it is unable
to take any collisions or obstacles into account. Opportunities
for improvement here may be limited, as fully exploring the
joint space is inherently intractable for high-DoF manipu-
lators. However, with further research it may be possible
to reason about collisions in a limited fashion by using the
existing method to carve out large regions of obstacle-free
joint space while spending extra time in areas near obstacles.
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