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Abstract—We consider multicast of correlated sources over constraints, and showed that separation held in all their test
a network. Assuming the use of random network coding, we cases. Our simulations focus on cost constraints, rather than
provide a linear optimization formulation for allocation of link capacity constraints. In this situation, a separable solution can

rates in the network, also known as subgraph construction. | be found. but i | h hiah t th
Such an approach requires joint distributed source and network always De found, but in general has a higher cos an a

Coding’ which often has a lower cost than of that required by jOint COding solution. In section IlI-A we present results for

separated source and network coding. We support this result with randomly generated networks that highlight that difference

simulations on randomly generated networks and on network in cost. We also show that the benefit from joint coding

ﬁg}(‘lﬁﬁ:‘s‘icﬁg from a Future Combat Systems (FCS) exercise at g gpstantial for existing networks, using data from Future
T Combat Systems (FCS), in section IlI-B.

|. INTRODUCTION Il. PROBLEM FORMULATION

Network coding, the notion that packets traversing a net-\, yhis section we present the linear optimization formu-

work can be combined and mixed rather than merely 05500 for calculating the minimum-cost subgraph for two

warded, has garnered much interest since its inception ?yurces. We assume that each link has a cost linearly propor-

Ahlswed_e et al. [1]. In particular, netW(_)rk coding is_ optimafiona) 1o the rate. Suppose we are given the following inputs:
for multicast. The use of network coding for multicast can « agraphG = (N, A)

be decoupled into two mdependent componer_ns, minimum- edge weightsuy, : (i, f) € A — R
cost subgraph construction [2] and random linear network s A n
) 4 . « edge capacities;; : (i,j) € A— R
coding [3]. Subgraph construction is the selection of network
by choosing link d ding tes 1o set of two source nodeS
resouries ylt'c oct)smg mt_s an ?orr?jpgn INg Tlow rates 1o, sourcesX; generated at; with rate H(X;)
support a multicast connection, preferably by minimizing some _ joint rate H(X, X»)

cost such as energy or latency. Once the subgraph is esta - set of receiver node®

lished, nodes produce coded packets at their assigned rateW)eyau ment the araph by adding a virtual sousteand a
transmitting random combinations of their incoming packets. g graph by 9

) . ; - virtual edge froms* to each actual source. The capacities
In this paper we examine the first problem, minimum-cos

. . . of the virtual edges are set to the marginal entropy of the
subgraph construction for multicasting of correlated sources. : .
corresponding source. The overall rate from the virtual source
A. Overview and Related Work to each of the receivers is set to the joint entropy of the sources.
Ho et al. [4] showed that random network coding can bEese conditions ensure that the flow rates from the sources to
used to multicast correlated sources, and moreover genefRch receiver meet the Slepian-Wolf constraints for distributed
ized the error exponents for linear Slepian-Wolf coding [5pource coding. Figure 1 illustrates how the graph is augmented.
In this setting, compression may occur within the network, . o
resulting in joint distributed source and network coding. We We give the formal definition of the problem.

complement this approach with a corresponding s;ubgralsﬁt

construction algorithm by adapting the approach presented in G* = (N* A

Lun et al. [2], described in section Il. N* — NUs*
Complexity concerns over the joint coding approach of .

Ho et al. [4] motivated Ramamoorthy et al. [6] to study A" = AUE,

the separation of source and network coding. They definedvaere

"price of separation” to quantify the gap between joint coding E = {(s*))lj €S}

and separate source and network coding, and showed that o 5530

the two-source, two receiver connection is always separable. ey = H(X;)

Their experimental results focused on networks with capacity ws; = 0.



‘,—QS* n nodes were placed in a box of sizeby h. 2 source nodes

\ were evenly spaced along the top edge of the box, and
receiver nodes were evenly spaced along the bottom edge of
the box. The remaining. — 4 nodes were randomly placed
in the box. Nodes within a distance ofwere connected by
an edge, with edges pointing downwards. All edges had unit
weight and infinite capacity. Figure 2 is an example of a such
a network.

H(X) // \ H(X,)

Fig. 1. Problem Formulation

Also let R = H(X;, X3).

The desired minimum-cost subgraph is found using the
following linear optimization problem.
Minimize Zwijzij, Zij c A*

subject to
Cij > Zij, v(i,j) € A, Fig. 2. Example of a Randomly Generated Network
Cij 2 Tij, v(i,5) € E,
25 2> xfj) >0, VY(i,j)e A", teT, For each network configuration, 1000 feasible graphs were
generated, where feasibility meant all sources were connected
t) _ ) _ (1) : * : o
Z Lij Z z;; =0;°, Vie N, te€T, to all receivers. For each graph, the minimum-cost subgraph
{i1G5)eA~} {3l eAx} was computed. The minimum-cost separable subgraph was
also computed for comparison. Table | shows the results for
some sample configurations. The two sources had marginal
R i=s", entropies equal to 2. For each configuration, we give the
whereo—f) =4 R i=t, average subgraph cost, the percentage of graphs with a lower
0  otherwise. joint coding solution subgraph cost than a separagble solution
The desired subgraph is; for z € A and the subgraph costsubgraph cost, and of those cases, the percent cost saving
is S wijzij, zi; € A of the joint coding solution over the separable solution. The

Note that the weights for the virtual edges are 0. Thigverall saving is the product of the first two percentages.
encourages the optimization problem to find a solution that
results in joint source-network coding. We can force a sepa-
rable solution by setting the virtual edge weights arbitrarily
high (the sum of the edge weights of the original graph, for
example). Furthermore, we can determine whether a solution

TABLE |
RESULTS FORRANDOMLY GENERATED NETWORKS

hxw | n r R avg. | % joint | % cost | % overall

. . cost | < sep. diff. saving
is a separable solution or not. If the sum of the flow ratgs T T 1229 65 W 55
for z € E (the virtual edges) equals the joint entropy, thenthg 1x1 | 12| 06 | 25| 11.66| 6.6 9.8 0.65
solution is a separable one. 2 | 915 8.9 11.88 1.06

o L . . ; 3 | 1506 795 | 1252 9.95
This linear optimization problem is equivalentin formtothe| . | 1o 5| 25| 1170 799 | 1252 100

linear optimization problem in Lun et al. [2]. Thus, the same 2 | 856 | 786 | 2098 16.5
decentralized techniques described in Lun et al. [2] can also b 1653 99.2 | 10.19 101
used for our formulation. It may appear that our formulation 1x3128)09 2é5 182'32 99.6 | 1864 18.6
: . 10 | 994 | 31.96 31.8
does not allow a decentralized approach because of the virtuat
links that indirectly connect the real sources. But centralized
coordination is only needed for the allocation of rates amongAs the network becomes wider, such that the sources (and
the sources, which would be necessary in any Slepian-Wediceivers) are further apart, a joint coding solution has a signif-
setting. The actual source-network coding remains distributecantly lower cost than a separable solution. If the network size
is fixed but the correlation between the sources is increased
(resulting in a lower joint entropy, and thus, lower ragg,
A. Randomly Generated Networks the benefit from a joint coding solution also increases. In a
We present simulation results for randomly generated nétvo-source, two-receiver network, a separable solution always
works. The networks were generated in the following mannexists [6]. But the subgraph cost for a separable solution can

¢
w

Ill. SIMULATIONS



be no better than that for a joint coding solution. Dependirgpntains the results for the three sample experiments. For each
on the network topology, the joint coding subgraph will almostonfiguration, we give the percentage of feasible connections,
always have a lower cost than the separable coding subgraglerage subgraph cost, the percentage of feasible graphs with
a lower joint coding solution subgraph cost than a separagble
B. Future Combat Systems Data solution subgraph cost, and of those cases, the percent cost
We also collected network management data from a 18aving of the joint coding solution over the separable solution.
node Future Combat Systems (FCS) exercise at Lakehufdie overall cost saving over all 5000 graphs is the product of
NJ. The Lakehurst terrain combined with the mobility of thé&he three percentages.
nodes causes connectivity among nodes to change frequently
and generally be very unreliable. Figure 3 illustrates the
connectivity of the network over the sequence of the first
5000 graphs, where an edge denoted by a solid line indicates
that routes were found between that pair of nodes in most

TABLE Il
RESULTS FORFCS DaTA

sources|| 24,32 | 23,32 | 22,32
receivers|| 23,31 | 25,31 | 24, 34

of the graphs ¥ 70%), and dotted lines indicates that routes P 0941 094 094
were found less frequently( — 55%). Routes found less than feasible connection (%)| 80.50 | 65.76 | 81.72
< 30% of the time are not shown. average costj 3.30 | 3.05| 3.90

joint < separable (%)|| 58.51| 30.99 | 52.67
saving of joint over separable (%) 38.42 | 40.33 | 28.66
overall saving (%)| 18.09 8.22 | 12.34

IV. CONCLUSION

We have presented a linear optimization formulation for
calculating a minimum-cost subgraph for network coding of
correlated sources. This approach results in a joint distributed
source and network coding solution. We have shown through
simulations that a joint coding approach has a lower subgraph
cost than of a separate source and network coding approach.

We calculated the correlation coefficients for each variable One avenue for further research is to design practical codes
in the Management Information Base (MIB), for each paicodes with low decoding complexity) for joint source network
of nodes in the network. Table Il shows the node-to-nodgding. Wu et al. [7] is an example of work in this direction,
correlation coefficients for one particular variable. but for a specific correlation structure. We have presented the

sl 22 23 24 25 31 32 33 34 38 analysis for a multicast connection with correlated sources.
T 100 095 095095033 080 085 080 080 0.95 Anot_her mterestm_g problem is, given a network and a set of
22 | 0.95 1.00 1.00 1.00 0.45 0.69 0.94 069 0.68 1.00 receivers, determine the best placement of source nodes and
gi 8.32 i.gg i.gg :11.88 8.32 g.gg 8.33 8.28 g.gg 1.88 cor_relation structure to qbtain the min_imum .cost §ubgraph.
25| 033 0.45 0.45 044 100 020 0.42 0.20 020 045 | 1NS can be seen as designing generalized mirror sites, where
31| 0.80 0.69 0.70 0.69 0.20 1.00 0.60 1.00 1.00 0.69  Sources are not restricted to replication of data and transmis-
gg 8.28 8.23 8.23 8.23 8.4213 2.38 é.gg 2.88 2.38 8.2;1 sion by routing. T_he use of more v_aried correlation structures
34| 0.80 0568 0.69 0,68 0.20 100 0.60 100 1.00 0.6s and network coding for transmission allows for a richer set
35| 0.95 1.00 1.00 1.00 0.45 0.69 0.94 0.68 0.68 1.00 of pOSSIb|e solutions. Jiang [8] describes one pOSSIb|e method

TABLE Il for modelling this problem.

Fig. 3. FCS Network Topology

CORRELATION COEFFICIENTS FOR THE VARIABLEMI _F_THF_FFFF_O_IN
THE FCS MIB.
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