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Abstract— We consider multicast of correlated sources over
a network. Assuming the use of random network coding, we
provide a linear optimization formulation for allocation of link
rates in the network, also known as subgraph construction.
Such an approach requires joint distributed source and network
coding, which often has a lower cost than of that required by
separated source and network coding. We support this result with
simulations on randomly generated networks and on network
data collected from a Future Combat Systems (FCS) exercise at
Lakehurst, NJ.

I. I NTRODUCTION

Network coding, the notion that packets traversing a net-
work can be combined and mixed rather than merely for-
warded, has garnered much interest since its inception by
Ahlswede et al. [1]. In particular, network coding is optimal
for multicast. The use of network coding for multicast can
be decoupled into two independent components, minimum-
cost subgraph construction [2] and random linear network
coding [3]. Subgraph construction is the selection of network
resources by choosing links and corresponding flow rates to
support a multicast connection, preferably by minimizing some
cost such as energy or latency. Once the subgraph is estab-
lished, nodes produce coded packets at their assigned rates by
transmitting random combinations of their incoming packets.
In this paper we examine the first problem, minimum-cost
subgraph construction for multicasting of correlated sources.

A. Overview and Related Work

Ho et al. [4] showed that random network coding can be
used to multicast correlated sources, and moreover general-
ized the error exponents for linear Slepian-Wolf coding [5].
In this setting, compression may occur within the network,
resulting in joint distributed source and network coding. We
complement this approach with a corresponding subgraph
construction algorithm by adapting the approach presented in
Lun et al. [2], described in section II.

Complexity concerns over the joint coding approach of
Ho et al. [4] motivated Ramamoorthy et al. [6] to study
the separation of source and network coding. They defined a
”price of separation” to quantify the gap between joint coding
and separate source and network coding, and showed that
the two-source, two receiver connection is always separable.
Their experimental results focused on networks with capacity

constraints, and showed that separation held in all their test
cases. Our simulations focus on cost constraints, rather than
capacity constraints. In this situation, a separable solution can
always be found, but in general has a higher cost than a
joint coding solution. In section III-A we present results for
randomly generated networks that highlight that difference
in cost. We also show that the benefit from joint coding
is substantial for existing networks, using data from Future
Combat Systems (FCS), in section III-B.

II. PROBLEM FORMULATION

In this section we present the linear optimization formu-
lation for calculating the minimum-cost subgraph for two
sources. We assume that each link has a cost linearly propor-
tional to the rate. Suppose we are given the following inputs:

• a graphG = (N,A)
• edge weightswij : (i, j) ∈ A → R+

• edge capacitiescij : (i, j) ∈ A → R+

• set of two source nodesS
• sourcesXi generated atsi with rateH(Xi)
• joint rateH(X1, X2)
• set of receiver nodesT

We augment the graph by adding a virtual sources∗ and a
virtual edge froms∗ to each actual source. The capacities
of the virtual edges are set to the marginal entropy of the
corresponding source. The overall rate from the virtual source
to each of the receivers is set to the joint entropy of the sources.
These conditions ensure that the flow rates from the sources to
each receiver meet the Slepian-Wolf constraints for distributed
source coding. Figure 1 illustrates how the graph is augmented.

We give the formal definition of the problem.
Let

G∗ = (N∗, A∗)
N∗ = N ∪ s∗

A∗ = A ∪ E,

where

E = {(s∗, j)|j ∈ S}
cs∗j = H(Xj)
ws∗j = 0.
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Fig. 1. Problem Formulation

Also let R = H(X1, X2).
The desired minimum-cost subgraph is found using the

following linear optimization problem.
Minimize

∑
wijzij , zij ∈ A∗

subject to
cij ≥ zij , ∀(i, j) ∈ A,
cij ≥ xij , ∀(i, j) ∈ E,

zij ≥ x
(t)
ij ≥ 0, ∀(i, j) ∈ A∗, t ∈ T,∑

{j|(i,j)∈A∗}

x
(t)
ij −

∑
{j|(j,i)∈A∗}

x
(t)
ji = σ

(t)
i , ∀i ∈ N∗, t ∈ T,

whereσ
(t)
i =

 R i = s∗,
−R i = t,
0 otherwise.

The desired subgraph iszij for z ∈ A and the subgraph cost
is

∑
wijzij , zij ∈ A.

Note that the weights for the virtual edges are 0. This
encourages the optimization problem to find a solution that
results in joint source-network coding. We can force a sepa-
rable solution by setting the virtual edge weights arbitrarily
high (the sum of the edge weights of the original graph, for
example). Furthermore, we can determine whether a solution
is a separable solution or not. If the sum of the flow rateszij

for z ∈ E (the virtual edges) equals the joint entropy, then the
solution is a separable one.

This linear optimization problem is equivalent in form to the
linear optimization problem in Lun et al. [2]. Thus, the same
decentralized techniques described in Lun et al. [2] can also be
used for our formulation. It may appear that our formulation
does not allow a decentralized approach because of the virtual
links that indirectly connect the real sources. But centralized
coordination is only needed for the allocation of rates among
the sources, which would be necessary in any Slepian-Wolf
setting. The actual source-network coding remains distributed.

III. S IMULATIONS

A. Randomly Generated Networks

We present simulation results for randomly generated net-
works. The networks were generated in the following manner.

n nodes were placed in a box of sizew by h. 2 source nodes
were evenly spaced along the top edge of the box, and2
receiver nodes were evenly spaced along the bottom edge of
the box. The remainingn − 4 nodes were randomly placed
in the box. Nodes within a distance ofr were connected by
an edge, with edges pointing downwards. All edges had unit
weight and infinite capacity. Figure 2 is an example of a such
a network.
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Fig. 2. Example of a Randomly Generated Network

For each network configuration, 1000 feasible graphs were
generated, where feasibility meant all sources were connected
to all receivers. For each graph, the minimum-cost subgraph
was computed. The minimum-cost separable subgraph was
also computed for comparison. Table I shows the results for
some sample configurations. The two sources had marginal
entropies equal to 2. For each configuration, we give the
average subgraph cost, the percentage of graphs with a lower
joint coding solution subgraph cost than a separagble solution
subgraph cost, and of those cases, the percent cost saving
of the joint coding solution over the separable solution. The
overall saving is the product of the first two percentages.

TABLE I

RESULTS FORRANDOMLY GENERATED NETWORKS

h x w n r R avg. % joint % cost % overall
cost < sep. diff. saving

1 x 1 12 0.6
3 14.29 6.5 4.28 0.27

2.5 11.66 6.6 9.8 0.65
2 9.15 8.9 11.88 1.06

1 x 2 18 0.8
3 15.06 79.5 12.52 9.95

2.5 11.79 79.9 12.52 10.0
2 8.56 78.6 20.98 16.5

1 x 3 28 0.9
3 16.53 99.2 10.19 10.1

2.5 12.32 99.6 18.64 18.6
2 8.10 99.4 31.96 31.8

As the network becomes wider, such that the sources (and
receivers) are further apart, a joint coding solution has a signif-
icantly lower cost than a separable solution. If the network size
is fixed but the correlation between the sources is increased
(resulting in a lower joint entropy, and thus, lower rateR),
the benefit from a joint coding solution also increases. In a
two-source, two-receiver network, a separable solution always
exists [6]. But the subgraph cost for a separable solution can



be no better than that for a joint coding solution. Depending
on the network topology, the joint coding subgraph will almost
always have a lower cost than the separable coding subgraph.

B. Future Combat Systems Data

We also collected network management data from a 10-
node Future Combat Systems (FCS) exercise at Lakehurst,
NJ. The Lakehurst terrain combined with the mobility of the
nodes causes connectivity among nodes to change frequently
and generally be very unreliable. Figure 3 illustrates the
connectivity of the network over the sequence of the first
5000 graphs, where an edge denoted by a solid line indicates
that routes were found between that pair of nodes in most
of the graphs (> 70%), and dotted lines indicates that routes
were found less frequently (30−55%). Routes found less than
< 30% of the time are not shown.
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Fig. 3. FCS Network Topology

We calculated the correlation coefficients for each variable
in the Management Information Base (MIB), for each pair
of nodes in the network. Table II shows the node-to-node
correlation coefficients for one particular variable.

21 22 23 24 25 31 32 33 34 35
21 1.00 0.95 0.95 0.95 0.33 0.80 0.85 0.80 0.80 0.95
22 0.95 1.00 1.00 1.00 0.45 0.69 0.94 0.69 0.68 1.00
23 0.95 1.00 1.00 1.00 0.45 0.70 0.94 0.69 0.69 1.00
24 0.95 1.00 1.00 1.00 0.44 0.69 0.94 0.69 0.68 1.00
25 0.33 0.45 0.45 0.44 1.00 0.20 0.42 0.20 0.20 0.45
31 0.80 0.69 0.70 0.69 0.20 1.00 0.60 1.00 1.00 0.69
32 0.85 0.94 0.94 0.94 0.42 0.60 1.00 0.60 0.60 0.94
33 0.80 0.69 0.69 0.69 0.20 1.00 0.60 1.00 1.00 0.68
34 0.80 0.68 0.69 0.68 0.20 1.00 0.60 1.00 1.00 0.68
35 0.95 1.00 1.00 1.00 0.45 0.69 0.94 0.68 0.68 1.00

TABLE II

CORRELATION COEFFICIENTS FOR THE VARIABLEMI F THF FFFF 0 IN

THE FCS MIB.

To test the effectiveness of network coding, we performed
three experiments using the correlations shown in Table II. For
each experiment, two sources and two receivers were randomly
chosen and the following correlation model was constructed.
The marginal entropies were set to 1, and the joint entropy
was set to1 + H(ρ+1

2 ), whereρ is the correlation coefficient
for the two sources. All edges were given unit weight and
infinite capacity. The minimum-cost subgraph was computed
for each node adjacency graph, and the separable minimum-
cost subgraph was also computed for comparison. Table III

contains the results for the three sample experiments. For each
configuration, we give the percentage of feasible connections,
average subgraph cost, the percentage of feasible graphs with
a lower joint coding solution subgraph cost than a separagble
solution subgraph cost, and of those cases, the percent cost
saving of the joint coding solution over the separable solution.
The overall cost saving over all 5000 graphs is the product of
the three percentages.

TABLE III

RESULTS FORFCS DATA

sources 24, 32 23, 32 22, 32
receivers 23, 31 25, 31 24, 34

ρ 0.94 0.94 0.94
feasible connection (%) 80.50 65.76 81.72

average cost 3.30 3.05 3.90
joint < separable (%) 58.51 30.99 52.67

saving of joint over separable (%) 38.42 40.33 28.66
overall saving (%) 18.09 8.22 12.34

IV. CONCLUSION

We have presented a linear optimization formulation for
calculating a minimum-cost subgraph for network coding of
correlated sources. This approach results in a joint distributed
source and network coding solution. We have shown through
simulations that a joint coding approach has a lower subgraph
cost than of a separate source and network coding approach.

One avenue for further research is to design practical codes
(codes with low decoding complexity) for joint source network
coding. Wu et al. [7] is an example of work in this direction,
but for a specific correlation structure. We have presented the
analysis for a multicast connection with correlated sources.
Another interesting problem is, given a network and a set of
receivers, determine the best placement of source nodes and
correlation structure to obtain the minimum cost subgraph.
This can be seen as designing generalized mirror sites, where
sources are not restricted to replication of data and transmis-
sion by routing. The use of more varied correlation structures
and network coding for transmission allows for a richer set
of possible solutions. Jiang [8] describes one possible method
for modelling this problem.
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