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Abstract

Rate based congestion control has been considered desirable,
both to deal with the high bandwidth-delay products of to-
day's high speed networks, and to match the needs of emerg-
ing multimedia applications. Explicit rate control achieves
low loss because sources transmit smoothly at a rate ad-
justed through feedback to be within the capacity of the
resources in the network. However, large feedback delays,
presence of higher priority tra�c, and varying transient sit-
uations make it di�cult to ensure feasibility (i.e., keep the
aggregate arrival rate below the bottleneck resource's capac-
ity) while also maintaining high resource utilization. These
conditions along with the \fast start" desired by data appli-
cations often result in substantial queue buildups.

We describe a scheme that manages the queue buildup at
a switch even under the most aggressive patterns of sources,
in the context of the Explicit Rate option for the Avail-
able Bit Rate (ABR) congestion control scheme. A switch
observes the buildup of its queue, and uses it to reduce the
portion of the link capacity allocated to sources bottlenecked
at that link. We use the concept of a \virtual" queue, which
tracks the amount of queue that has been \reduced", but has
not yet taken e�ect at the switch. We take advantage of the
natural timing of \resource management" (RM) cells trans-
mitted by sources. The scheme is elegant in that it is sim-
ple, and we show that it reduces the queue buildup, in some
cases, by more than two orders of magnitude and the queue
size remains around a desired target. It maintains max-min
fairness even when the queue is being drained. The scheme
is scalable, and is as responsive as can be expected: within
the constraints of the feedback delay. Finally, no changes
are needed to the ATM Forum de�ned source/destination
policies.

1 Introduction

The Available Bit Rate (ABR) service de�ned by the ATM
Forum supports data applications and emerging rate-adaptive
multimedia sources in Asynchronous Transfer Mode (ATM)
networks. Its operation relies on an e�ective congestion con-

trol mechanism. Rate based congestion control has been
considered desirable to achieve high performance over high
speed networks that are characterized by large bandwidth-
delay products. Its potential to achieve low loss by maintain-
ing a smooth 
ow of data with its source rate being adjusted
through a feedback mechanism [14] allows intermediate sys-
tems (switches) to have relatively small bu�ers while still
maintaining high utilizations. In contrast, although win-
dow 
ow control has undergone several re�nements to also
maintain a smooth even 
ow of data, there are several con-
ditions during which window 
ow control results in bursty
arrivals into the network. The smooth 
ow of data packets
in response to the arrival of acknowledgements is disturbed
in cases where there is ack-compression [16, 15], new 
ows
starting up, or when multiple 
ows recover from packet loss,
and go into slow-start [6]. Moreover, allowing the applica-
tions to \fast-start", i.e., to transmit as fast as reasonable
upon startup, is desirable for many data applications.

Rate based congestion control seeks to allocate the source
rates so as to achieve high resource utilization, while main-
taining feasibility (i.e., the capacity of any resource in the
network|primarily link bandwidth|is not exceeded at any
time). With even a small excess in the source rate, it can
cause a substantial queue buildup. The ABR service can en-
sure a particular notion of fairness|max-min fairness [4, 12],
which requires a distributed computation [3]. An incremen-
tal computation that scales with the number of connections
is described in [9].

The incremental computation of source rates can poten-
tially result in the rates being infeasible for short intervals
(often one round-trip time). Varying feedback delays that
result in asynchronous updates to source rates make the con-
trol of this period of infeasibility di�cult to predict. Several
other practical situations also make it di�cult to ensure fea-
sibility: changes in the capacity due to the presence of higher
priority tra�c; changes in the number of users as they ar-
rive or depart; desire of sources to opportunistically utilize
available bandwidth, since once left unused, it is lost forever;
and desire of data applications to ramp up as fast as possible
on startup. All of these cause transient situations that can
result in queue buildups which are sometimes substantial.

One way to ensure feasibility is to force a source be-
ing allowed to increase its rate to delay any increase until
all other sources have received and implemented their de-
creases. Thus, the aggregate rate at a given link will never
exceed its capacity [4]. This method introduces considerable
delay to sources when they start up or when they are asked



to increase their rate, thus impacting applications (and user-
perceived performance) adversely. It also may lead to un-
derutilization of resources. In addition, when the bandwidth
in the network changes, there is a certain time taken to pro-
vide feedback to the sources so that they may change their
source-rates accordingly. The build-up of the queues dur-
ing this transient period cannot be avoided even by schemes
that are extremely conservative in ensuring feasibility.

Unlike the scheme proposed in [4], the ATM Forum's
ABR service attempts to maintain feasibility and avoid a
large queue buildup by picking conservative values for the
\increase parameter", RIF and the initial cell rate ICR [14].
We show that even a small ICR and RIF , can still result
in substantial queue buildups.

We �rst study the queue behavior in detail and show
how and to what degree queues can build up. This moti-
vates the use of a mechanism that manages queue buildup
in concert with the rate allocation mechanism for the oper-
ation of explicit rate based congestion control. We want to
ensure that we operate the network with small queues, so as
to minimize packet loss, provide reasonably low (not a strict
bound) delay, and keep the feedback delay small (especially
if RM cells are processed in-band). Related work has been
described in the recent past to manage queue build-up [8]. In
broad terms, most of the techniques suggested achieve a low
bu�er occupancy by keeping the utilization of the link below
the full capacity (e.g., having a target utilization of 95%).
We seek to maintain the link utilization at the maximum
(i.e., 100%), except when we need to reduce the buildup
queue. Moreover, we attempt to do this while maintain-
ing exact max-min fairness and the feature of constant-time
computation of max-min fairness described in [9].

The next section describes the operation of the feedback
control mechanism, for both the source and switch policies.
Section 3 motivates the problem of queue buildup under a
variety of scenarios. Subsequently, in Section 4 we describe
the policy we propose for managing the queue, and examine
the performance under the same set of scenarios that we used
to motivate the problem. Finally, we conclude in Section 6.

2 Operation of the Feedback Control Mechanism

The explicit rate control scheme depends on a set of co-
operating sources periodically probing the network for the
appropriate transmission rate. Its goal is to respond to in-
cipient congestion, and to allocate rates to the competing
sources in a fair manner, while ensuring feasibility.

Each source of a virtual circuit (VC) periodically trans-
mits a special resource management (RM) cell to probe the
state of the network. It speci�es a \demand" or desired
transmit rate in an ER-�eld in each RM cell. In addition, to
the currently allowed rate (ACR), which is the rate at which
queued cells are transmitted out of the network interface is
transmitted in the CCR �eld of the RM cell.

Each switchcomputes the rate it may allocate to each
VC, and overwrites this allocated rate in the ER-�eld if the
computed rate is lower than what was in the received RM
cell. As the RM cell progresses from the source to destina-
tion, the ER-�eld value re
ects the smallest rate allocated
by any of the switches in the path for the VC.

On reaching its destination, the RM cell is returned to
the source, which now sets its transmit rate based on the
ER-�eld value in the returned RM cell and a speci�ed policy.

2.1 The Source Algorithm

The source policies are a simpli�ed version of [14], where the
primary properties of the feedback control loop have been
implemented, without incorporating all the issues relating
to the boundary and failure cases. Sources maintain a DE-

MAND (for data sources this may be the outgoing link's
rate), used for requesting a rate from the network. When
an RM cell returns with an allocated rate ER, the source's
allowed rate is changed as follows:

if (ACR <= ER)

ACR <- max(min(ER, DEMAND), MCR)

else

ACR <- max(min(ACR + (RIF * PCR), ER), MCR)

Notice that a request to decrease the rate takes e�ect
immediately. On the other hand, when ER received by the
source is higher than the current ACR at the source, ACR
is increased additively by a step size of RIF � PCR. The
increase factor RIF is a negotiated parameter, and PCR is
the peak cell rate for the connection. ACR always remains
above the minimum source rate MCR.

When an RM cell is transmitted, the ER-�eld is set to
max(DEMAND; ACR). RM cells are periodically trans-
mitted, once every Nrm data cells (e.g., Nrm=32). A large
RIF results in reaching the network allocated rate, ER,
quickly, but with the potential for some transient overload
on the network. Motivated by a desire to keep queues small,
RIF is often chosen to be small (we make observations on
this \typical" choice later).

2.2 The Switch Allocation Algorithm

There are several switch algorithms proposed for computing
the rate to be allocated to a VC [3, 13, 9, 7]. Switches com-
pute an allocated rate for each VC i, based on its requested
rate (value in the ER-�eld) Ai. VCs are classi�ed as being
either \satis�ed" (in set S) or \bottlenecked". The capacity
C of the link is allocated to bottlenecked VCs as:

AB =
C �

P
i2S

Ai

N � jjSjj
(1)

A global procedure performing the maxmin computation is
described in [2, 4]. Since we perform an incremental calcula-
tion upon the arrival of an RM cell, the Ai for V Ci is equal
to the \demand" seen in the ER �eld of the RM cell. The
allocated rates for the other VCs are the allocations made
when the computation was performed when their forward
RM cell was processed.

Given the current knowledge of the allocations to the
VCs, we identify those 
ows that appear to be satis�ed, then
determine the total bandwidth consumed by those 
ows, and
divide the remaining bandwidth equally between the 
ows
bottlenecked locally. A straightforward computation of the
local maxmin fair share (denoted AB) can be described as
follows [12]:
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Subsequently, the allocation for the VC i, whose RM cell
was received, is marked as follows: IfAB � min(ERi; CCRi),
then Ai = AB, and the VC is marked bottlenecked. Other-
wise, Ai = min(ERi; CCRi), where ERi is the value in the
ER �eld in the RM cell, and CCRi is the value in the CCR
(\current cell rate") �eld of the RM cell.

3 Queue Behavior

In this section, we present a detailed study of the queue-
ing behavior of the explicit rate based congestion control
to motivate our work on queue reduction mechanisms. We
consider both a common queue and a per-VC based queue-
ing structure at the switches. The corresponding schedul-
ing mechanisms would be �rst-in-�rst-out (FIFO) or Round-
Robin (RR).

The rate allocation performed at any given link for a VC
can only take e�ect after the RM cell has returned back to
the source. During this time the queue can be built up if
a di�erent VC that has a shorter feedback delay ramps up
its rate based on an indication to increase. The larger the
di�erences in the delay, the worse the build up of the queue.

To understand the queueing behavior better in relation-
ship to the feedback delay, we built a cell-level event-driven
simulator. Much of our study is with a simple network con-
�guration that contains two switches. Each switch is at-
tached with a few (ranging from 3 to 500) host nodes with
links having di�erent propagation delays. There are 2 types
of VCs in the con�guration (Figure 1) shown:

� Long VCs: with the �rst link having an 8 millisecond
propagation delay.

� Short VCs: with the �rst link having a 0.8 �second
delay.

There are 3 source policies we examine, that progressively
add small amounts of functionality at connection setup:

� The ATM Forum-based policy for the source, where
the source's initial rate a \statically picked" ICR, and
the increase, when allowed, is by a factor RIF .

� The policy marked \RATE", where the source sets the
initial rate ICR based on computing the max-min fair
share, when the connection setup message arrives at
the switch. However, the allocation is made at the
switch for the VC only upon encountering the �rst RM
cell from the VC when it begins transmitting data.

� The policy marked \RM", where the initial rate ICR is
set based on computing the max-min fair share when
the connection setup message arrives at the switch.
Further, the connection setup is treated as an RM cell

so that the allocation is performed at the switch when
the connection setup message arrives. The connection
setup provides an early \warning" of a new VC's ar-
rival to all of the others.
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Figure 1: A simple con�guration of two-switch network

3.1 Impact of Initial Cell Rate

In practice, a small ICR is preferred because it avoids hav-
ing a large burst load on the network occuring suddenly
when a VC starts up. Our observation is that a small ICR
does not always result in a smaller queue length at the bot-
tleneck. This is particularly true when there is signi�cant
disparity between the round trip times of the various con-
nections, as in the con�guration shown in Figure 1.

A large ICR helps applications. For example, RPCs that
have a burst of small messages may bene�t from high ICR,
rather than wait one or more round trips to ramp up to
the max-min fair rate. Secondly, if the network is idle or
not fully-utilized, starting with high initial rate can avoid
under-utilization during the startup phase. The workload
used on the con�guration in Figure 1 is as follows: one long
VC starts at t = 0; two short VCs start at t = 400 and
t = 800 milliseconds. All the VCs are greedy, and have
in�nite amounts of data to send in this example.
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Figure 2: Queue size for di�erent ICR with FIFO, RIF =
1/512, and Nrm = 32

3.1.1 Behavior with FIFO Queues

In Figure 2, we show the behavior of the growth of the bu�er
size with time, for 4 di�erent cases. All of these were with a
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Figure 3: Source rate for di�erent ICR with FIFO, RIF = 1/512, and Nrm = 32

conservative rate increase factor (RIF ) of 1/512. The four
cases are: ICR set to 500 cells/sec. for each source starting
up; ICR set to 50000 cells/sec. for each source; the RATE
option; and the RM option.

When the short VC arrives at t = 400 milliseconds,
this causes a queue to begin building up. This is because
the short VC encounters several steps of increase, by small
amounts, for each decrease by the long VC. The decrease
by the long VC is commensurate with the amount that the
short VC has increased from its initial ICR, at the time the
long VC's RM cell is processed. During the feedback delay
for the long VC, the short VC can now increase by several
steps (many RM cells are feedback to it). The further arrival
of another \short VC" at 800 milliseconds causes a further
queue to buildup.

Thus, we see a larger queue at the switch with a small
ICR = 500 cells/sec., compared to having a larger ICR of
50,000 cells/sec (this is likely to be true only as long as the
ICR is smaller than the �nal max-min fair share of the VC).
A further problem is the lower utilization of the bottleneck
link when the source starts up with a small ICR. The be-
havior of the queue can be further explained by observing
the source rates of the VCs, as they start up, shown in Fig-
ure 3. The rate for the existing long VC gradually decreases
as the new short VC ramps up its rate. Looking closely
at the time when the sources all converge to the new rate,
there is a brief period where the short VC reaches its �nal
max-min fair share, while the long VC has still not reduced
down to its steady state due to its feedback delay. This
infeasibility results in the queueing that we observe in Fig-
ure 2. A larger ICR (Figure 3 (b)), for the \short VC"(VC
2 and VC 3) rapidly withdraws allocation from the existing
\long VC"(VC 1). This steeper decrease reduces the interval
over which there is an overallocation of the capacity, reduc-
ing the queue buildup. Figure 2 also shows the behavior of
the queue with the RATE and RM alternatives for startup
behavior that we believe are more attractive. The RATE
alternative brings down the queue from almost 6K cells to
a little less than 5K cells in this particular example. With
the \RM" option, this reduces the queue even more: down

to nearly 4K cells. This reduction in the queue size is also
accompanied by the same reduction in underutilization we
observed when starting at a large ICR. With the \RM op-
tion", the source rates of the new sources start at what will
be their max-min fair share, and the rates of the existing
sources drops immediately to its corresponding fair share as
well. As a result, the period of infeasibility is minimal (at
most one round trip time for the long VC). This results in
only a small amount of queueing.

Thus, a small initial cell rate does not always result in a
small queue size. Particularly with algorithms that compute
the allocation on an incremental basis, having an ICR that
is high allows for a quicker correction of the rate for long
VCs, and thus a lower queue length at the switch.

3.1.2 Behavior with Per-VC Queues
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Figure 4: Queue size for di�erent ICR with Per-VC queues,
RIF = 1/512, and Nrm = 32

Traditional perception has been that per-VC queueing pro-
vides isolation and therefore results in generally better queue



and delay characteristics. However, we observe one charac-
teristic of per-VC queueing here, that results in larger ag-
gregate queues at the switch. When a cell (let us consider
it to be the \marked" arrival) arrives at a non-empty queue
subsequent arrivals to di�erent queue can cause additional
delay for the marked arrival before it is served. This be-
havior is similar to that observed in [5]. In our situation,
the additional delay experienced by RM cells of an existing
long VC which already has a reasonable queue at a switch
is of concern. Since the queues are served in round-robin
fashion, this RM cell (of the long VC) has to wait it's turn
to be served. If in the meantime, a short VC starts up,
and rapidly ramps up its rate, it contributes to the delay of
the long VC's RM cell. This increased feedback delay (in
comparison to FIFO queues) results in additional queueing
(from 6500 cells for FIFO to about 7800 cells for per-VC
queues). In fact, the e�ect of a smaller ICR on the growth
of the queue is even more with per-VC queues, as seen in
Figure 4. What is interesting also is that the di�erence in the
queue sizes with the \RATE" and \RM" cases nearly disap-
pears. This is because the additional delay in the \RATE"
option waiting for the �rst RM cell to perform the alloca-
tion is negligible compared to the additional feedback delay
introduced for the long VC because of the e�ect of \future"
arrivals with per-VC queueing.

Thus, while per-VC queueing is typically expected to
provide much better queue and delay behavior, it is not
always the case. To get back the desirable characteristic of
per-VC queueing, we see the need to introduce additional
mechanisms that manage the queue, and keep it small.

3.2 Impact of Rate Increase Factor

Similar to the situation with a small ICR, a small RIF
also leads to a substantial queue. An RIF of 1/512 results
in a queue of 6500 cells. Increasing RIF to 1 reduces the
queue to 5000 cells. We believe that as long as ICR is small
compared to the �nal max-min fair rate of the source, larger
values of RIF result in a smaller eventual queue build up.
Figure 5 shows the behavior with an ICR of 500 cells/sec.,
with FIFO queues for varying values of RIF . The queue
reduces slightly with the \RATE" option, compared with
the ATM Forum policy with an RIF of 1. When using the
\RM" option, the queue drops down further, to almost 4000
cells.

We observe a similar behavior for the queue with per-VC
queueing as well. The aggregate queue is generally larger
with per-VC queueing.

3.3 Dynamic changes to available bandwidth

One of the major concerns with end-to-end rate control
mechanisms is the responsiveness to dynamic changes in the
available bandwidth. When the available bandwidth to the
ABR service class reduces, it takes a certain amount of time
for the sources to react to the reduction in bandwidth (the
switch has to perform the reallocation as subsequent RM
cells arrive, and then feedback reaches the sources). During
this period, the aggregate rate of the ABR VCs may exceed
the capacity, resulting in queueing at the bottleneck. The
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larger the amount of bandwidth reduction, the higher the
queue buildup, potentially leading to cell loss.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 1000 2000 3000 4000 5000 6000

Q
ue

ue
 S

iz
e 

(c
el

ls
)

Time (ms)

512
1

RATE
RM

Figure 6: Queue size for dynamic bandwidth changes: FIFO

The model we use for change in the link bandwidth is
for a constant bit rate (CBR) VC to turn ON and OFF,
periodically. We �rst have a set of four VCs using the ABR
service arrive one after the other. At about 2 seconds, we
introduce the CBR VC, which takes 50 % of the bandwidth
away from the existing VCs. This results in a queue buildup.
The CBR VC remains ON for 500 milliseconds, and then is
OFF for another 500 milliseconds. This ON/OFF pattern
repeats for the CBR VC. We observe from Figure 6 that
the queue build up can be substantial. Using a small initial
cell rate of 500 cells/sec. and a conservative increase factor
(RIF ) of 1/512, results in a queue buildup to about 20K
cells each time the CBR VC turns ON, and drains back to
about 10K cells when it goes OFF. However, when we use
an RIF of 1, there is a substantial queue buildup, reaching
almost 180K cells. Using the \RATE" and \RM" options,
(with RIF= 1), the queue buildup is almost identical to the
case with an RIF of 1. When the link bandwidth changes,
this has less impact for the \RM" option also, because the



\early warning" is provided only when ABR VCs startup.
It is clear that the large RIF causes a substantial impact,
resulting in the queue buildup. The behavior with per-VC
queueing is similar.

3.4 Scalability - Behavior with a Large Number of VCs

In Figure 7, we examine the e�ect of having a large number
of VCs. A total of 500 VCs startup, each starting up in
a staggered manner, 20 milliseconds apart. The �rst 250
VCs that startup are \long VCs". Then, the next 250 VCs
that startup are \short VCs". We see from the �gure that
there is a dramatic queue buildup, both with FIFO queues
as well as with per-VC queues. With FIFO queues, and
an initial rate of 500 cells/second, and an increase factor,
RIF , of 1/512, the queue builds up to about 400,000 cells.
When RIF is increased to 1, the queue builds up to a little
over 1.1 Million cells. With the \RATE" option, the queue
builds up to nearly 1.6 Million cells. The behavior with
per-VC queues appears to be somewhat better. The \RM"
option on the other hand has a substantially smaller queue
buildup. The dramatic reduction in the queue is due to the
\early-warning" provided to the other VCs when a new VC
starts up. But the scale is misleading: even for the \RM"
option, the queue buildup is relatively large with both FIFO
and per-VC queues (about 12000 cells for FIFO and 45500
cells for per-VC queues).

We believe that it is essential that a queue reduction
mechanism be incorporated to complement even the best
rate allocation mechanism that is used in the switches, to
reduce the queue buildup in all of the scenarios we have
observed here.

4 Algorithm for Queue Management

We have seen signi�cant queue buildups because of feed-
back delay, presence of higher priority tra�c, and varying
transient situations. This suggests a need of a queue man-
agement mechanism that works in a complementary fashion
with the rate allocation mechanism. In the following sec-
tions we propose such a mechanism and show that the queue
buildup can be dramatically reduced in all of the scenarios
we have observed up to now.

The hop-by-hop mechanism in [10] adjusts the upstream
node's rate in response to queue occupancy information. Its
goal is to maintain a target bu�er-occupancy (set-point) at
each node. The scheme takes advantage of per-
ow queueing
and information on the service rate seen by the 
ow (VC) to
determine the sending rate at the upstream switch. With a
FIFO queues, it is di�cult to know the contribution to the
queue by each 
ow (that per-VC queueing provides), and
the task of managing the queue becomes more di�cult. An-
other alternative is to allocate only a portion of the actual
available link capacity to the requesting VCs, and maintain-
ing a reserve for draining the queue [7]. Firstly, the capacity
available is potentially changing frequently, and even main-
taining a reserve does not guarantee feasibility at all times.
Secondly, we believe a goal of utilizing all of the available
bandwidth is a desirable one, especially when there is little
or no queueing in the network.

This suggests the need for us to look at an alternative
mechanism, where the algorithm for queue reduction is more
\centralized". By centralized, we mean that the reduction
needed for a given queue is known and controlled at that
queue. The overall algorithm is still distributed, in that each
queue is independently controlled at that queueing point.
The control of the transmission rates is still the same as
with the distributed explicit rate control mechanism. An
additional attractiveness is that there is no change required
to the current speci�cation for the ATM Forum speci�ed
source-destination policies [14].

4.1 Design Goals

We manage the queue at an intermediate switch instead of
at the end system, since this is where the queue is built up.
The broad goals that we have for the algorithm to manage
queue are the following:

� Allow sources to start-up aggressively. We believe it
is desirable to allow sources to start transmitting at a
reasonable rate (we interpret this to be the max-min
fair rate) close to the steady-state value as soon as
possible after connection setup.

� Allow sources to aggressively ramp-up to the newly
allocated rate. When a source is allowed to increase
from its current rate, it is desirable to allow the source
to quickly increase its sending rate to the new value.

� Drain queues as quickly as possible when they build-
up, while minimizing link under-utilization, and avoid
oscillations in the source rate and the queue size while
draining the queue.

� Maintain Max-Min Fair share allocation consistently,
even during the periods when the queue is being drained.

4.2 Details of the Algorithm

We use the concept of a target set-point [10] for the queue
size at an individual link, above which we begin to per-
form the function required to reduce the queue. The queue
reduction is achieved by modifying the proportion of the
link capacity available to be allocated among the competing
sources. Reducing the capacity available for all ABR VCs
results in our causing a reduction in the allocations only
for those VCs that are bottlenecked at this link. The ac-
tual queue we see does not re
ect the number of cells we
should drain once draining starts taking e�ect. If we de-
cide how much capacity to use based solely on the size of
actual queue, it causes under-utilization, oscillations of the
queue or takes a very long time to drain the queue because
of a very conservative setting of the parameters. This dis-
tinguishes our work from [7].

The approach we use exploits the fact that all the sources
participate in the algorithm that maintains max-min fair
rates, so that the aggregate rate remains \feasible" (i.e.,
does not exceed the capacity of any resource in the net-
work). Thus, when the queue does build up, we try to keep
the reduction in the rates for the VCs to be relatively small.
This is to minimize underutilization, and excessive oscilla-
tion of the rates. Since the reduction of the queue can only
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Figure 7: Queue size for 500 VCs: FIFO (left) and Per-VC queues (right)

begin when the feedback reaches the source, the dominant
parameter for reducing the queue is the feedback delay. A
large reduction of the capacity of the resource for the pur-
poses of reducing the queue build up does not help as much,
especially in wide-area networks, and in situations where the
feedback delay is widely di�erent. As long as the number of
cells queued is not unreasonably large (which would cause
too much delay and possibly cell loss), the gain in reducing
the capacity by a large fraction does not provide substantial
additional help.

4.2.1 Smooth Reduction

Once the queue builds up, we want to reduce the capacity
used for all ABR VCs, so that the aggregate arrival rate will
be reduced. The �rst thing to decide is how much capacity
to reduce, given the size of the queue. We want the shape of
the rate reduction function to provide a \smooth" reduction
in the capacity, as a function of the queue size. As the queue
size rises substantially above the set-point, the reduction
in the capacity increases more rapidly. Finally, when the
queue size reaches a multiple of the set-point, the amount
of reduction in the capacity reaches a ceiling. We choose a
conservative ceiling so as to ensure that not too substantial
a fraction of the bandwidth is utilized for the reduction of
the queue.

Let C be the total capacity used for all ABR VCs. The
amount of reduction in the capacity is given by the following
function:

R = a(x� S)2 + b(x� S) + c (2)

The capacity C �R is the amount allocated to all the 
ows
making a request. Let M be the maximum value allowed
for the rate reduction R. S is the set-point for the queue,
and x is the instantaneous queue size at the link. a, b and
c are parameters for the equation solved using the following
three points:

(x;R) = f(S; 0); (2S; M=4); (3S; M)g

on the curve (Figure 8). The motivation is to keep a smooth
reduction of the capacity just around the set-point, S, and
have a more rapid reduction as the queue builds up.
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Figure 8: Rate reduction function, for a set-point, S = 600
cells.

S was chosen to be 600 cells in our experiments, and we
chose to bound the total capacity reduced for queue reduc-
tion, M , to be 10%. Given the amount of rate reduction as
a function of the queue size using the quadratic function in
equation (2), we apply this rate reduction for a time period
until the queue drains.

It is possible to use other reduction functions, with a dif-
ferent shape for the reduction in the capacity, compared to
the one shown in Figure 8. For example, we also used cubic
and exponential functions. We observed that, by using a
smoother function when the queue size is close to setpoint,
it helps avoid oscillations. But, the queue drained exces-
sively slowly. Reducing the interval over which the queue
is drained (changing from (S; 3S) to (2S; 3S)) increases the
oscillations of the queue. An initial choice of the setpoint
to be 600 cells was based on having a reasonable target of 2
milliseconds worth of delay contributed per hop, and bu�er-
ing a small number of IP packets (9K bytes each) before
impacting the capacity on a 155Mb=s link.

4.2.2 Virtual Queue

When we begin to drain the queue, the current size of the
queue is not an accurate estimate of the aggregate buildup
over time of the di�erence between the service rate at the
resource and the arrival rates from the sources. Basing the
reduction on the instantaneous queue size may result in os-
cillations of both the queue and the source rates. This is
particularly true in the presence of large feedback delays.
If the rate reduction is applied until the queue completely



drains, the feedback delay to the source will result in under-
utilization of the link subsequently, when the aggregate rate
of the sources becomes less than the capacity for an addi-
tional round-trip time. This e�ect in the oscillation of the
queue size has been examined using di�erential equations
by [1]. The reduction of the rate of the sources needs to be
implemented such that we do not overcorrect and experience
underutilization of the link.

To enable draining the queue quickly without causing
under-utilization, we introduce a concept of a \virtual queue"
by tracking the size of queue that has to be drained, but
which has not yet taken e�ect on the real queue. The vir-
tual queue is the di�erence between the maximum queue
achieved in the current \regeneration cycle" and the aggre-
gate size of the queue that has been reduced so far by the
rate reduction mechanism during this cycle. This virtual
queue is used to determine how much longer the rate reduc-
tion has to be applied. A regeneration cycle for the queue
length is similar to that discussed in [11]. The start and end
points of the regeneration cycle are when the queue transi-
tions the set point, S (and we also start a new cycle when
the actual queue exceeds the virtual queue).

We reduce the allocated rate on an individual VC basis.
VCs that are not bottlenecked at this switch are allocated
a rate lower than the rate for bottlenecked VCs. Although
they may contribute to queueing on a transient basis (due
to jitter and other events that may cause cell bunching), the
rate reduction mechanism does not (and may not be able
to) address the e�ects of these transients. Thus, to reduce
the queue built up, we control the allocations of the VCs
bottlenecked at this link. Since all the bottlenecked VCs at
a link have an equal share, we only need to examine a simple
boolean state variable of whether the VC is bottlenecked or
not.

The state maintained at each link is the following:

� On a per port (p) basis, we maintain the following vari-
ables: the maximum queue seen in this regeneration
cycle,(p:max q); the amount of capacity (p:reducing cap)
reduced for the purposes of queue reduction, the size
of queue drained so far (p:reduced q), and the queue
length at the time an RM cell was received on the port
(p:prev q).

� On a per VC (vc) basis, we maintain the time the last
RM cell was received from that VC (vc:prev rm time,tvc),
and the bandwidth reduction that this VC has con-
tributed (vc:reducing cap,vcr). Thus, we can track
the total capacity reduction for the link over the num-
ber of bottlenecked VCs using the link.

At any time t when a RM cell is received, if the VC is bot-
tlenecked by the link, the number of cells being reduced (or
the size of virtual queue being reduced) between this and
the previous RM cells for this VC is:

vc:q reduced(t) = vcr � (t� tvc) (3)

The instantaneous queue size at a link is an integration
over time of the di�erence between the input and the output
rates, ri(t) and ro(t) as seen at the link. That is,

x(t1) =

Z
t1

t0

(ri(t) � ro(t))dt (4)

The amount of rate reduction therefore can also be deter-
mined knowing the service rate and the virtual queue size.
Since the queue is an integrator of the di�erence in the rates,
the relevant information is the largest queue size achieved
(p:max q) during this regeneration cycle, which has to be
drained. Let the capacity of the link be C, and the reduced
capacity allocated amongst all the bottlenecked VCs be c(t)
(which is the value of R in equation (2) as a function of
time). Let us assume that the queue crossed the value of
\set-point", S, at time ti. If tj is the time until which the
rate is being reduced, then the amount of queue reduced,
Qr(tj),

Qr(tj) =

Z
tj

ti

(C � c(t))dt (5)

The arrival of RM cells from each source gives us the
necessary timing information that we may exploit to deter-
mine the amount of \queue-reduction" we have achieved by
(5). The amount of reduction of the queue contributed by
individual VCs is maintained at the switch by knowing the
time since the last RM cell arrived for that VC, according
to equation (3).

We seek to determine, dynamically, the time tj at which
the queue reduction has to stop in a given regeneration cy-
cle. Simplistically, tj occurs when the total amount of queue
reduction achieved, Qr (by equation (5)) has reached Qr =
(p:max q � S). We stop the reduction when (p:max q �

Qr) � S. However, this ignores the fact that there is feed-
back delay involved, and waiting till this amount of the ac-
cumulated queue is drained is inadequate. There is still
one half-round trip time's (RTT) worth of cells sent at the
source's incorrect rate, to be accounted for. These cells were
transmitted from the source from the time when the switch
stopped applying the rate reduction up to one half RTT.
Thus, the queue built up due to this excess rate has to be
drained. We apply a correction factor to reduce the queue
for a slightly longer time period, tk.

A simple approximation for tk we have chosen, deter-
mines the current bu�er size, brem at the time tj, when
the queue reduction has reached the value (p:max q � S).
This brem is now used as the amount of queue to be fur-
ther reduced. We then iteratively use equation (5) to deter-
mine how much further we should apply the queue reduc-
tion. Since the queue size that is now used to determine the
amount of rate reduced is now relatively small, the amount
of reduction in the allocated capacity is also relatively small.
There is a more \gradual" reduction in the queue, but this
is not harmful, since we are operating in the region where
the amount of queue built up is also small.

4.2.3 Slow Recovery

When the queue has been reduced to the setpoint, the band-
width has to be released to the existing VCs. In a distributed
rate allocation scheme that tries to take advantage of un-
used capacity by other VCs, allocation decisions are based
on what other VCs are currently using. However, with the
presence of a large number of VCs, multiple existing VCs
may arrive at the same conclusion, which leads to transient
over-allocation. Oscillations in the queue size with there-
fore occur. To reduce the amount of oscillations that may



result (even if the amount of bandwidth released is relatively
small), we recover the capacity of a VC to its max-min fair
share rate gradually by allocating a share of the increased
capacity to each of the bottlenecked VCs. The rate increase
allowed for a VC is based on the maximum reduction in the
rate we allowed and the number of bottlenecked VCs. When
the allocation to a VC is increased, a ceiling function is ap-
plied to this increase. for an interval of up to one maximum
round-trip time interval.

The pseudo code for the entire mechanism is shown in
Figure 14.

5 Simulation Results

In this section, we examine the ability of our queue man-
agement algorithms to control the queue size for the various
scenarios we examined earlier in Section 3, with the same
options for the startup and increase factors at the sources.

5.1 Behavior with Variation in ICR and RIF

Figure 9 shows the behavior of the queue at the 1st switch in
the topology shown in Figure 1, when a \long VC" starts at
time t = 0, and two \short VCs" arrive at 400 and 800 mil-
liseconds respectively (all with an RIF = 1/512). Both the
\RATE" and \RM" options result in a queue buildup ini-
tially to 3000 cells, just as we observed for this case without
rate reduction. However, we are able to rapidly bring down
the queue to our target setpoint of 600 cells in 5 to 6 round-
trip times. There is no continuing buildup of the queue as
we observed in the cases without a queue reduction mech-
anism (Section 3.1), where the queue size built up to over
7000 cells even with just these 3 VCs (because of the arrival
of the two short VCs). A smaller ICR results in a slightly
smaller initial peak, of about 2400 cells. When the third
VC comes on at 800 milliseconds, since there are more VCs
now, there is a smaller queue buildup due to this incoming
VC with all the options. The di�erences between the vari-
ous options for the peak queue size is not as signi�cant; the
primary di�erence with a small ICR is the additional time
it takes for the queue to buildup. We also observe that the
di�erence in the queue behavior between FIFO queues and
per-VC queues is not that substantial. There is a small ad-
ditional queue with per-VC queues when the ICR is preset
(50000 or 500) compared to using FIFOs.

The behavior of the queue with di�erent values of RIF
(going from 1/512 to 1/16) is also similar to what we observe
in Figure 9.The peak buildup is similar for larger values of
RIF , even up to when it is 1, for a �xed ICR= 500 cells/sec.
and even with the \RATE" and \RM" options (which use
an RIF = 1, but may have a larger value of ICR). Having
a small RIF (1/512) causes the queue to grow slower, and
therefore gives our queue-reduction mechanisms to act and
bring down the queue (we exclude the �gures due to lack of
space).

5.2 Effect of Changes to Available Bandwidth

We examine the ability of our proposed queue management
mechanisms to control the queue when the available band-
width changes (e.g., re
ecting a CBR VC going ON and

OFF), corresponding to the scenario in Section 3.3. When
the CBR VC turns ON, the peak queue build up is about
1800 cells (3�S), considerably smaller than the nearly 170,000
cells we observed without any queue reduction mechanism
in place. The case with FIFO queues is shown in Figure 10.
When the CBR VC turns OFF, there is a potential for un-
derutilization until the other VCs (especially those with a
long RTT) ramp up their source rates. Only the most con-
servative option of an ICR =500 and RIF = 1/512 results
in a small period over which the queue goes down to 0, for
about 2 round-trip times. The \RATE" and \RM" options
do not result in any under-utilization because the queue size
drops down to about 250 cells. At this point, the rate of the
ABR VCs catch up due to the large increase factor of 1.
However, the large RIF does not hurt because we are able
to bring the queue back down reasonably rapidly. With per-
VC queues (�gure excluded), the only di�erence is with the
\RATE" option where the queue drops down to nearly 0
for a brief period, less than a round trip time. Once we
bring the queue size down, there is little di�erence between
FIFO and per-VC queueing as far as the queue buildup is
concerned.

5.3 Scalability: Behavior with a Large Number of VCs

To examine the ability of our queue management mecha-
nisms to truly scale to very large number of VCs, we ex-
amined the performance with 500 VCs. The di�culty with
a large number of VCs is that the rate for an individual
VC is so small that small perturbations to each source's
rate beyond the max-min fair share results in considerable
queueing. We showed in Figure 7 that without a mecha-
nism to reduce the queue, the queue build up is in fact sub-
stantial. There are 250 \long VCs" arriving initially, each
staggered 20 milliseconds apart, and then there are another
250 \short VCs" that arrive subsequently, again spaced 20
milliseconds apart. The con�guration used is the simple,
two-switch topology shown in Figure 1.

The behavior of the queue with our rate reduction mech-
anism to manage the queue is shown in Figure 11. One of the
explicit enhancements we had to include for rate reduction
as a result of the large-scale con�guration was to recognize
that the time between RM cells for an individual VC was
larger than the round-trip time. Furthermore, the time esti-
mate for the round-trip delay observed at connection setup,
especially for per-VC queues is signi�cantly smaller than
when data is actually 
owing. Furthermore, the slow re-
covery described in Section 4.2.3 is critical to ensure that
the queue remains manageable. The best behavior is ob-
served with the RM option, where the queue remains close
to the setpoint value of 600 cells under all circumstances. In
fact, even the conventional option of having an ICR = 500
cells/sec and RIF = 1/512 shows good behavior (Figure 11).

5.4 Performance with a General Topology

So far, we have focused on a relatively simple topology that
emphasized the di�erence between the feedback delays for
the sources. In this subsection we demonstrate that our
mechanisms maintain max-min fairness even in a more gen-
eral topology, where there are multiple bottlenecks. The
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Figure 9: Reduced queue size for di�erent ICR: RIF = 1/512: FIFO (left), Per-VC queues (right)
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Figure 10: Reduced queue size with dynamic bandwidth with FIFO queues

topology is shown in Figure 12.
There are 8 sources that start up in a staggered man-

ner (the start times for each of the sources is shown in the
�gure), and each source goes through di�erent sets of re-
sources. The link bandwidths between the switches are dif-
ferent (shown in the �gure). The link bandwidth from the
sources to the switches are all 155 Mbits/sec. There are 3
sources that have long feedback delays (the long links are
marked \L" = 8 milliseconds), and the other 5 sources have
short feedback delays (marked \S"= 0.5 �seconds). The tar-
get max-min rates for VC 1 and VC 6 are approximately 20K
cells/sec. (8.333 Mbps) and 40K cells/sec. (16.667 Mbps)
respectively. Figure 13 shows the behavior of the source
rates for VC 1 and 6. VC 1 starts at time t = 0, and VC
6 starts at time t = 900 milliseconds. We observe that the
sources achieve their steady state max-min fair share rates
subsequent to the last VC starting up (at time t = 1500 mil-
liseconds). Although there is a small reduction of the rates
due to the queue buildup at both switch 3 and switch 6, the
observation from the �gure is that we retain max-min fair
rates for the VCs throughout the process of di�erent sources

starting up (when the target fair rate for a VC changes).

6 Conclusions

Explicit rate mechanisms used for allocation of link capac-
ity to sources in an end-end rate based congestion control
scheme have the desirable property of adjusting source rates
to ensure feasibility. However, on a transient basis, we
�nd that the rate is exceeded, causing queues to buildup.
When sources place a persistent load and the rate alloca-
tion scheme attempts to fully allocate the available capacity,
this queue does not drain quickly, or naturally. Furthermore,
even a small di�erence in the aggregate source rate above
the link capacity can cause a quick, substantial buildup of
the queue. This is especially true when the feedback delays
to sources are large and widely varying. It is very desirable
to allow sources to opportunistically utilize available band-
width, since once it is left unused, it is lost forever. This
encourages sources to start up aggressively and to ramp up
their rate to the �nal value as fast as possible. All of this
results in large queues.
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Figure 11: Reduced queue size for 500 VCs: FIFO (top) and Per-VC queues (bottom)
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Figure 12: GFC con�guration

We showed that having a small ICR and/or small RIF
does not always help in keeping the queues small. The queue
buildup when the available capacity for ABR changes is also
substantial. We also showed that when we have a large num-
ber of VCs active (500 VCs), the queue buildup is clearly
unreasonable (over a million cells). We also showed that
in some cases, the use of per-VC queues in fact results in
a higher aggregate queue in comparison to FIFO queueing.
With per-VC queues we found that the delay to RM cells
caused by future arrival of cells to another competing VC
resulted in a higher queue, especially when the increase pa-
rameter, RIF was small. Thus, we found that it is essential
to have a queue management mechanism in addition to a
good rate allocation mechanism in the switch.

This paper described a scheme for managing the queue
buildup at switches even under the most aggressive behavior
patterns of the sources. The scheme operates in the context

of the Available Bit Rate (ABR) congestion scheme speci�ed
by the ATM Forum, with switches using the explicit rate op-
tion (which we believe has the most promise of maintaining
rates close to the feasible value). The mechanism is entirely
compatible with the currently speci�ed source and destina-
tion policies of the ABR speci�cation.

Switches observe the buildup of the queue (which acts
as an integrator of the excess rate over time), and use it to
reduce the portion of the link capacity that is allocated to
the sources bottlenecked at this link. Rather than the in-
stantaneous queue, we use the concept of a \virtual" queue,
which tracks the amount of queue reduced by reducing the
allocation to bottlenecked VCs. We do this by taking advan-
tage of the natural timing of \resource management" (RM)
cells transmitted by sources, which allows us to measure how
much of the buildup queue will be reduced by our reducing
the allocation of the capacity to a VC, even though that
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reduction may not be re
ected as yet in the instantaneous
queue.

The mechanism takes advantage of the connection setup
message to both compute a max-min fair rate for a VC, as
well as allocate the rate to the incoming VC so that it serves
as an \early warning" for existing VCs (the \RM option").
We showed that the queue reduction mechanism maintains
the queue at the resource close to the \setpoint" we chose
(600 cells, or about 3 IP packets of 9K), even when the
source policy has the most aggressive behavior: the initial
cell rate, ICR, is the �nal max-min fair share of the VC and
the rate increase factor, RIF , is the maximum allowed, 1.
We showed that even when we have a higher priority CBR
VC take away half of the link bandwidth, the queue buildup
is not signi�cant. In all of the cases, there is little or no un-
derutilization of the bottleneck, which is very desirable as
well. To examine the ability of the mechanism to scale up
to large numbers of VCs, we showed that the performance is
excellent even when we go up from a few (less than 10) VCs,
up to 500 VCs, in a demanding con�guration which has 4
orders of magnitude di�erence in feedback delays. Without
the queue reduction mechanism, the queue buildup can in
fact reach 106 cells with 500 VCs. With the queue reduc-
tion mechanism, the queue remains close to 600 cells - a
signi�cant improvement.

The scheme is elegant in that it is simple. It is scalable,
and is as responsive as can be expected: within the con-
straints of the feedback delay. One of the most important
characteristics of the queue reduction mechanism is that it
maintains max-min fairness, even when the queue is being
drained. With the distinct queue draining mechanisms in
place, the di�erences in the behavior of the queue between
FIFO queueing and per-VC queues also reduces, which we
believe is very desirable.
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Rate Reduction(p : PORT; vc : VC)

1. cap ABR capacity(p) /* get total capacity used for ABR VCs */

2. q  queue size(p) /* get the queue size of the out port */

3. t Current Time() /* get the current system time */

4. if (q < S) then /* if the queue size is smaller than the setpoint */

5. if (RTT clock � 0) then /* if the clock for an extra maximal RTT is not started */

6. RTT clock  1 /* start the extra maximal RTT clock */

7. else if ((t� p:maxRTT ) > RTT clock) then/* if maxRTT after queue being drained */

8. vc:reducing cap 0 /* clear the capacity reduced for vc */

9. RTT clock  0 /* stop ticking */

10. end if

11. end if

12. p:reducing cap  0 /* capacity being reduced for the port */

13. p:reduced q  0 /* total queue size reduced so far */

14. p:max queue; p:prev q  q /* the maximal queue size and the previous queue size */

15. new cap cap /* use the full capacity */

16. else if (bottleneck(vc; p) = 0) then /* if the VC is not bottlenecked by the port */

17. new cap cap � p:reducing cap /* the VC does not contribute to queue build-up */

18. else

19. rm intval t� vc:prev rm time /* time between this and the previous Rm cell */

20. v red q  rm intval � vc:reducing cap /* size reduced for virtual queue between two RM cells */

21. p:reduced q  p:reduced q + v red q /* reduced size of virtul queue by all VCs using the port */

22. r red q  q � p:prev q /* change of real queue */

23. v q  p:max queue� p:reduced q /* update virtual queue size */

24. if (r red q > v red q) and (v q < q) then /* if more cells are seen from the real queue */

25. p:max queue q /* update virtual queue to real queue */

26. p:reduced q  0 /* clear reduced queue size */

27. end if

28. if (v q � S) then /* if virtual queue is below set-point */

29. p:max queue q /* update virtual queue */

30. p:reduced q  0 /* clear reduced queue size */

31. end if

32. p:reducing cap  Reduction(v q; cap) /* call quadratic reduction function */

33. vc:prev rm time t /* update the previous RM cell time */

34. num b p:bottleneck /* update reducing capacity for the vc */

35. vc:reducing cap p:reducing cap=num b /* get the number of bottlenecked VCs */

36. p:prev q  q /* update the previous queue size */

37. new cap cap � p:reducing cap /* update reducing capacity for the vc */

38. end if

39. vc:ER MaxMin FairShare(p; vc;new cap) /* do maxmin fair share rate allocation */

40. inc1 vc:reducing cap /* get the capacity reduced by this VC */

41. n MAX(1; p:max RTT=vc:rm intval) /* steps to complete rate recovery in maxRTT */

42. inc2 MAX RED=(num b � n) /* the maximal recovery rate in each step */

43. max ER  vc:prev ER +MIN(inc1; inc2) /* get the maximal allowed ER value */

44. if (vc:ER > max ER) then /* if allocated rate is larger than allowed maximum */

45. vc:ER max ER /* use the allowed maximal as new ER */

46. end if /* get maxmin fair share */

Figure 14: Pseudo-code for the rate reduction algorithm.


