Announcements

Programming Assignment 4 is out No Class Thursday (Office Hrs On Request)

Procedural Modeling

Procedural Terrain L-Systems Procedural Animation/Behavior

COMPUTER GRAPHICS 15-462

04/05/07

Database Amplification

- Procedural content generation is attractive because it allows for significant database amplification
- Limited input data produces rich & varied output
 - ie: Perlin noise function + basic math gives fire, clouds, wood, etc.
- If it can be generated on the fly...
 - Artist doesn't have to design it
 - Don't need to store/transmit it

"Implicit" vs. "Explicit" Procedural Models

Explicit:

- Directly generate the points that make up an object
- Good for Z-buffer/OpenGL style rendering

• Implicit:

- Answer questions about particular points
- Isocurve (2D) or Isosurface (3D)
- Good for ray-tracing

Simple Explicit Procedural Model

- Begin with a regular mesh
- Perturb vertex geometry procedurally (typically pseudorandomly)
- Iterate this process until desired shape is achieved
- Very general technique that can also be used to add irregularity ("noise") to arbitrary mesh objects

Procedural Terrain

• "Subdivide and displace"

Midpoint Displacement For Terrain

- Seed corners with values
- Perturb midpoint randomly from mean
- Recurse using a smaller window
- In 2D, best to use "diamond-square" recursion (to prevent axis-aligned artifacts)

Fractal Noise Terrain

- Use fractal noise to generate terrain
- Can be made tileable over unit square:

$$F_{tileable}(x,y) = [$$
 $F(x,y) * (1-x) * (1-y) +$
 $F(x-1,y) * x * (1-y) +$
 $F(x-1,y-1) * x * y +$
 $F(x,y-1) * (1-x) * y]$

F.K. Musgrave

Adding Water

Use an elevation threshold (z < z_{water})

Terrain Example

Terrain Example

Terrain Example

F.K. Musgrave

Terragen

- Commercial product (free for personal use)
- Website: http://www.planetside.co.uk/terragen/
- This image took ~3 minutes to set up

Hypertexture

- Implicit procedural model
- Treat the isosurface of a function as the boundary of an object
- Above: fractal egg

Photo: K. Perlin

Hypertexture Example

K. Perlin

Hypertexture Example

K. Perlin

Architexture

- Sweep the path of a line drawing with a sphere
- Apply hypertexture to resulting shape

K. Perlin

L-Systems (Background)

- Developed by A. Lindenmayer to model the development of plants
- Based on parallel string-rewriting rules
- Excellent for modeling organic objects and fractals

L-Systems (Basics)

- Begin with a set of "productions" (replacement rules) and a "seed" axiom
- In parallel, all matching productions are replaced with their right-hand sides
- Ex:
 - Rules: B->ACA

A->B

- Axiom: AA
- Sequence: AA,BB,ACAACA,BCBBCB,etc.
- Strings are converted to graphic representations via interpretation as turtle graphics commands

L-Systems (Basic Example)

Turtle Commands:

- F_x: move forward one step, drawing a line
- f_x: move forward one step, without drawing a line
- $-+_{x}$: turn left by angle ∂
- -_x: turn right by angle ∂

L-Systems (Koch Snowflake)

- Axiom: F-F-F-F ∂:90 degrees
- F→F-F+F+FF-F-F+F

L-Systems (Dragon Curve)

- Axiom:F₁ ∂:90 degrees n:10 iterations
- $F_1 \rightarrow F_1 + F_r +$
- F_r→F_l-F_r-

L-Systems (Extensions)

- Basic L-Systems have inspired a large number of variations
- Context sensitive: productions look at neighboring symbols.
- Bracketed: save/restore state (for branches)
- Stochastic: choose one of n matching productions randomly
- Parametric: variables can be passed between productions

L-Systems For Plants

- L-Systems can capture a large array of plant species
- Designing rules for a specific species can be challenging

Algorithmic Botany

- http://algorithmicbotany.org/papers/
- Free 200pg ebook
- Covers many variants of L-Systems, formal derivations, and exhaustive coverage of different plant types

PovTree

Interactive Design With PovTree

- · http://propro.ru/go/Wshop/povtree/povtree.html
- http://arbaro.sourceforge.net/

SpeedTree

- Fast procedural foliage is important for real-time applications
- http://www.speedtree.com/

L-Systems for Cities [Parish01]

- Start with a single street
- Branch & extend w/ parametric L-System
- Parameters of the string are tweaked by goals/constraints
- Goals control street direction, spacing
- Contraints allow for parks, bridges, road loops

L-Systems for Cities (2)

- Once we have streets, we can form buildings with another L-System
- Building shapes are represented as CSG operations on simple shapes

Procedural Hair [Chang02]

- Generate a model with a few hundred guide hairs
- Each hair is a rigid chain w/ revolute joints
- Use breakable springs between nearby hairs to simulate hairstyles
- Create triangle strips between adjacent hairs to simulate collisions
- Interpolate between guide hairs to produce many other hairs

Procedural Hair (Examples)

Short Hair in Wind with Artistic Rendering

MojoWorld

- Commercial application for creating photorealistic procedural planets
- http://www.pandromeda.com/

Procedural Planets

E. DeGuili

Procedural Planets

R. Fry

Procedural Planets

Y. Dinda

Procedural Planets

Texturing and Modeling: A Procedural Approach

- D.S. Ebert et al
- 3rd Ed, 2003
- Excellent reference

- http://www.mkp.com/tm3
- http://www.texturingandmodeling.com/

Procedural Animation

- Particle Systems
- Ragdoll Physics
- Fluid simulation
- Flocking/crowd simulations

Procedural Flocking (Boids)

- Simulate the movement of a flock of birds in 3-space
- Separation: move to avoid crowding local neighbors
- Alignment: steer towards average heading of neighbors
- Cohesion: steer towards average position of neighbors
- Limited Senses: only neighbors in forward-facing arc are observable

Boids Example

Open example

Flow-Based Video Synthesis And Editing [Bhat04]

- Allows animator to easily create loops and variants of flowing natural phenomena (water,smoke,etc)
- Artist draws a set of flow lines on the original image
- Algorithm computes textures for a particle system that uses these flow lines
- Sequence of textures is transformed to prevent linear discontinuities
- Artist can then draw additional flow lines to create new variants

Flow-Based Synthesis (Example)

Synthesized Result

Flow-Based Synthesis (Example)

Procedural Content: Games

- Reduces cost of art assets
 - Current AAA title costs upwards of \$10M
- Reduces download/storage size
- Reduces memory throughput to GPU
- Provides enhanced replayability

Games: Rogue-like

- All level layouts are procedurally generated
- Inspired games like Diablo, .hack, etc.

Games: .kkrieger

- Demoscene FPS game
- Total file size: 97,280 bytes

Games: Spore

- Multiple sub-games of creature/civilization gameplay
- Editors for creatures, buildings, vehicles
- Procedural behavior, animation, and texturing (driven by playercreated models)

Spore E3 2006 Video

Show video

Announcements

Programming Assignment 4 is out No Class Thursday (Office Hrs On Request)