
  

 
Figure 1. 3x3 grid of eight dancing Keepon robots,  

with Kinect sensor and stereo speakers in the middle. 
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Figure 2. 3x3 grid of eight dancing Keepon robots,  

with Kinect sensor and stereo speakers in the middle. 

 

 
Figure 3. 3x3 grid of eight dancing Keepon robots,  

with Kinect sensor and stereo speakers in the middle. 

 

 

Abstract— Expressive motion refers to movements that help 

convey an agent’s attitude towards its task or environment.  

People frequently use expressive motion to indicate internal 

states such as emotion, confidence, and engagement.  Robots 

can also exhibit expressive motion, and studies have shown that 

people can legibly interpret such expressive motion.  Mimicry 

involves imitating the behaviors of others, and has been shown 

to increase rapport between people. The research question 

addressed in this study is how robots mimicking the expressive 

motion of children affects their interaction with dancing robots.  

The paper presents our approach to generating and 

characterizing expressive motion, based on the Laban Efforts 

System and the results of the study, which provides both 

significant and suggestive evidence to support that such 

mimicry has positive effects on the children’s behaviors. 

I. INTRODUCTION 

We are interested in studying how people interact with 
robots that exhibit expressive motion [9-12].  Expressive 
motion refers to movements that are not directly related to 
achieving a task, but that help convey an agent’s attitude 
towards its task or its environment, such as emotional state, 
confidence, engagement, etc.  Expressive motion in people is 
an efficient and, typically, effective means of communicating 
such attitudes.  We are particularly interested in expressive 
motion that is layered on top of task-achieving behaviors, 
using the same actuators for both expression and task 
achievement [9]. 

More specifically, for this paper we are interested in how 
mimicry of expressive motion by robots affects the behavior 
of people.  Mimicry involves the nonconscious “taking on the 
postures, mannerisms, gestures, and motor movements of 
other people” [3].  This includes behaviors such as face and 
hair touching, leg crossing, facial expressions, and affect [3].  
Experiments have demonstrated that people tend to like 
and/or feel more rapport with those who are mimicking them, 
even if they are not aware that they are being mimicked [26].  
Similar results have also been shown to hold with realistic 
avatars [2]. 

It is not clear, however, if such results would hold for 
robots, whose morphologies typically differ from humans.  
This is especially the case for robots with limited degrees-of-
freedom, since they would not be able to realistically mimic 
motion behaviors of people.  On the other hand, it should be 
possible to mimic the attitudes of people using expressive 
motion, potentially establishing rapport via shared affect [5].  
Thus, we would like to investigate the effects of expressive 
motion mimicry. 
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Specifically, our research question is whether mimicry of 
expressive motion affects children’s behaviors during the 
activity of dancing together with a group of robots (Figure 1).  
Are there differences in behavior when the robots are 
mimicking the children’s expressive motion, and does that 
indicate something about rapport? 

Our approach is to use the Laban Efforts to both 
characterize and generate expressive motion.  The Laban 
Efforts [14] is a framework, developed in the context of 
dance and theater, that characterizes the how of an action – 
how articulated, forceful, or expansive is the action.  Our 
work and others [10, 11, 16, 24] have demonstrated that the 
four Efforts – Time, Space, Weight, and Flow – can be used 
to enable robots to expressively communicate attitude.  
Others have used the Laban Efforts to characterize people’s 
behaviors and emotions [6, 16, 22, 27].  We believe, 
however, that this is the first work that uses a consistent 
framework for the Effort System to both generate and 
characterize expressive motion. 

For this study, mimicry is achieved by using Kinect data 
to estimate each of the four Efforts of children as they 
interact with the robots, and then having the robots respond 
by exhibiting the same set of Efforts. Note that the robots are 
not doing the same actions or gestures as the children, but 
instead are mimicking their expressivity, as determined by 
their Laban Efforts, as the robots (and children) dance to 
music.  

As an indication of the establishment of rapport between 
children and robots, our experiment was designed to measure 
the impact of the robots’ mimicry of the children’s expressive 
motions on their behaviors. In particular, we used several   
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quantitative measures, including time of engagement, 
changes in perceived Efforts per minute, and time spent in 
each Effort, as indicators of children’s interest and/or rapport 
with the robot.  Our hypotheses are: 

H1. Children will engage longer with robots that mimic 
their expressive motions. 

H2. Children will exhibit more diversity in motions when 
being mimicked. 

H3. Children will exhibit more “high energy” movement 
when the robots mimic their expressive motions. 

Our study with 45 children indicated that H2 is clearly 
supported. While H1 and H3 were not supported, there is 
suggestive evidence for both.  In addition, our results show 
that the song being played as the robots and children interact 
has a significant effect, as does gender. 

II. BACKGROUND AND RELATED WORK 

A. Laban Efforts 

The Laban Effort System is part of Laban Movement 
Analysis, which was developed to record dance choreography 
[8].  It is also used to train actors [12] and has been used to 
annotate motion in many movement-related fields [13]. 

The Effort System attempts to relate inner state and 
attitude to the dynamics of motion characteristics.  Laban 
identified four Efforts – Time, Space, Weight and Flow –  
that he maintained spanned the space of possible expressions.  
While the Efforts are a continuous 4-dimensional space, most 
approaches use only the polar opposite ends of each 
dimension.  Specifically, the Time Effort can be sustained or 
abrupt; the Space Effort can be direct or indirect; the Weight 
Effort can be heavy or light; and the Flow Effort can be 
bound or free (Figure 2). 

Combinations of the efforts can be used to convey 
different attitudes, for instance, Laban categorized abrupt, 
direct, heavy and bound as displaying a “fighting 
disposition.”  In this paper, we refer to the  combination of 
abrupt, indirect, light and free as “high energy” and 
sustained, indirect, heavy and bound as “low energy,” 
differentiating Efforts that involve quicker, larger motion 
from those involving slower, smaller movements. 

B. Related Work 

Various robotics researchers have singled out the Laban 
Efforts as a singularly applicable design framework for robot 
expressive motion [9-15]. Researchers typically use a variety 
of features for generating expressive motion, including 
velocity, acceleration, jerk, torque, motion direction, inner 
angle of joints and the robot head, and peaks in off-axis 
motion.  Some, such as those that calculate the inner angle of 
the head and each joint [14, 16, 17], are not readily applicable 
to low degree-of-freedom robots that have no arms.  Others 
utilize acceleration and jerk [9, 17, 19, 20], which can be 
difficult to distinguish, by themselves, when range of motion 
is small (our own work has also confirmed that using 
acceleration is not very transparent for rotational degrees of 
freedom [9]).  In addition, most researchers do not consider 
all four the Efforts, with Flow being the Effort most often 
omitted (a notable exception is [23]).  Our work is notable 
because it adapts each of the four Laban Efforts to low 
degree-of-freedom robots, and it is the first to actively 
overlay Laban features onto robot tasks [8-12]. 

Researchers have also used the Laban Effort system to 
characterize human behavior.  Many of these approaches 
have used relatively simple features that are readily 
measured.  For instance, [6] uses the acceleration of the head, 
torso, hands and feet (Time Effort) and [22] use simple hand 
motions (Space Effort) to classify behaviors.  Other 
researchers have used the Efforts as a framework for 
inferring affective state.  Lourens et al. [16] used experts in 
motion analysis to validate two Laban Effort features.  Others 
have used the Efforts to extract expressive state from human 
dancers [21, 25].  Zacharatos et al. [27] characterized 
expressive motion of people playing video games, calculating 
Time and Space Efforts to estimate concentration, 
excitement, and frustration.  They used hand-labeled data and 
supervised Machine Learning techniques to train classifiers 
for such states.  As in these other approaches, our own work 
uses relatively simple temporal and spatial features to 
characterize the Efforts, often times specialized for the task 
(dancing) and type of available sensor information (relatively 
noisy Kinect skeleton data). 

This work also derives from earlier research in the effects 
of rhythmic dance on the behavior of young children [18, 19].  
While that work also involved how Keepon robots imitating 
children would affect their interactions, it imitated only at the 
rhythmic aspects (beat) of the children’s behavior and not the 
more general expressive motions of the children. 

III. GENERATING EXPRESSIVE MOTION 

We have previously developed a consistent framework 
for representing and combining the Laban Efforts, layering 
them on top of task-achieving behaviors.  This framework, 
which we term the Computational Laban Effort (CLE) 
system [8], has been applied to several robot morphologies 
and tasks, and has been validated in terms of legibility of the 
Laban Efforts that the robots display [9, 11].  The CLE 
system specifies features of motions (velocity, acceleration, 
timing, range) associated with the Efforts and an algorithm 
for combining them. 

The Keepon robots have four axes (roll, pitch, pan, and 
compression, Figure 3).  The dancing task involves rolling 

weight
heavylight

abrupt

sustained

ti
m

e

direct

indirect

flow:

bound

free

 
Figure 2. The 4-dimensional Laban Effort system 
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back and forth in time to the beat of the music, while panning 
to face different directions, pitching front to back, and 
compressing up and down.  Doing these individual motions 
with different characteristics defines how the Laban Efforts 
are displayed as the robots are dancing.  The same algorithm 
is used for calculating the motion of each axis, with some 
interdependence between the Efforts and some task-specific 
modifications, as specified below (see also Table 1). 

The Time Effort conveys an agent’s attitude towards time 
– whether the agent is rushed or relaxed.  While velocity is 
an important indicator of temporal attitude, it is an 
insufficient differentiator for a dancing task, where the goal is 
to maintain a consistent beat.  Fortunately, other attributes 
that are relevant to the Time Effort, including acceleration 
(how quickly does the motion begin/end) and arrival time 
(early, on time, late), are more applicable to the dancing task.  
Specifically, for the sustained attribute, we simply use the 
period of the beat; for the abrupt attribute, we use 60% of the 
period.  For example, for a song with 120 beats-per-minute, 
the sustained attribute movements take 0.5 seconds, which 
gets the robot to its reference position, as specified by the 
Space and Flow Efforts, right on the beat; for the abrupt 
attribute, movements take only 0.3 seconds, arriving before 
the beat.  The robot thus moves faster and then stops and 
waits for the next beat to begin, thus appearing rushed.  

 The Space Effort conveys an agent’s attitude towards its 
task – whether it is focused, or not.  One way to express this 
is through focus of attention – does the agent look at the 
object of its task directly?  For the interactive dancing task, 
we interpret this as how closely the robot’s orientation is 
facing the participant as it moves during the dance.  The 
skeleton data from the Kinect sensor is used to determine the 
participant’s head position.  The pan and pitch angles needed 
for each robot to look at that position are calculated using 

straightforward trigonometry, and used as the mean angles  
of the pan and pitch axes.  Then, some noise is added to the 

angles based on a variance v.  At each beat, the calculated 

focus angles are simply:  +/- rand(v), where rand chooses 

uniformly from the argument value.  Each axis has its own  
and v. For the direct attribute, v is used as given; for indirect, 

2.5 times v is used.  For the roll angle,  for the pan and 

pitch axes,  is the angle needed for the robot to face the 
participant.  For these three axes, v=5o, thus, the direct 
attribute angles vary +/-5o from the base, and the indirect 
attribute angles vary +/-12.5o from the base.  For these axes, v 
was chosen to make the two attributes appear distinctive, 
while being careful not to exceed the range limits of the axes, 
especially in concert with the Flow Effort (see below).  For 

the compression axis,  is determined by the Weight Effort 
(see below) and v=0 (so there is no variance, which was 
chosen mainly because the compression axis has a very 
limited range of motion, so any non-trivial variance would 
impinge on the range of motion of the compression axis). 

The Weight Effort conveys a sense of force, either the 
effect of outside forces acting on the agent or the force an 
agent is exerting.  One aspect of Weight is the effort needed 
to move, which can be captured by the acceleration of the 
agent – high acceleration implies more force.  In acting, 
Weight is also often conveyed through posture – a low, bent 
posture indicates more weight compared to an upright, 
extended posture.  For the dancing task, we use both 
approaches. For calculating acceleration of an axis, the 
outputs are velocity (v) and acceleration (a), and the inputs 
are the time (t), which is calculated as the Time Effort, and 
angle/distance (r) to move, which is calculated as the Flow 
Effort (see below).  Note that the axes come to a stop after 
each move, so the initial velocities are always zero.  For the 
light attribute, we use a triangular trajectory (minimal 
acceleration and deceleration): v=2r/t and a=2v/t=4r/t2; for 
the heavy attribute, we use a trapezoidal trajectory: a=max 

acceleration of the axis and 2)ar4)at(at(v 2  . 

For posture, we set the base angle used by the Space 
Effort to be low for heavy and high for light; thus, the robots 
appear squashed in the heavy attribute and extended in the 
light attribute.  In addition, in the light attribute, the base 

Table 1. Features used for the Laban Efforts 

Laban 
Effort 

Features for  
Generation 

Features for 
Characterization 

Time 

Velocity 
Acceleration 
Arrival time 
(also influenced by 
Space and Flow efforts) 

Velocity 

Space 
Orientation Orientation 

Rotational velocity 

Weight 

Acceleration  
Height (compression) 
Bending (pitch) 
(also influenced by  
Time and Flow efforts) 

Acceleration 
Hand height 

Flow 
Range of motion 
 

Body extent 
Body ratio (width/height) 
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pan 

roll 
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Figure 3. The four axes of the Keepon robot 
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angle used by the Space Effort for the pitch axis is 10o above 
what would be directly looking at the person’s head and for 
the heavy attribute it is 15o below that angle.  This makes the 
robot look more bent over in the heavy attribute and more 
upright in the light attribute. 

The Flow Effort conveys how consistent motions are; 
motions with low variance are considered more consistent 
than high-variance, exaggerated motions.  Each actuator has a 

mean range of motion  and a variance v.  The calculated 

range of motion for the actuator is simply:  +/- rand(v), 
where rand chooses uniformly from the argument value.  For 

the bound attribute,  is used as given; for free, 1.5 times  is 

used.  For example, for the tilt axis, 20o and v=5o; thus, the 
bound range of motion is chosen from [15o..25o] while the 
free range of motion is chosen from [25o..35o].  For each axis, 
values were chosen to make the two attributes appear 
distinctive, while being careful not to exceed the range limits 
of the axes. 

This approach to implementing and combining Laban 
Efforts has been used for different robot tasks and different 
morphologies [9, 11].  The implementation described here 
has been validated for the dancing task with both a Keepon 
and a Nao robot.  Specifically, it has been shown through an 
on-line study that people can reliably distinguish the various 
Laban Effort attributes, even with different robot 
morphologies [9].  Thus, even though some parameter values 
were tweaked for this study from that in [9], due to issues 
with limits on the robots’ ranges of motion, we are assuming 
that participants would similarly be able to distinguish the 
Efforts for a group of dancing Keepon robots. 

IV. CHARACTERIZING EXPRESSIVE MOTION 

We use the skeleton data provided by a Kinect sensor to 
determine the Laban Efforts of a participant.  The skeleton 
data consists of the 3D positions of a variety of body parts, 
including the head, torso, shoulders, and hands, which we use 
for characterizing the Efforts.  We have tried to be consistent 
with how we parameterize the Efforts for generation and how 
we analyze the body for characterization, subject to the 
differences in morphology between the robots and people and 
the limitations of the sensor data (see Table 1 for 
comparisons). 

A few general comments: First, the Kinect data are noisy 
and so all calculations are done using a sliding window of 
size 10 (since the Kinect data are generated at 20 Hz, that 
represents a half second of data).  Second, a dead band is 
specified for each Effort to prevent jittering between the 
attributes. 

For the Time Effort, we cannot assume that the children 
will always be moving to the beat, so rather than looking at 
time directly, we are looking for the associated Time 
characteristic of velocity.  Velocities are determined by the 
difference between successive positions of the head and hand 
locations.  The Time Effort is determined to be abrupt if 
either the head velocity or the maximum of the two hand 
velocities is above a threshold; it is sustained if both are 
below a threshold (where the two thresholds differ by the 
dead band values). 

For the Space Effort, we wanted to differentiate the 
children focused on the robots (direct) and looking around 
(indirect).  Since the skeleton data is not able to detect head 
orientation reliably, we characterized the Space Effort based 
on body orientation.  Specifically, we calculate the angle the 
shoulders make with respect to the Kinect sensor and 
consider the attribute indirect if the angle is greater than 30o 
or the shoulder rotational velocity (change in angle over 
time) is greater than 10o per second (indicating a rapid 
change in orientation).  The attribute changes to direct if the 
angle is less than 20o and the velocity is less than 5o per 
second. We use rotational velocity as a secondary indicator 
because computing body orientation from the shoulder 
positions as given by the Kinect data is fairly noisy. 

For the Weight Effort, we wanted to use both posture and 
acceleration, as is done with generating the Weight 
attributes. Since it is difficult, using just the skeleton data, to 
determine if a body is compressed or bent, we decided to use 
a simpler method – the height of the hands relative to the 
head.  The attribute is light if the hands are at or above the 
level of the bottom of the head and heavy if the hands are 
below the shoulders.  We also use the acceleration of the 
hands to characterize the Weight Effort, but the double 
differencing needed to compute acceleration from positional 
data tends to make it too noisy to be very useful. 

For the Flow Effort, we wanted to capture the extent of 
the children’s movements.  While the generation of Flow 
motions focus on the range of movement, this was very 
difficult to calibrate, since we did not have a good baseline 
for the children’s motions.  Instead, we decided to use the 
maximum extent of the skeleton and the ratio between the 
maximum width and height of the skeleton.  Specifically, we 
calculated the extent of the skeleton for all the available body 
parts, and computed the body extent as the difference 
between the maximum and minimum X values, the body 
height as the difference between the maximum and minimum 
Y values, and the body ratio as the extent over the height.  As 
with the Efforts above, the attribute was considered free if 
either the extent or ratio were greater than some thresholds 
and bound if both were below some thresholds (which, again, 
are different from the free thresholds by the dead band 
values). 

While the features used to characterize the Efforts are 
reasonably principled, given our overall approach to 
representing Laban Efforts, the dance task, and the 
limitations of the Kinect sensor, we acknowledge that the 
choice of parameter values is somewhat arbitrary.  We tried 
to calibrate the parameter values through extensive testing by 
the researchers, but were not entirely successful, as is 
apparent by the fact that, in the actual study, the Flow Effort 
did not show much change.  We attribute this mostly to poor 
calibration, since the researchers could observe variation in 
the children’s extent.  For future work, we would like to 
investigate techniques to learn Laban characterization, as is 
done in [27], and to incorporate probabilistic techniques, as in 
[6, 22], to deal with noisy data better. 
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V. METHOD 

Eight Keepon robots [17] were arranged in a vertical 3x3 
wooden grid, approximately 4’ x 4’ (width and height), with 
a Kinect sensor in the middle of the grid (Figure 1).  The 
Keepons were controlled through software written using 
Max, running on a Mac laptop.  The Laban characterization 
software was run under Max on a PC, connecting to the 
Kinect via the DPKinect package and connecting to the Mac 
using the TCP communication protocol supported by Max.  
Head pose data is received at 10Hz and Laban Effort data at 
2Hz. 

The grid was set up so that the top of the second row of 
Keepons was at the height of an average 7-year old, so that 
most of the children would not have to look up, or down, too 
much to see all the robots at once.   The Kinect was set up to 
detect and track people in a 4’ x 3’ “dance area”, whose front 
edge was roughly 3.5 feet in front of the Keepon grid (Figure 
4).  The dance area was marked on the floor with green tape, 
and a yellow rope was placed between the grid and the front 
of the dance area to discourage children from approaching 
too close to the robots. 

The study was run over three weekends at Disney 
Research Pittsburgh.  Participants were recruited by Disney 
for their “Summer Games” through announcements at 
Carnegie Mellon and the local community.  This study was 
an optional exercise (with separate IRB approval), held after 
the participants had gone through the Disney protocols.  45 
children (20 girls, 29 boys) between 5-9 years old (M=6.8 
years, SD=1.8) participated in the study.  Most of the 
younger children were accompanied by a parent and/or 
sibling, while most of the older children (7 and up) 
participated by themselves.  Three additional children were 
recruited but did not participate because either the robots 
frightened them or they were unwilling to leave their parents. 

The children were told that the robots would start dancing 
whenever the child entered the marked dance area and stop 
when they left.  They were told that they could “watch the 

robots, dance with them, whatever you want” and could leave 
the dance area whenever they were done.  The children were 
also told that they could go back and interact some more, and 
several did so. 

When a child was first detected, the robot closest to the 
child’s head (as calculated using the skeleton from the 
Kinect) would quickly turn to face the child and then bounce 
three times as a greeting.  The other seven robots would then 
do the same thing and then the music would start and the 
robots would begin dancing.  While the robots all danced 
with the same Laban Efforts, they did not necessarily move 
in exactly the same ways.  This is because a) the generation 
of the Laban Efforts (Section III) involves some random 
choice of parameter values; and b) some of the robots start 
swaying to the left and some to the right.  But, all the robots 
followed the exact same beat. 

Anytime the child stayed in the low-energy Laban state 
(sustained, direct, bound, heavy) for more than 20 seconds, 
one of the robots would “go rogue,” dancing in the high-
energy state (abrupt, indirect, free, light); after 5 seconds the 
other robots would stop, turn to “stare” at the rogue robot, 
which would then stop and drop its head, as if in shame, and 
then all the robots would continue dancing.  This was 
implemented as an attempt to engage children who otherwise 
seemed not to be participating in dance (as evidenced by their 
low-energy state). 

Time-stamped data were logged on both laptops.  On the 
Mac, logs were kept of when the child entered and exited the 
dance area, changes in the Laban Efforts of the participants, 
and every behavior change of the robots.  On the PC, logs 
were kept of the skeleton data, as well as the computed Laban 
Efforts. 

The study had three conditions: 1) the test condition 
where the Keepons mimicked the Laban Efforts of the child; 
2) a condition where the robots always danced in the low-
energy condition, regardless of what the child did; and 3) a 
condition where the robots always danced in the high-energy 
condition.  A fourth condition, where the Keepons used the 
opposite Laban Efforts of the child, was abandoned after 4 
trials due to technical difficulties, and is not included in the 
study.  Two different Disney songs were used: 1) Shake It Up 
(128 beats per second) and 2) Twist My Hips (120 beats per 
second).  Each song lasted approximately 2:55 and then 
repeated.  The conditions and which song was played were 
randomized.  In all, there were 16 participants in condition 1, 
16 in condition 2, and 12 in condition 3.  One original 
participant in condition 1 was eliminated as an outlier (she 
interacted for over 15 minutes, which is much greater than 
the 3rd quartile plus 1.5 times the inter-quartile range). 

VI. RESULTS AND DISCUSSION 

The main data analyzed were the total time interaction (a 
measure of engagement), the number of Laban Effort 
changes per minute (a measure of diversity) and the 
percentage of time spent in each Laban condition (a measure 
of attitude).  In addition, we looked at the number of times 
children returned after leaving the dance area (a weak 
measure of engagement) and the amount of time a robot went 
“rogue” (a measure of participants’ “energy level”). 
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Figure 4. Study set up (top view) 
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The following three tables present the basic results.  The 
times are all given in minutes. The table below shows 
statistics for how long the children interacted with the robots; 
the full column indicates the percentage of participants who 
stayed through at least one full playing of the song. 

Total Time of Interaction 

Condition # Mean Std Median Full 

1. Mimicry 16 2:45 1:18 2:36 44% 

2. Low Energy 16 2:05 1:30 1:54 25% 

3. High Energy 12 2:15 1:09 2:18 25% 

The table below shows statistics for how often the system 
determined that the child’s Laban Efforts changed per 
minute. 

Laban Effort changes per minute 

Condition # Mean Std 

1. Mimicry 16 28.56 13.92 

2. Low Energy 16 15.23 9.47 

3. High Energy 12 17.57 7.31 

The table below show the average percentage of time 
/standard deviation that it was determined that the children 
were in each of the high-energy Laban Effort states. 

Percentage of time in High-Energy Laban Effort States 

Condition # Abrupt Indirect Free Light 

1. Mimicry 16 33%/27% 43%/29% 2%/5% 45%/32% 

2. Low Energy 16 23%/27% 31%/28% 5%/16% 39%/39% 

3. High Energy 12 16%/13% 29%/20% 2%/4% 26%/20% 

5 children overall returned to the dance area after leaving: 
3 were in condition 1 (one child returned 6 times, another 
twice), and 1 was in each of the other two conditions 
(returning just once, each).  There is not enough data to 
determine if this is significant, but it is suggestive evidence of 
more engagement in the mimicry condition. 

In addition, the robots went “rogue” on average 26 
seconds (SD=21 seconds) in condition 1 and 48 seconds 
(SD=37 seconds) in condition 2. (The “rogue” behavior is 
disabled in condition 3, since the robots are always in the 
high-energy state). The robots went “rogue” at least once for 
every participant in condition 2; for 4 participants in 
condition 1 the robots never ended up going “rogue.” This is 
suggestive evidence that children in condition 2 were in the 
low-energy state for longer periods of time than those in the 
test condition.  We were hoping to find some correlation 
between having the robots go “rogue” and subsequent 
expressive motion of the children, but nothing was apparent.  

Changes per minute are statistically significant (F=10.16, 
p<0.001), with nearly twice the rate of change in the test 
condition than the other two.  This supports hypothesis 2, that 
children will exhibit more diversity in motions when being 
mimicked. 

While no other result in the tables above show 
significance, the mean values are suggestive.  In particular, 
the mean times for the mimicry condition are 32% and 22% 

higher than for the two control conditions, and the median 
times are 37% and 13% higher, respectively.  In addition, the 
percentage of children who stay for at least one repetition of 
the song is 75% higher in the test condition.  This is weak 
evidence for hypothesis 1, that the children in the mimicry 
condition interact longer (and even weaker evidence that the 
children in the high-energy condition interact longer than the 
children in the low-energy condition). 

Similarly, the mean percentages of time in the various 
attributes suggest a tendency towards high-energy attributes 
in the mimicry condition.  Children in the mimicry condition 
spent 45% and 100% more time in the abrupt attribute than 
in the two control conditions (p=0.19); 38% and 49% more 
time in the indirect attribute (p=0.26); and 15% and 70% 
more time in the light attribute (p=0.27).  There is no real 
difference in the Flow Effort, which is uniformly low and 
shows little variation.  We hypothesize that this is because the 
characterization of the Flow Effort was not well calibrated 
for children (the exception being one participant in condition 
2 who was extremely active during the whole time; removing 
that outlier brings the condition 2 Efforts more in line with 
those in condition 3 for Time, Space and Flow). This is fairly 
weak evidence to support hypothesis 3, that children will 
exhibit more high-energy movement when the robots mimic 
their expressive motions. 

Somewhat surprisingly, there is little evidence that 
children behave differently in the two control conditions. We 
included those conditions to see whether having the robot 
dance in a high-energy condition would make the children 
more likely to do the same.  There is no evidence for that, at 
all.  There is very weak evidence that the children interact 
longer when the robot is in the high-energy condition: the 
median interaction time for those children is 21% longer than 
in the low-energy condition, but the difference in the mean is 
only 8%. 

There are also several significant results, and some trends, 
unrelated to our hypotheses.  The song played is a main effect 
on the number of Laban Effort changes per minute: Shake it 
Up had nearly twice the rate of changes as Twist my Hips 
(F=14.95, p<0.001), and there was an interaction effect 
between the condition and song on the changes per minute 
(F=4.59, p=0.02). In addition, there were effects of the song 
on Laban Efforts: participants hearing Shake It Up spent 60% 
more time in the indirect attitude (F=4.78, p=0.03) and 58% 
more time in the light attitude (F=3.55, p=0.07). In addition, 
there were interaction effects between condition and song on 
both the Space Effort (F=2.43, p=0.10) and Weight Effort 
(F=2.92, p=0.07).  Time Effort and time of interaction were 
similar, however. 

While these results do not address our research question 
regarding mimicry, it does bolster the hypothesis that Laban 
Efforts can be used to detect children’s attitudes, assuming 
that more activity and higher energy correlate with more 
engagement with the song being played.  This may seem 
obvious, since music often evokes emotion and emotion can 
be tied to expressive motion, but it is still gratifying to see 
that we can detect significant differences in response to 
different songs. 
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Another significant result is a main effort of gender on 
time of interaction (F=4.87, p=0.03).  Not surprisingly, girls 
interacted significantly longer on average (girls=2:55; 
boys=2:01), although all the other measurements were the 
same, except for a trend in the Weight Effort, where girls 
spent 58% more time in the light attribute than boys (F=2.43, 
p=0.13). 

Somewhat surprisingly, no age-related effects were 
discerned.  Regression indicated absolutely no difference in 
time spent dancing with respect to age.  While there was a 
slight increase in Laban Effort changes per minute with age, 
and very slight decreases with age in percentage of time 
being in each of the high-energy conditions, the results were 
not at all close to being significant for any of these measures. 

Subjectively, most of the children seemed engaged with 
the robots.  The girls, especially, giggled when the robots 
started dancing, and especially when the one robot went 
“rogue.”  Many commented on how “cute” or “cool” the 
robots looked, and several mentioned that they looked like 
chicks or ducks.  Some of the children stated that they wanted 
to take the robots home with them. 

Only a few of the children danced enthusiastically, many 
of them just swayed, and some stood stock still.  Several 
them commented that they did not like to dance.  Most of the 
children were content to watch the robots, albeit rather 
intently.  The variance in attitude was striking – some could 
not take their eyes off the robots, while almost an equal 
number were amused for about half a minute, and then 
wanted to go home.  It should be stated that this study was 
done after the children had spent about 45 minutes with the 
Disney study, and the younger children, in particular, looked 
tired; a few sat or lay down in the dance area while watching 
the robots. 

Several confounding factors may have contributed to the 
results of the study.  For one, it is very possible that the 
children were inhibited about dancing in front of the 
researcher.  Although the researcher tried to watch the 
computer monitor, not facing the children, his mere presence 
may have intimidated the children.  On the other hand, the 
fact that some of the younger children had parents and/or 
siblings present may have made them less inhibited than 
those who were alone.  Occasionally a parent would urge 
their child to dance, but most of the children did not do so. 

VII. CONCLUSION AND FUTURE WORK 

This paper has presented a detailed account of how Laban 
Efforts are generated and characterized for the task of people 
dancing with robots.  The Computational Laban Efforts 
generation framework [8, 11] is fairly general, and has been 
validated previously [9].  The characterization approach is 
more task-specific, but has the advantage that it is compatible 
with the generation approach.  We believe that this is the first 
study to use the Laban Efforts for both generation and 
characterization of expressive motion in an interactive 
fashion, having the robots responding to the Efforts of the 
participants.  Future work will be to further develop and 
synergize these two important aspects of expressive motion.  
In particular, we are interested in approaches to learning to 
characterize the Laban Efforts. 

The research question underlying this study was whether 
mimicry of expressive motion affects children’s behaviors 
while interacting with dancing robots. Three hypotheses were 
tested, relating to length of interaction, frequency of Laban 
Effort changes, and overall expression of Laban Effort 
attributes by the children.  The fact that H2 is strongly 
supported (that is, children were more diverse in their 
expressive motions when they were mimicked) may say 
something about engagement and rapport due to mimicry, but 
it may also be due to curiosity by the children to investigate 
how the robot reacts to them.  Had the results for H1 and H3 
been stronger, the case for increased engagement and rapport 
due to mimicry would have been stronger.  We believe that 
the suggestive evidence for H1 and H2 could indicate that 
more participants might produce significance – the variability 
amongst the children made it difficult to discern significance, 
if it in fact is there.  We may also want to use surveys to 
collect more direct, albeit subjective, data about how the 
children feel about the robots.  

One reviewer suggested that because the characterizations 
of Laban Efforts are noisy, it is possible that the child starts 
mimicking the robots, leading to a bilateral feedback loop.  
While the data we collected are insufficient to determine how 
much of the children’s changes in Laban Efforts are due to 
this effect, it is an interesting issue that should be explored in 
future studies.  It would also be interesting to determine how 
robot morphology affects the children’s behavior.  While our 
previous work indicated that people were relatively 
consistent in interpreting Laban Efforts with different 
morphologies and different tasks [9], it is very possible that 
robots that are more anthropomorphic will have different 
effects, especially as children may be more inclined to expect 
imitation of gestures for robots with arms and legs. 

Finally, we note that we found significant differences in 
behavior depending on which song was being played and the 
gender of the participants.  In particular, the indication that 
our approach can differentiate people’s attitude towards 
songs, which typically evoke emotional reactions, suggests 
that expressive motion characterization may help robots of 
the future determine how best to respond appropriately to 
their environment, by watching and mimicking those around 
them (as we, ourselves, often do).  Additional studies are 
needed to determine support for this idea.  That being said, 
we believe that we have shown suggestive, at least, evidence 
for the fact that children are affected by robots mimicking 
them, and that mimicry of expressive motion can be a useful 
tool in human-robot interaction. 
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