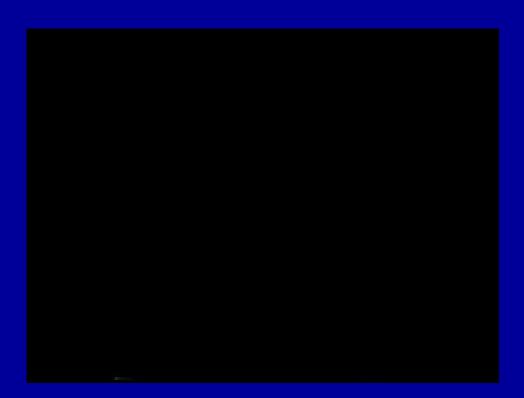
Visualization

Images are used to aid in understanding of data

Height Fields and Contours Scalar Fields Volume Rendering Vector Fields

[chapter 26]

Tumor

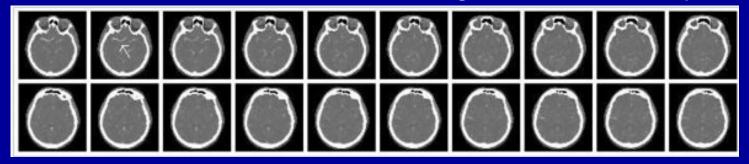


SCI, Utah

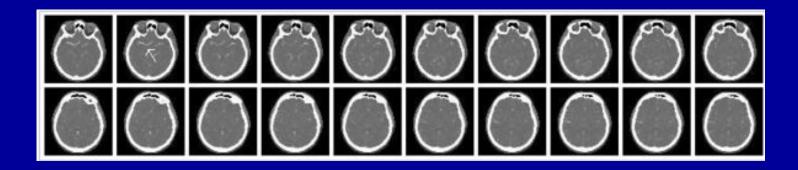
Scientific Visualization

- Visualize large datasets in scientific and medical applications
- Generally do not start with a 3D model

CT Scan - whiter means higher radiodensity

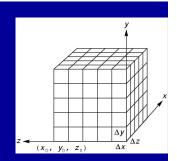


Scientific Visualization



- Must deal with very large data sets
 - CT or MRI, e.g. $512 \times 512 \times 200 \approx 50$ MB points
 - Visible Human 512 \times 512 \times 1734 \approxeq 433 MB points
- Visualize both real-world and simulation data
 - Visualization of Earthquake Simulation Data
 - Visualizations of simulated room fires
 - Fluid simulation

Types of Data

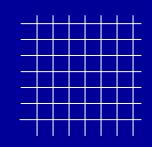


- Scalar fields (2D or 3D volume of scalars)
 - E.g., x-ray densities (MRI, CT scan)
- Vector fields (3D volume of vectors)
 - E.g., velocities in a wind tunnel
- Tensor fields (3D volume of tensors [matrices])
 - E.g., stresses in a mechanical part

All could be static or through time

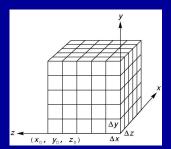
Outline

2D Scalar Field (Height Fields) z = f(x,y)



3D Scalar Fields

$$V = f(X, Y, Z)$$



Volume Rendering

Vector Fields

Blood flow in human carotid artery

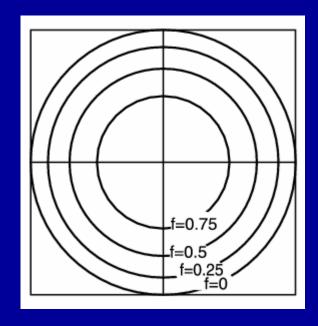
•
$$z = f(x,y)$$

$$f(x,y) = \begin{cases} 1 - x^2 - y^2, & \text{if } x^2 + y^2 < 1 \\ 0 & \text{otherwise} \end{cases}$$

How do you visualize this function?

•
$$z = f(x,y)$$

$$f(x,y) = \begin{cases} 1 - x^2 - y^2, & \text{if } x^2 + y^2 < 1 \\ 0 & \text{otherwise} \end{cases}$$

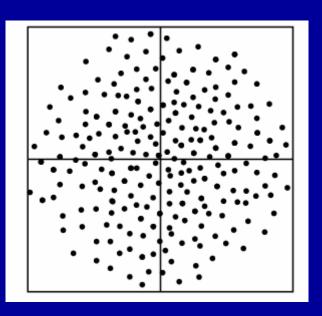


Contours

Topographical maps to indicate elevation

•
$$z = f(x,y)$$

$$f(x,y) = \begin{cases} 1 - x^2 - y^2, & \text{if } x^2 + y^2 < 1 \\ 0 & \text{otherwise} \end{cases}$$



Density plot

Density is proportional to the value of the function

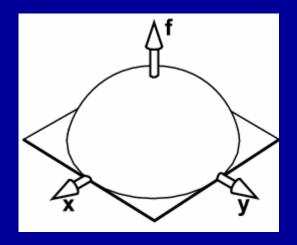
•
$$z = f(x,y)$$

$$f(x,y) = \begin{cases} 1 - x^2 - y^2, & \text{if } x^2 + y^2 < 1 \\ 0 & \text{otherwise} \end{cases}$$

$$z = 0$$
 => (0,0,0)
 $z = 0.25$ => (0,0,1)
 $z = 0.5$ => (1,0,0)
 $z = 0.75$ => (1,1,0)
 $z = 1.0$ => (1,1,1)

•
$$z = f(x,y)$$

$$f(x,y) = \begin{cases} 1 - x^2 - y^2, & \text{if } x^2 + y^2 < 1 \\ 0 & \text{otherwise} \end{cases}$$

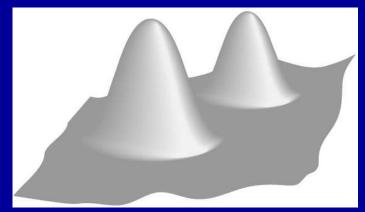


Height plot
Shows shape of the function

Height Field

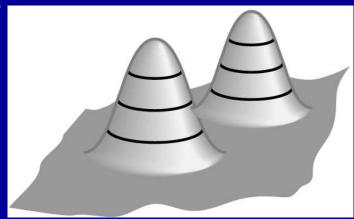
Visualizing an explicit function

$$z = f(x,y)$$



Adding contour curves

$$f(x,y) = c$$



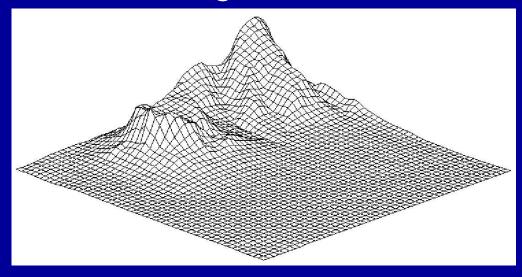
Meshes

- Function is sampled (given) at x_i , y_i , $0 \le i$, $j \le n$
- Assume equally spaced

$$x_i = x_0 + i\Delta x$$

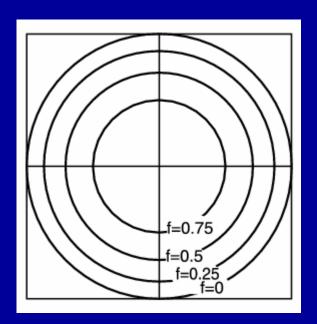
 $y_j = y_0 + j\Delta y$ $z_{ij} = f(x_i, y_j)$

- Generate quadrilateral or triangular mesh
- [Asst 1]



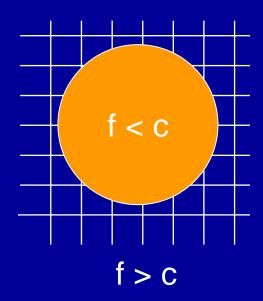
Contour Curves

$$f(x,y) = \begin{cases} 1 - x^2 - y^2, & \text{if } x^2 + y^2 < 1 \\ 0 & \text{otherwise} \end{cases}$$



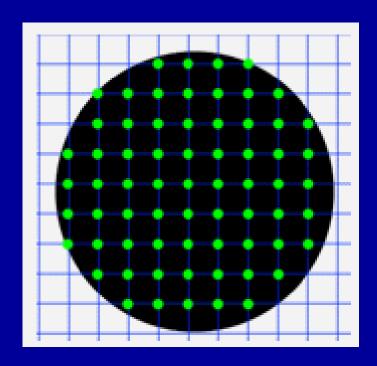
- How can we draw the curve?
- Sample at regular intervals for x,y

$$\begin{aligned}
 x_i &= x_0 + i\Delta x \\
 y_j &= y_0 + j\Delta y
 \end{aligned}$$

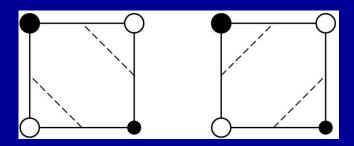


Marching Squares

- Sample function f at every grid point x_i, y_i
- For every point $f_{ij} = f(x_i, y_j)$ either $f_{ij} \le c$ or $f_{ij} > c$

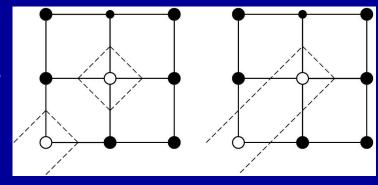


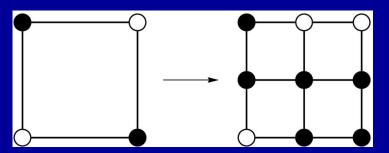
Ambiguities of Labelings



Ambiguous labels

Different resulting contours

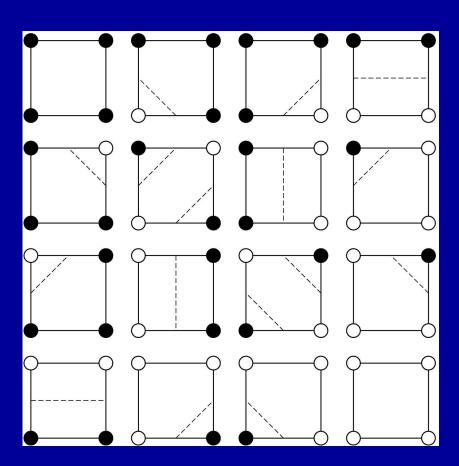




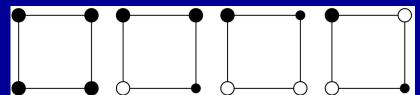
Resolution by subdivision (where possible)

Cases for Vertex Labels

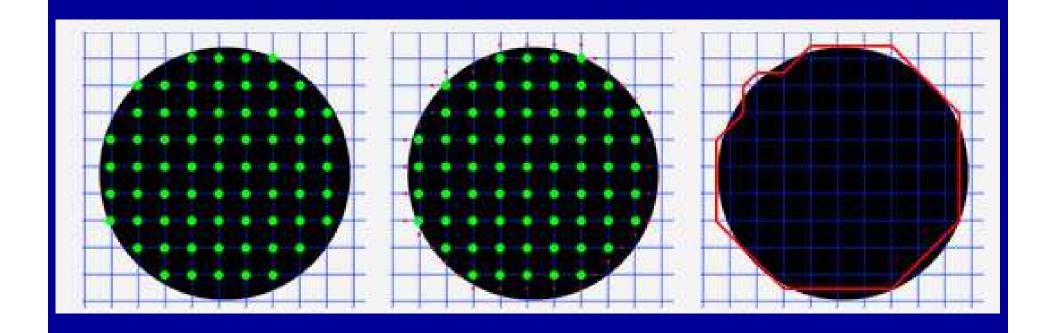
16 cases for vertex labels



4 unique mod. symmetries



Marching Squares Examples



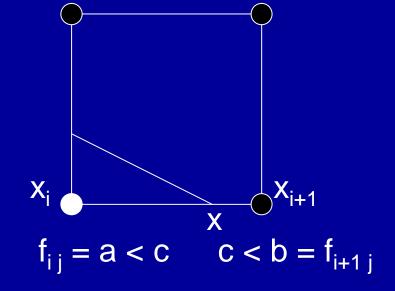
Can you do better?

Interpolating Intersections

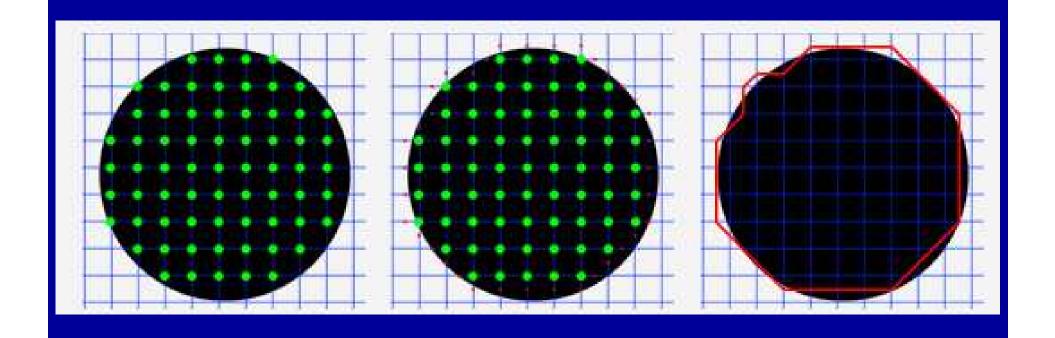
- Approximate intersection
 - Midpoint between x_i , x_{i+1} and y_i , y_{i+1}
 - Better: interpolate
- If f_{ij} = a is closer to c than b = f_{i+1j} then intersection is closer to (x_i, y_i):

$$\frac{x - x_i}{x_{i+1} - x} = \frac{c - a}{b - c}$$

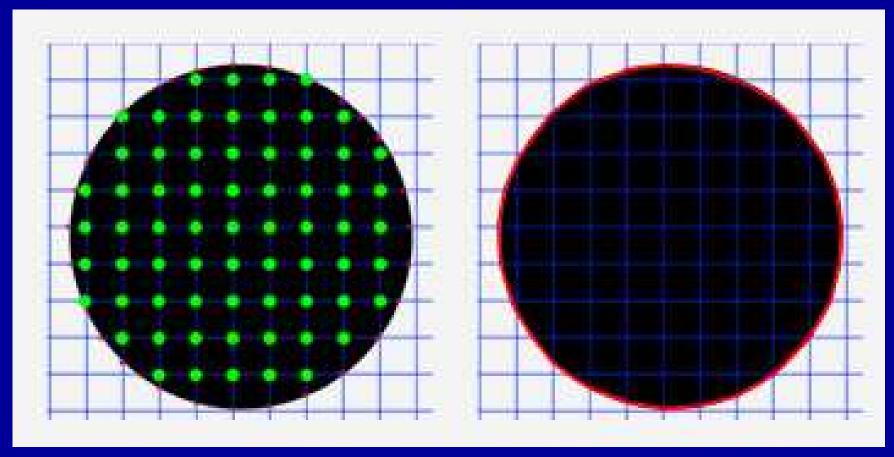
 Analogous calculation for y direction



Marching Squares Examples



Marching Squares Examples



Adaptive Subdivision

Outline

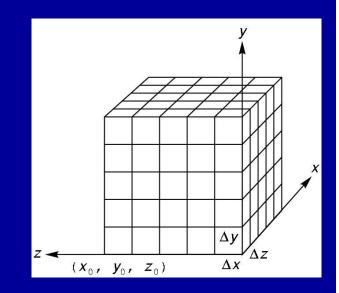
- 2D Scalar Fields
- 3D Scalar Fields
- Volume Rendering
- Vector Fields

- Volumetric data sets
- Example: tissue density
- Assume again regularly sampled

$$x_i = x_0 + i\Delta x$$

$$y_j = y_0 + j\Delta y$$

$$z_k = z_0 + k\Delta z$$



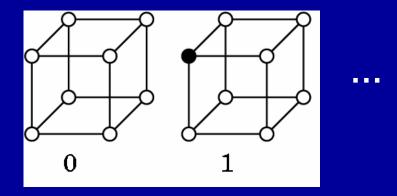
- Represent as voxels
- Two rendering methods
 - -Isosurface rendering
 - –Direct volume rendering (use all values [next])

Isosurfaces

- Generalize contour curves to 3D
- Isosurface given by f(x,y,z) = c
 - -f(x, y, z) < c inside
 - f(x, y, z) = c surface
 - f(x, y, z) > c outside

Marching Cubes

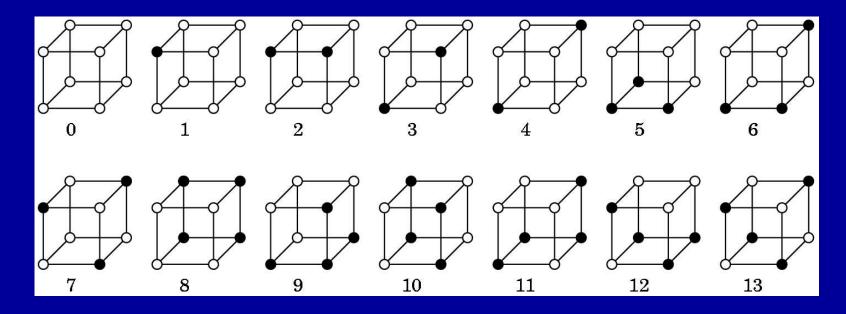
- Display technique for isosurfaces
- 3D version of marching squares
- How many possible cases?



 $2^8 = 256$

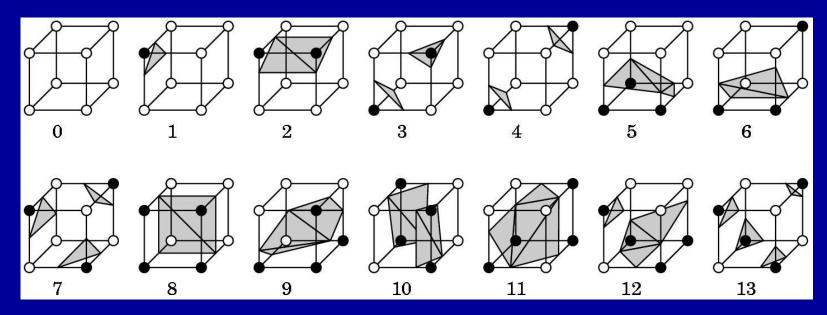
Marching Cubes

• 14 cube labelings (after elimination symmetries)

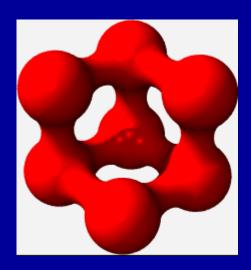


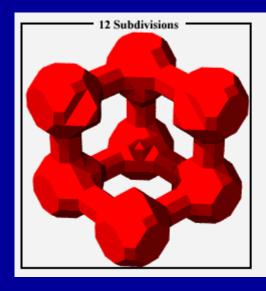
Marching Cube Tessellations

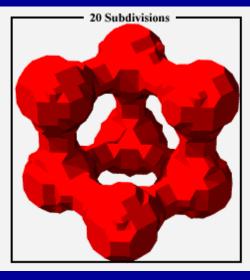
- Generalize marching squares, just more cases
- Interpolate as in 2D
- Ambiguities similar to 2D

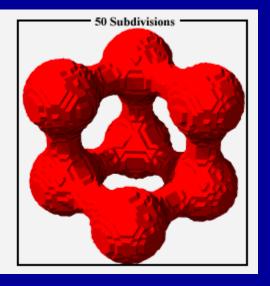


Marching Squares Examples

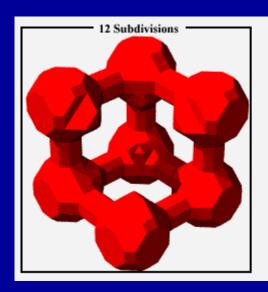


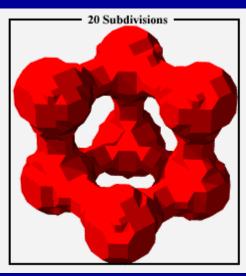


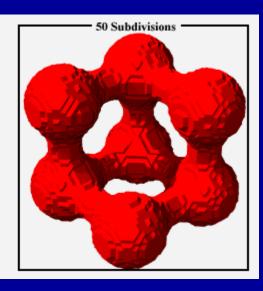


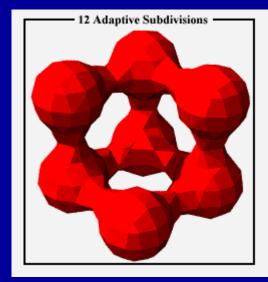


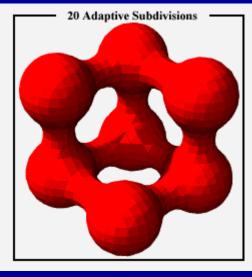
Marching Squares Examples



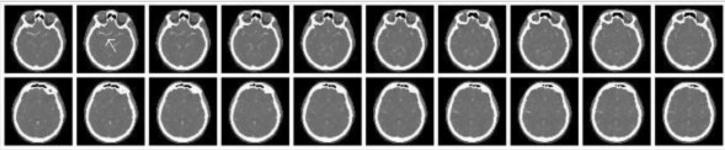


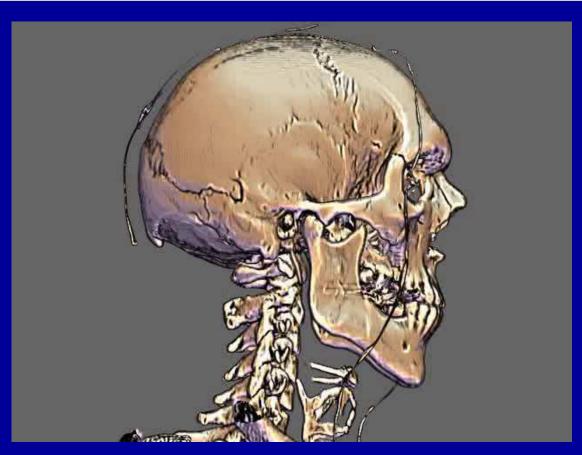






Example (Utah)



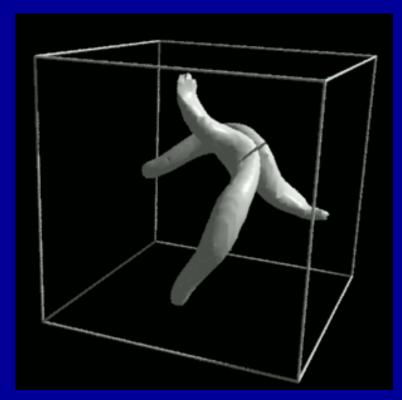


Outline

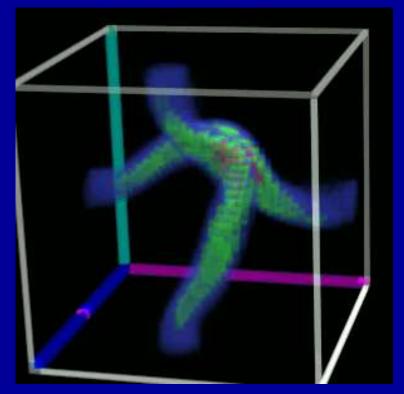
- 2D Scalar Fields
- 3D Scalar Fields
- Volume Rendering
- Vector Fields

Volume Rendering

- Some data is more naturally modeled as a volume, not a surface
- Use all voxels and transparency (a-values)



Ray-traced isosurface f(x,y,z)=c



Same data, rendered as a volume

Why Bother with Volume Rendering?

- Not all voxels contribute to final image
- Could miss most important data by selecting wrong isovalue
- All voxels contribute to the image
 - more informative
 - less misleading (the isosurface of noisy data is unpredictable)
- Simpler and more efficient than converting a very complex data volume (like the visible human) to polygons and then rendering them

Surface vs. Volume Rendering

- 3D model of surfaces
- Convert to triangles
- Draw primitives
- Lose or disguise data
- Good for opaque objects

- Scalar field in 3D
- Convert to RGBA values
- Render volume "directly"
- See data as given
- Good for complex objects

Sample Applications

Medical

- Computed Tomography (CT)
- Magnetic Resonance Imaging (MRI)
- Ultrasound

Engineering and Science

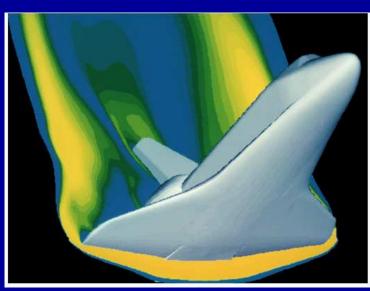
Computational Fluid Dynamics (CFD) – aerodynamic simulations

- Meteorology - atmospheric pressure, temperature, wind speed, wind

direction, humidity, precipitation

Astrophysics – simulate galaxies

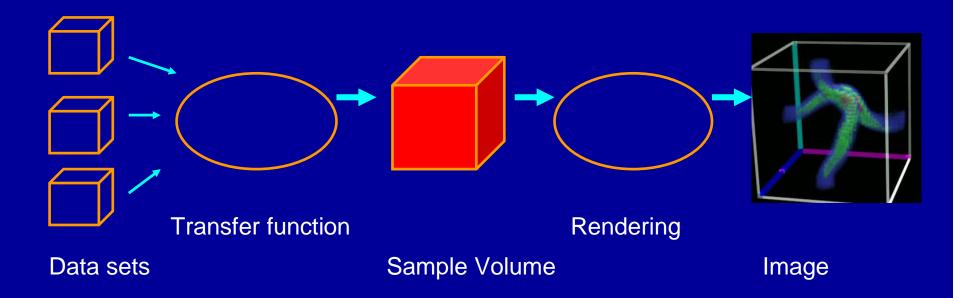
Simulate gravitational contraction of complex N-body systems



A computer simulation of high velocity air flow around the **Space Shuttle**.

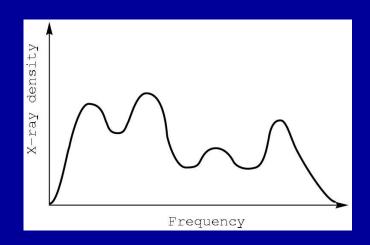
Volume Rendering Pipeline

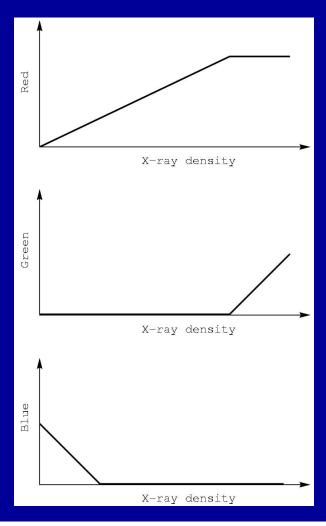
- Data volumes come in all types: tissue density (CT), wind speed, pressure, temperature, value of implicit function.
- Data volumes are used as input to a transfer function, which produces a sample volume of colors and opacities as output.
 - Typical might be a 256x256x64 CT scan
- That volume is rendered to produce a final image.



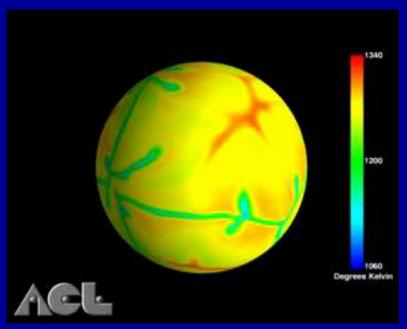
Transfer Functions

- Transform scalar data values to RGBA values
- Apply to every voxel in volume
- Highly application dependent
- Start from data histogram



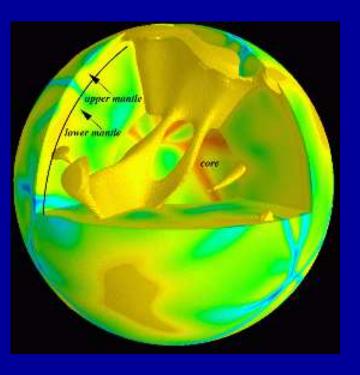


Transfer Function Example

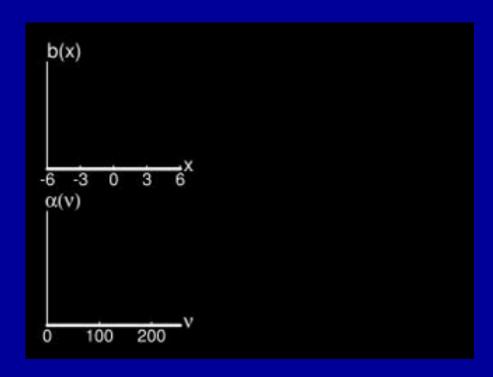


Scientific Computing and Imaging (SCI)
University of Utah

Mantle Convection



Transfer Function Example

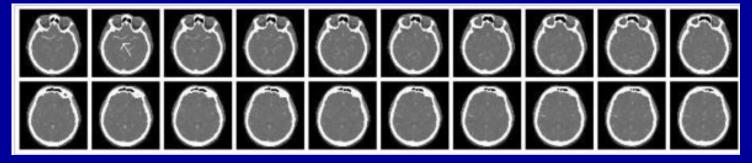


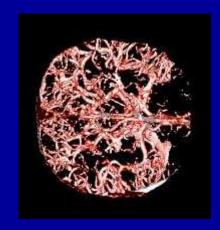
G. Kindlmann

Volume Rendering Pipeline

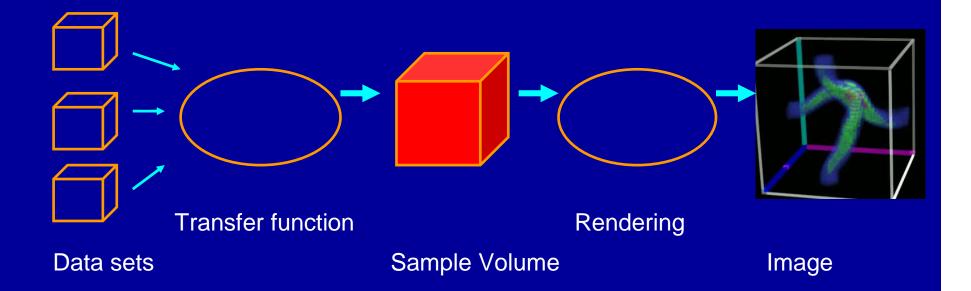
Use opacity for emphasis

CT Scan - whiter means higher radiodensity





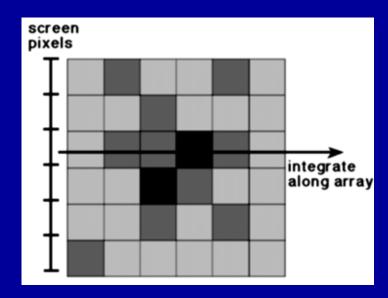
Volume Rendering



- Three volume rendering techniques
 - Volume ray casting
 - Splatting
 - 3D texture mapping

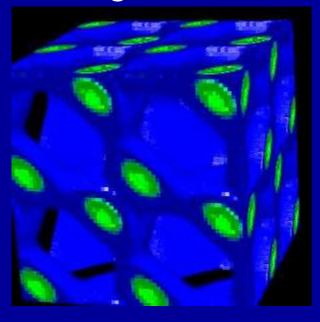
Volume Ray Casting

- Ray Casting
 - Integrate color and opacity along the ray
 - Simplest scheme just takes equal steps along ray, sampling opacity and color
 - Grids make it easy to find the next cell

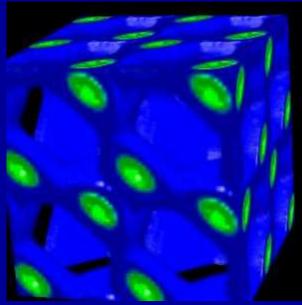


Trilinear Interpolation

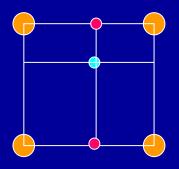
- Interpolate to compute RGBA away from grid
- Nearest neighbor yields blocky images
- Use trilinear interpolation
- 3D generalization of bilinear interpolation



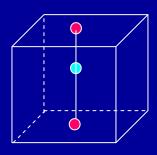
Nearest neighbor



Trilinear Interpolation



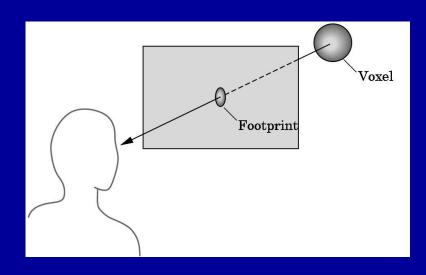
Bilinear interpolation

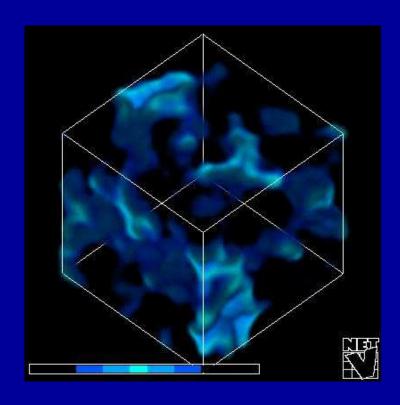


Trilinear interpolation

Splatting

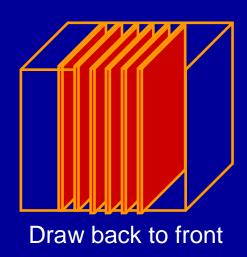
- Alternative to ray tracing
- Assign shape to each voxel (e.g., sphere or Gaussian)
- Project onto image plane (splat)
- Draw voxels back-to-front
- Composite (a-blend)





3D Textures

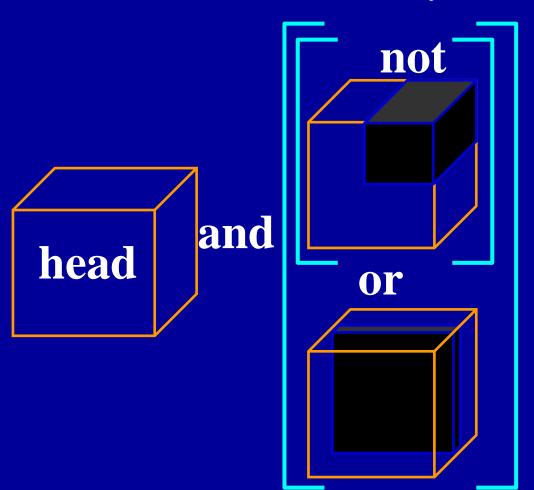
- Alternative to ray tracing, splatting
- Build a 3D texture (including opacity)
- Draw a stack of polygons, back-to-front
- Efficient if supported in graphics hardware
- Few polygons, much texture memory

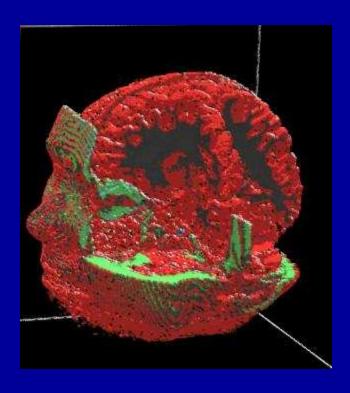


3D RGBA texture

Other Techniques

Use CSG for cut-away





Acceleration of Volume Rendering

- Basic problem: Huge data sets
- Octrees
- Use error measures to stop iteration
- Exploit parallelism

Outline

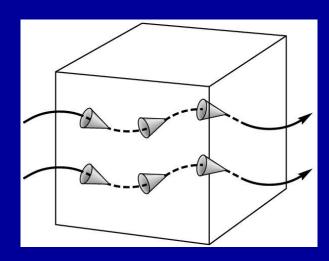
- Height Fields and Contours
- Scalar Fields
- Volume Rendering
- Vector Fields

Vector Fields

- Visualize vector at each (x,y,z) point
 - Example: velocity field
- Hedgehogs
 - Use 3D directed line segments (sample field)
 - Orientation and magnitude determined by vector
- Glyph
 - Use other geometric primitives
 - Cones

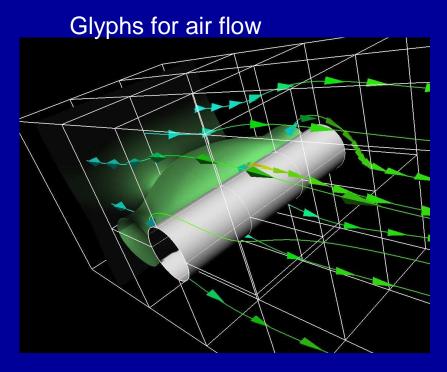


Blood flow in human carotid artery

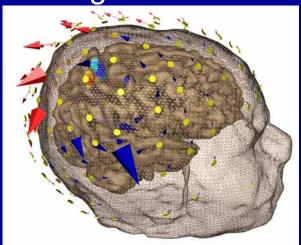


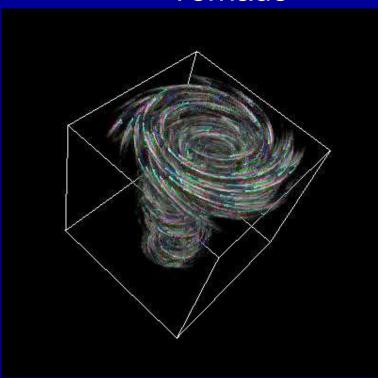
Vector Fields (Utah)

Tornado



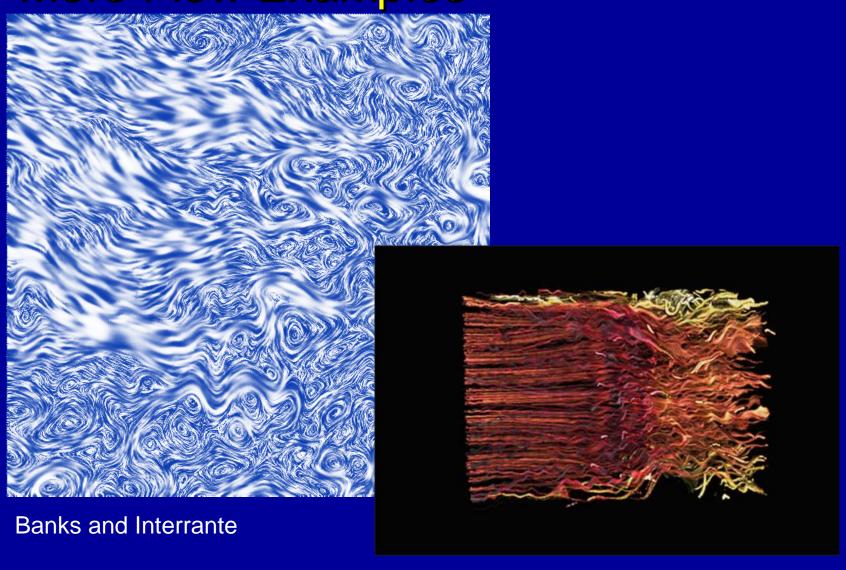
Magnetic field





Plasma disruption

More Flow Examples



Interaction: Data Probe

SCI, Utah





Example of visualization application

University of Utah

The Biolmage PowerApp

NCRR Center for Bioelectric Field Modeling, Simulation, and Visualization

> Scientific Computing and Imaging (SCI) Institute

> > University of Utah ©2005

http://www.sci.utah.edu/

Summary

- Height Fields and Contours
- Scalar Fields
 - Isosurfaces
 - Marching cubes
- Volume Rendering
 - Volume ray tracing
 - Splatting
 - 3D Textures
- Vector Fields
 - Hedgehogs
 - Glyph

Announcements

- Course Evaluation is now open
- Until Monday, May 7th
- Please complete the evaluation

We read it and listen to what you say