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Making experiments

dependable |

bstract. In computer science and computer
Asecurity we often do experiments to establish or

compare the performance of one approach vs.
another to some problem, such as intrusion detec-
tion or biometric authentication. An experiment is
a test or an assay for determining the characteristics
of the item under study, and hence experimentation
involves measurements.

Measurements are susceptible to various kinds of
error, any one of which could make an experimental
outcome invalid and untrustworthy or undependable.
This paper focuses on one kind of methodological er-
ror—confounding—that can render experimental out-
comes inconclusive, but often without the investigator
knowing it. Hence, valuable time and other resources
can be expended for naught. We show examples from
the domain of keystroke biometrics, explaining several
different examples of methodological error, their con-
sequences, and how to avoid them.

1. Science and experimentation

You wouldn't be surprised if, in a chemistry experi-
ment, you were told that using dirty test tubes and
beakers (perhaps contaminated with chemicals from a
past procedure) could ruin your experiment, making
your results invalid and untrustworthy. While we don't
use test tubes in cyber security, the same admonition
applies: keep your experiments clean, or the contami-
nation will render them useless.

Keeping your glassware clean is part of the chem-
lab methodology that helps make experimental mea-
surements dependable, which is to say that the mea-
surements have minimal error and no confounding

oy Maxion*

variables. In cyber security we also need measure-
ments that are dependable and error-free; undepend-
able measurements make for undependable values
and analyses, and for invalid conclusions. A rigorous
experimental methodology will help ensure that mea-
surements are valid, leading to outcomes in which we
can have confidence.

A particularly insidious form of error is the con-
found—when the value of one variable or experi-
mental phenomenon is confounded or influenced by
the value of another. An example, as above, would be
measuring the pH of a liquid placed in contaminated
glassware where the influence of the contaminant on
pH varied with the temperature of the liquid being
measured. This is a confound, and to make things
worse, the experimenter would likely be unaware of its
presence or influence. The resulting pH values might
be attributed to the liquid, to the temperature, or to
the contaminant; they cannot be distinguished (with-
out further experimentation). Similar measurement
error can creep into cyber security experiments, mak-
ing their measures similarly invalid.

This article describes some of the issues to be con-
sidered, and the rationales for decisions that need to
be made, to ensure that an experiment is valid—that
is, that outcomes can be attributed to only one cause
(no alternative explanations for causal relations), and
that experimental results will generalize beyond the
experimental setting.

In the sections to follow, we first consider the hall-
marks of a good experiment: repeatability, reproduc-
ibility and validity. Then we focus on what is arguably
the most important of these—validity. We examine
a range of threats to validity, using an experiment in
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keystroke biometrics to provide examples. The experi-
ment is laid out first, and is then critiqued; remedies
for the violations are suggested. We close by sug-
gesting simple ways to avoid the kinds of problems
described here.

2. Hallmarks of a good experiment

There are clear differences between experiments that
are well-designed and those that are not. While there
may be many details that are different between the
two, the main ones usually reduce to issues of repeat-
ability (sometimes called reliability), reproducibility
and validity. While our main focus here will be on
validity, we will first look briefly at what each of the
other terms means, just to put them all in context.

Repeatability refers to the variation in repeated
measurements taken by a single person or instrument
on the same item and under the same conditions; we
seek high agreement, or consistency, from one mea-
sured instance to another [9]. That is, the experiment
can be repeated in its entirety, and the results will be
the same every time, within measurement error. For
example, if you measure the length of a piece of string
with a tape measure, you should get about the same
result every time. If an experiment is not repeatable,
even by the same person using the same measuring
apparatus, then there is a risk that the measurement
is wrong, and hence the outcome of the experiment
may be wrong, too; but no one will realize it, and so
erroneous values will be reported (and assumed to be
correct by readers).

Reproducibility relates to the agreement of experi-
mental results with independent researchers using
similar but physically different test apparatus, and
different laboratory locations, but trying to achieve
the same outcome as was reported in a source ar-
ticle [9]. Measurements should yield the same results
each time they are taken, irrespective of who does
the measuring. Using the length-of-string example, if
other people can measure that same piece of string in
another setting using a similar measuring device, they
should get about the same result as the first group did.
If they don't, then the procedure is not reproducible;
it can’t be replicated. Reproduction (sometimes called
replication) allows an assessment of the control on the
operating conditions of the measurement procedure,
i.e., the ability to reset the conditions to some desired

FIGURE 1. Hallmarks of a good experiment.

state. Ultimately, replication reflects how well the pro-
cedure was operationalized.

Note that reproducibility doesn’t mean hitting
return and analyzing the same data set again with
the same algorithm. It means conducting the entire
experiment again, data collection and all. If an experi-
ment is not reproducible, then it cannot be replicated
by others in a reliable way. This means that no one will
be able to verify that the experiment was done cor-
rectly in the first place, hence placing an air of untrust-
worthiness on the original results. Reproducibility
hinges on operational definitions for the measures and
procedures employed in the course of the experi-
ment. An operational definition defines a variable or
a concept in terms of the procedures or operations
used to measure it. An operational definition is like a
recipe or set of detailed instructions for describing or
measuring something.

Validity relates to the logical well-groundedness of
how the experiment is conducted, as well as the extent
to which the results will generalize to circumstances
beyond those in the laboratory. The next section ex-
pands on the concept of validity.

3. Validity

What does the term valid mean? Drawing from a stan-
dard dictionary, when some thing or some argument
or some process is valid, it is well-grounded or justifi-
able; it is logically correct; it is sound and flawlessly
reasoned, supported by an objective truth.



To conduct an experiment that was anything other
than valid, in the above sense, would be foolish, and
yet we see such experiments all the time in the litera-
ture. Sometimes we can see the flaws (which some
would call threats to validity) directly in the experi-
ment, and sometimes we can't tell, because authors do
not report the details of how their experiments were
conducted. Generally speaking, there are two kinds of
validity—internal and external. Conceptually, these
are pretty simple.

Internal validity. In most experiments we are trying to
find out if A has a given effect on B, or if A causes B.
To claim that A indeed causes B, the experiment must
not offer any alternative causes nor alternative expla-
nations for the outcome; if this is case, then the experi-
ment is internally valid [8]. An alternative explanation
for an experimental outcome can be due, for example,
to confounded variables that have not been controlled.

For example, suppose we want to understand the
cause of errors in programming. We recruit students
in university programming classes (one class uses C,
and the other uses Java). We ask all the students to
write a program that calculates rocket trajectories.
The results indicate that C programmers make more
programming errors, and so we conclude that the C
programming language is a factor in software errors.
Drawing such a conclusion would be questionable,
because there are other factors that could explain
the results just as well. Suppose, for example, that
the Java students were more advanced (juniors, not
sophomores) than the C students. The outcome of
the experiment could be due to the experience level
of the students, just as much as it could be due to the
language. Since we can't distinguish distinctly be-
tween experience level and language, we say that the
experiment confounds two factors—language and
experience—and is therefore not valid. Note that it can
sometimes be quite difficult to ensure internal valid-
ity. Even if all the students are at the same experience
level, if they self-selected Java vs C it would still allow
for a confound in that a certain kind of student might
be predisposed to select Java, and a different kind of
student might be predisposed to select C. The two
different kinds of students might be differentially good
at one language or the other. The remedy for such an
occurrence would be to assign the language-student
pairs randomly.

FEATURE

External validity. In most experiments we hope that
the findings will apply to all users, or all software,

or all applications. We want the experimental find-
ings to generalize from a laboratory or experimental
setting to a much broader setting. To the extent that

a study’s findings generalize to a broader population
(usually taken to be “the real world”), the experiment
is externally valid [8]. If the findings are limited to the
conditions surrounding the study (and not to broader
settings), then the experiment lacks external validity.
Another way to think about this is that external valid-
ity is the extent to which a causal relationship holds
when there are variations in participants, settings

and other variables that are different from the narrow
ranges employed in the laboratory.

Referring back to our earlier example, suppose we
were to claim that the experiment’s outcome (that
the C language promotes errors) generalizes to a set
of programmers outside the experimental environ-
ment—say, in industry. The generalization might not
hold, perhaps because the kind of problem presented
to the student groups was not representative of the
kinds of problems typically encountered in industry.
This is an example of an experiment not generalizing
beyond its experimental conditions to a set of condi-
tions more general; it's not externally valid.

Trade-off between internal and external validity. It
should be noted that not all experiments can be valid
both internally and externally at the same time; it
depends on the purpose of the experiment whether
we seek high internal or high external validity. Typi-
cally there is a trade-off in which one kind of validity
is sacrificed for the other. For example, laboratory
experiments designed to answer a very focused ques-
tion are often more internally valid than externally
valid. Once a research question seems to have been
settled (e.g., that poor exception handling is a major
cause of software failure), then a move to a broader,
more externally valid, experiment would be the right
thing to do.

4. Example domain—keystroke biometrics

In this section we introduce the domain from
which we draw concrete examples of experimental
invalidities—keystroke biometrics.

Keystroke biometrics, or keystroke dynamics, is
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the term given to the procedure of measuring and
assessing a user’s typing style, the characteristics of
which are thought to be unique to a person’s physiol-
ogy, behavior, and habits. The idea has its origin in the
observation that telegraph operators have distinctive
patterns, called fists, of keying messages over telegraph
lines. One notable aspect of fists is that they emerge
naturally, as noted over a hundred years ago by Bryan
& Harter, who showed that operators are distinc-

tive due to the automatic and unconscious way their
personalities express themselves, such that they could
be identified on the basis of having telegraphed only a
few words [1].

These measures of key presses and key releases,
based largely on the timing latencies between key-
strokes, are compared to a user profile as part of a
classification procedure; a match or a non-match can
be used to decide whether or not the user is authenti-
cated, or whether or not the user is the true author of
a typed sequence. For a brief survey of the keystroke
literature, see [7].

We use keystroke dynamics as an example here
for two reasons. First, it’s easy to understand—much
easier, for example, than domains like network proto-
cols. If we're going to talk about flaws and invalidities
in experiment design, then it’s better to talk about
an experiment that’s easily understood; the lessons
learned can be extended to almost any other domain
and experiment. Second, keystroke dynamics shares
many problems with other cyber-security disciplines,
such as intrusion detection. Examples are classification
and detection accuracy; selection of best classifier or
detector; feature extraction; and concept drift, just to
name a few. Again, problems solved in the keystroke
domain are very likely to transfer to other domains
where the same type of solution will be effective.

4.1. What is keystroke dynamics good for?

Keystroke dynamics is typically thought of as an
example of the second factor in two-factor authentica-
tion. For example, for a user to authenticate, hed have
to know not only his own password (the first factor),
but he would also have to type the password with a
rhythm consistent with his own rhythm. An impos-
tor, then, might know your password, but would not
be able to replicate your rhythm, and so would not be

allowed into the system. Another application, along a
similar line, would be continuous re-authentication,
in which the system continually checks to see that

the typing rhythm matches that of the logged-in user,
thereby preventing, say, insiders from masquerading
as you. A third application would be what forensics
experts call questioned-document analysis, which asks
whether a particular user typed a particular document
or parts of it. Finally, keystroke rhythms could be used
to track terrorists from one cyber café to another,

or to track a predator from one chat-room session

to another.

4.2. How does keystroke dynamics work?

The essence of keystroke dynamics is that timing data
are collected as a typist enters a password or other
string. Each keystroke is timestamped twice; once on
its downstroke and once on its upstroke. From those
timings we can compute the amount of time that a key
was held down (hold time) and the amount of time

it took to transition from one key to the next (transi-
tion latency). The hold times and the latencies are
called features of the typed password, and for a given
typing instance these features would be grouped into

a feature vector. For a 10-character password there
would be eleven hold times and ten latencies if we
include the return key.*If a typist enters a password
many times, then the several resulting feature vectors
can be assembled into a template which represents the
central tendency of the several vectors. Each typist will
have his or her own such template. These templates are
formed during an enrollment period, during which
legitimate users provide typing samples; these samples
form the templates. Later, when a user wishes to log
in, he types the password with the implicit claim that
the legitimate user has typed the password. The key-
stroke dynamics system examines the feature vector of
the presently-typed password, and classifies it as either
belonging to the legitimate user or not. The classifier
operates as an anomaly detector; if the rhythm of the
typed password is a close enough match to the stored
template, then the user is admitted to the system. The
key aspect of this mechanism is the detector. In ma-
chine learning there are many such detectors, distin-
guished by the distance metrics that they use, such as
Euclidean, Manhattan and Mahalanobis, among others
[4]. Any of these detectors can be used in a keystroke

a. There are two kinds of latencies—keydown to keydown and keyup to keydown. Some researchers use one or the other of these, and
some researchers use both. In our example we would have 31 features if we used both.



dynamics system; under some circumstances, some
detectors work better than others, but it is an open
research question as to which classifier is overall best.

5. A typical keystroke experiment

In this section we discuss several aspects of conduct-
ing a study in keystroke dynamics, we show what can
go wrong, and we share some examples of how (in)
validity can affect the outcome of a real experiment.
We will discuss some examples and experimental flaws
that are drawn from the current literature, although
not all of the examples are drawn from a single paper.

Walkthrough. Let’s walk through a typical experiment
in keystroke dynamics, and we’ll point out some errors
that we've observed in the literature, why they're er-
rors, how to correct them, and what the consequences
might be if theyre left uncorrected. Note that the
objective of the experiment is to discriminate among
users on the basis of their typing behavior, not on the
basis of their typing behavior plus, possibly unspeci-
fied, other factors; the typing behavior needs to be iso-
lated from other factors to make the experiment valid.

A typical keystroke dynamics experiment would
test how well a particular algorithm can determine
that a user, based on his typing rhythm, is or is not
who he claims to be. In a keystroke biometric system,
a user would present himself to the system with his
login ID, thereby claiming to be the person associ-
ated with the ID. The system verifies this claim by two
means: it checks that the password typed by the user
is in fact the user’s password; and it checks that the
password is typed with the same rhythm with which
the legitimate user would type it. If these two factors
match the system’s stored templates for the user, then
the user is admitted to the system.

Checking that the correct password is offered is old
hat; checking that its typing rhythm is correct is an-
other matter. This is typically done by having the user
“enroll” in the biometric component of the system. For
different biometric systems the enrollment process is
different, depending on the biometric being used; for
example, if a fingerprint is used, then the user needs to
present his fingerprint to the system so that the system
can encrypt and store it for later matching against
a user claiming to be that person who enrolled. For
keystroke biometric systems, the process is similar;

the user types his password several times so tl{at
the system can form a profile of the typing rhythm
for later matching. The biometric system’s detection
algorithm is tested in two ways. In the first test, sample
data from the enrolled user is presented to the system;
the system should recognize that the user is legitimate.
The second test determines whether the detector can
recognize that an impostor is not the claimed user.
This would be done by presenting the impostor’s login
keystroke sequence to the system, posing as a legiti-
mate user. Across a group of legitimate users and im-
postors, the percentage of mistakes, or errors, serves as
a gauge of how good the keystroke biometric system
is. Several details concerning exactly how these tests
are done can have enormous effects on the outcome.
We turn now to those details.

What can go wrong? There are several parts of an
experiment where things can go wrong. Most experi-
ments measure something; the measuring apparatus
can be flawed, producing flawed measurements. If the
measurements are flawed, then the data will be flawed,
and any analytical results and conclusions will be

cast into doubt. The way that something is measured
can be unsound; if you measure code complexity by
counting the number of lines, you’ll get a numeri-

cal outcome, but it may not be an accurate reflection
of code complexity. The way or method of taking
measurements is the biggest source of error in most
experiments. Compounding that error is the lack of
detail with which the measurement methodology

is reported, often making it difficult to determine
whether or not something went wrong. We turn now
to specific examples of methodological problems.

Clock resolution and timing. Keystroke timings are
based on operating-system calls to various timers. In
the keystroke literature we see different timers being
used by different researchers, with timing accura-

cies often reported to several decimal places. But it’s
not the accuracy (number of decimal places) of the
timing that’s of overriding importance; it’s the resolu-
tion. When keystroke dynamics systems are written
for Windows-based machines (e.g., Windows XP),

it’s usually the tick timer, or Windows-event clock [6]
that’s used; this has a resolution of 15.625 milliseconds
(ms), corresponding to 64 updates per second. If done
on a Unix system, the resolution is about 10 millisec-
onds. On some Windows systems the resolution can
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be much finer if the QPC timer is used. The reason
that timing resolution matters is not because people
type as fast as one key every 15 milliseconds (66 keys
per second); it’s because the time between keystrokes
can differ by less than 15 milliseconds. If some typists
make key-to-key transitions faster than other ones,
but the clock resolution is unable to separate them,
then detection accuracy could suffer. One paper has
reported a 4.2% change in error rate due to exactly this
sort of thing [3]. A related issue is how you know what
your clock resolution is. It's unwise to simply read this
off the label; better to perform a calibration. A related
paper explained how this is done in a keystroke dy-
namics environment [5]. A last word on timing issues
concerns how the timestamping mechanism actually
works; if it's subject to influence from the scheduler,
then things like system load can change the accuracy
of the timestamps.

The effect of clock resolution and timing is that they
can interact with user rhythms as a confound. If dif-
ferent users type on different machines whose timing
resolutions differ, then any distinctions made among
users, based on timing, could be due to differences in
user typing rhythms (timings) or they could be due to
differences in clock resolutions. Moreover, since sys-
tem load can influence keystroke timing, it’s possible
that rhythmic differences attributed to different users
would be due to load differences, not to user differenc-
es. Hence we would not be able to claim distinctive-
ness based on user behavior, because this cannot be
separated from timing errors induced by clock resolu-
tion and system load. If the purpose of the experiment
is to differentiate amongst users on the basis of typing
rhythm, then the confounds of clock resolution and
system load must be removed. The simplest way to
achieve this is to ensure that the experimental systems
use the same clock, with the same resolution (as high
as possible), and have the same operating load. This is
possible in the laboratory by using a single system on
which to collect data from all participants.

Keyboards. Experiments in keystroke dynamics
require people to type, of course, and keyboards on
which to do that typing. Most such experiments re-
ported in the literature allow subjects to use whatever
keyboard they want; after all, in the real world people
do use whatever keyboard they prefer. Consequently,
this approach has a lot of external validity. Unfortu-
nately, the approach introduces a serious confound,

too—a given keyboard, by its shape or character lay-
out, is likely to influence a user’s typing behavior. Dif-
ferent keyboards, such as standard, ergonomic, laptop,
kinesis, natural, kinesis maxim split and so forth will
shape typing in a way that’s peculiar to the keyboard
itself. In addition to the shape of the keyboard, the key
pressures required to make electrical contact differ
from one keyboard to another. The point is that not
all keyboards are the same, with the consequence that
users may type the same strings differently, depend-
ing on the keyboard and its layout. In the extreme, if
everyone in the experiment used a different keyboard,
you wouldn’t be able to separate the effect of the key-
boards from the effect of typing rhythm; whether your
experimental results showed good separation of typists
or not, you wouldn’t know if the results were due to
the typists’” differences or to the differences among the
keyboards. Hence you would not be able to con-

clude that typing rhythms differ among typists. This
confound can be removed from the experiment by
ensuring that all participants use the same (or perhaps
same type of) keyboard. The goal of the experiment

is to determine distinctiveness amongst typists based
on their individual rhythms, not on the basis of the
keyboards on which they type.

Stimulus items—what gets typed. Participants in
keystroke biometrics experiments need to type some-
thing—the stimulus item in the experiment. While
there are many kinds of stimuli that could be consid-
ered (e.g., passwords, phrases, paragraphs, transcrip-
tions, free text, etc.), we focus on short, password-like
strings. There are two fundamental issues: string
contents and string length.

String contents. By contents we mean simply the char-
acters contained in the password being typed. Two
contrasting examples would be a strong password,
characterized by containing shift and punctuation
characters, as opposed to a weak password, charac-
terized by a lack of the aforementioned special char-
acters. It’s easy to see that if some users type strong
passwords, and other users type weak passwords, then
any discrimination amongst users may not be solely
attributable to differences among users; it may be at-
tributable to intrinsic differences between strong and
weak passwords that cause greater rhythmic variability
in one or the other. The reason may be that strong
passwords are hard to type, and weak ones aren’t. So
we may be discriminating not on the basis of user



rhythm, but on the basis of typing difficulty which, in
turn, is influenced by string content. To eliminate this
confound, the experimenter should not allow users to
choose their own passwords; the password should be
chosen by the experimenter, and should be the same
for each user.

String length. If users are left to their own devices to
choose passwords, some may choose short strings,
while others choose longer strings. If this happens,

as it has in experiments where passwords were self-
selected, then any distinctiveness detected amongst
users cannot be attributed solely to differences among
user typing rhythms; the distinctions could have been
caused by differences in string lengths that the users
typed, or by intrinsic characteristics that cause more
variability in one length than in another. So, we don’t
know if the experimental results are based on user
differences or on length differences. To remove this
confound, the experimenter should ensure that all
participants type same-length strings.

Typing expertise and practice. Everyone has some
amount of typing expertise, ranging roughly from low
to high. Expertise comes from practice, and the more
you practice, the better you get. This pertains to typ-
ing just as much as it pertains to piano playing. Two
things happen when someone has become practiced
at typing a password. First, the total amount of time
to type the password decreases; second, the time
variation with which particular letter pairs (digrams)
are typed diminishes. It takes, on average, about 214
repetitions of a ten-character password to attain a
level of expertise such that typing doesn’t change by
more than 1 millisecond on average (less than 0.1%)
over the total time (about 3-5 seconds) taken to type
a password. At this level of practice it can be safely
assumed that everyone’s typing is stable; that is, it’s
not changing significantly. Due to this stability, it is
safe to compare typists using keystroke biometrics.

A classifier will be able to distinguish among a group
of practiced typists, and will have a particular success
rate (often in the region of 95-99%).

But what if, as in some studies, the level of exper-
tise among the subjects ranges from low to high, with
some people very practiced and others hardly at all?
If practiced typists are consistent, with low variation
across repeated typings, but unpracticed typists are
inconsistent with high variability, then it would be
relatively easy for a classifier to distinguish users in

FEATURE

such groups from one another. This could make clas-
sification outcomes more optimistic than they really
are, making them misleading at best. In one study

25 people were asked to type a password 400 times.
Some people in the study did this, but others typed
the password only 150 times, putting a potentially
large expertise gap between these subjects. No matter
what the outcome if everyone had been at the same
level of expertise, it’s easy to see that the classification
results would likely be quite different than if there was
a mixture of practice levels among the subjects. This
is an example of a lack of internal validity, where the
confound of differential expertise or practice is operat-
ing. There is no way that the classifier results can be
attributed solely to users’ typing rhythms alone; they
are confounded with level of practice.

Instructions to typists. In any experiment there needs
to be a protocol by which the experiment is carried
out. This protocol should be followed assiduously, lest
errors creep into the experiment whilst the researcher
is unaware. Here we give two examples in which in-
structions to subjects are important.

First, in our own experience, we had told subjects to
type the password normally, as if they were logging in
to their own computer. This should be straightforward
and simple, but it’s not. We discovered that some sub-
jects were typing with extraordinary quickness. When
we asked those people if that's how they typed every
day, they said no—they thought that the purpose of
our experiment was to see who could type the fastest
or the most accurately, even though we had never said
that. This probably happened because we are a univer-
sity laboratory, and it’s not unusual in university ex-
periments (especially in psychology) to have their true
intentions disguised from the participant; otherwise
the participant may game the experiment, and hence
ruin it. People in our experiment assumed that we had
a hidden agenda (we didn't), and the people respond-
ed to what they thought was the true agenda by typing
either very quickly or very carefully or both. When
we discovered this, we changed our instructions to tell
subjects explicitly that there was no hidden agenda,
and that we really meant it when we said that we were
seeking their normal, everyday typing behavior. After
the instructions were changed to include this, we no
longer observed the fast and furious typing behavior
that had drawn our attention in the first place. If we
had not done this, then we would have left an internal
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invalidity in the experiment; our results would have
been confounded with normal typing by some and
abnormally fast typing by others. Naturally, a classi-
fier would be able to distinguish between fast and slow
typists, thereby skewing the outcomes unrealistically.

Second, if there is no written protocol by which
to conduct an experiment, and by which to instruct
participants as to what they are being asked to do,
there is a tendency for the experimenter to ad lib the
instructions. While this might be fine, what can hap-
pen in practice is that the experimenter will become
aware of a slightly better way to word or express the
instructions, and will slightly alter the instructions for
the next subject. This might slightly improve things for
that subject. However, for the subject after that, the in-
structions might change again, even if ever so slightly.
As this process continues, there will come a point at
which some of the later subjects are receiving instruc-
tions that are quite different from those received by
the earlier subjects. This means that two different
sets of instructions were issued to subjects, and these
subjects may have responded in two different ways,
leading to a confound. Whatever the classification
outcomes might be, they cannot be attributed solely
to differences in user typing rhythms; they might have
been due to differences in instructions as well, and we
can't tease them apart. Hence it is important not only
to have clear instructions, but also to have them in
writing so that every subject is exposed to exactly the
same set of instructions.

6. What'’s the solution for all
these problems?

All of the problems discussed so far are examples of
threats to validity, and internal validity in particular.
The confounds we've identified can render an experi-
ment useless, and in those circumstances not only

has time and money been wasted, but any published
results run a substantial risk of misleading the reader-
ship. For example, if a study claims 99.9% correct clas-
sification of users typing passwords, that’s pretty good;
perhaps we can consider the problem solved. But if
that 99.9% was achieved because some confound, such
as typing expertise, artificially enhanced the results,
then we would have reached an erroneous conclusion,
perhaps remaining unaware of it. This is a serious
research error; in this section we offer some ways to

avoid the kinds of problems caused by invalidity.

Control. We use the term “control” to mean that
something has been done to mitigate a potential bias
or confound in an experiment. For example, if an
experimental result could be explained by more than
one causal mechanism, then we would need to control
that mechanism so that only one cause could be attrib-
uted to the experimental outcome. As an example, the
length of the password should be controlled so that ev-
eryone types a password of the same length; that way,
length will not be a factor in classifying typing vectors.
A second example would be to control the content of
the password, most simply by having every partici-
pant type the same password. In doing this, we would
be more certain that the outcome of the experiment
would be influenced only by differences in people’s
typing rhythms, and not by password length or
content. Of course while effecting control in this way
makes the experiment internally valid, it doesn’t reflect
how users in the real world choose their passwords;
certainly they don't all have the same password. But
the goal of this experiment is to determine the extent
to which individuals have unique typing rhythms, and
in that case tight experimental control is needed to
isolate all the extraneous factors that might confound
the outcome. Once it’s determined that people really
do have unique typing rhythms that are discriminable,
then we can move to the real world with confidence.

Repeatability and reproducibility (again). We earlier
mentioned two important concepts: repeatability—the
extent to which an experimenter can obtain the same
measurements or outcomes when he repeats the ex-
periment in his own laboratory—and reproducibility,
which strives for the same thing, but when different
experimenters in other laboratories, using similar but
physically different apparatus, obtain the same results
as the original experimenters did. If we strive to make
an experiment repeatable, it means that we try hard to
make the same measures each time. To do this suc-
cessfully requires that all procedures are well defined
so that they can be repeated exactly time after time.
Such definitions are sometimes called operational
definitions, because they specify a measurement in
terms of the specific operations used to obtain it. For
example, when measuring people’s height, it’s im-
portant that everyone do it the same way. An opera-
tional definition for someone’s height would specify
exactly the procedure and apparatus for taking such



measurements. The procedure should be written so
that it can be followed exactly every time. Repeatabil-
ity can be ensured if the experiment’s measurements
and procedures are operationally defined and fol-
lowed assiduously. Reproducibility can be ensured by
providing those operational details when reporting the
experiment in the literature, thereby enabling others
to follow the original procedures.

Discovering confounds. There is no easy way to
discover the confounds lurking in an experimental
procedure. It requires deep knowledge of the domain
and the experiment being conducted, and it requires
extensive thought as to how various aspects of the
experiment may interact. One approach is to trace the
signal of interest (in our case, the keystroke timings
and the user behaviors) from their source to the point
at which they are measured or manifested. For key-
stroke timings, the signal begins at the scan matrix in
the keyboard, traveling through the keyboard encoder,
the keyboard-host interface (e.g., PS2, USB, wireless,
etc.), the keyboard controller in the operating sys-
tem (which is in turn influenced by the scheduler),
and finally to the timestamping mechanism, which is
influenced by the particular clock being used. At each
point along the way, it is important to ask if there are
any possible interactions between these waypoints and
the integrity of the signal. If there are, then these are
candidates for control. For example, keyboard signals
travel differently through the PS2 interface than they
do through the USB interface. This difference suggests
that only one type of keyboard interface be used—ei-
ther PS2 or USB, but not both. Otherwise, part of the
classification accuracy would have to be attributed to
the different keyboard interfaces. A similar mapping
procedure would ask about aspects of the experi-
ment that would influence user typing behavior. We
have already given the example of different types of
keyboards causing people to type differently. Counter-
ing this would be done simply by using only one type
of keyboard.

Method section. A method section in a paper is the
section in which the details are provided regarding
how the experiment was designed and conducted.
Including a method section in an experimental
paper has benefits that extend to both reader and
researcher. The benefit to the reader is that he can see
exactly what was done in the experiment, and not

be left to wonder about details that could affect the
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outcome. For example, saying how a set of experi-
ment participants was recruited can be important; if
some were recruited outside the big-and-tall shop, it
could constitute a bias in that these people are likely
to have large hands, and large-handed people might
have typing characteristics that make classification
artificially effective or ineffective. If this were revealed
in the method section of a paper, then a reader would
be aware of the potential confound, and could moder-
ate his expectations on that basis. If the reader were a
reviewer, the confound might provoke him to ask the
author to make adjustments in the experiment.

For the experimenter the method section has two
benefits. First, the mere act of writing the method sec-
tion can reveal things to the experimenter that were
not previously obvious. If, in the course of writing
the section, the experimenter discovers an egregious
bias or flaw in the experiment, he can choose another
approach, he can relax the claims made by the paper,
or he can abandon the undertaking to conduct the
experiment again under revised and more favor-
able circumstances. If the method section is written
before the experiment is done—as a sort of planning
exercise—the flaws will become apparent in time for
the experimental design to be modified in a way that
eliminates the flaw or confound. This will result in a
much better experiment, whose outcome will stand
the test of time.

Pilot studies. Perhaps the best way to check your work
is to conduct a pilot study—a small-scale preliminary
test of procedures and measurement operations—to
shake any unanticipated bugs out of an experiment,
and to check for methodological problems such as
confounded variables. Pilot studies can be very effec-
tive in revealing problems that, at scale, would ruin
an experiment. It was through a pilot study that we
first understood the impact of instructions to sub-
jects, and subsequently adjusted our method to avoid
the problems encountered (previously discussed). If
there had been no pilot, we would have discovered
the problem with instructions anyway, but we could
not have changed the instructions in the middle of
the experiment, because then wed have introduced
the confound of some subjects having heard one set
of instructions, and other subjects having heard a dif-
ferent set; the classification outcome could have been
attributed to the differences in instructions as well as
to differences amongst typists.
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7. Conclusion

We have shown how several very simple oversights in
the design and conduct of an experiment can result
in confounds and biases that may invalidate experi-
mental outcomes. If the details of an experiment are
not fully described in a method section of the paper,
there is a risk that the flaws will never be discovered,
with the consequence that we come away thinking that
we've learned a truth (that isn’t true) or we've solved
a problem (that isn't really solved). Other researchers
may base their studies on flawed results, not know-
ing about the flaws because there was no information
provided that would lead to a deep understanding of
how the experiment was designed and carried out.
Writing a method section can help experimenters
avoid invalidities in experimental design, and can
help readers and reviewers determine the quality of
the undertaking.

Of course there are still other things that can go
wrong. For example, even if you have ensured that
your methods and measurements are completely
valid, the chosen analysis procedure could be inap-
propriate for the undertaking. At least, however, you'll
have confidence that you won’t be starting out with
invalid data.

While the confounding issues discussed here apply
to an easily-understood domain like keystroke bio-
metrics, they were nevertheless subtle, and have gone
virtually unnoticed in the literature for decades. Your
own experiments, whether in this domain or another,
are likely to be just as susceptible to confounding and
methodological errors, and their consequences just
as damaging. We hope that this paper has raised the
collective consciousness so that other researchers will
be vigilant for the presence and effects of method-
ological flaws, and will do their best to identify and
mitigate them.

Richard Feynman, the 1965 Nobel Laureate in
physics, said, “The principle of science, the definition
almost, is the following: The test of all knowledge is
experiment. Experiment is the sole judge of scientific
‘truth” [2]. Truth is separated from fiction by dem-
onstration—by experiment. In doing experiments,
we want to make claims about the results. For those
claims to be credible, the experiments supporting
them need first to be free of the kinds of methodologi-
cal errors and confounds presented here.




