Announcements

Written Assignment 2 is due 3/8

Computer Graphics 15-462




Advanced Texturing

Bump Mapping
Displacement Mapping
Environment Mapping
Procedural Textures

Shirley Chapter 11

COMPUTER GRAPHICS
15-462

03/06/07

Computer Graphics 15-462 2




Uses for Texture Mapping (Heckbert 1986)

Use texture to affect a variety of parameters

surface color - color (radiance) of each point on surface
(Catmull 1974)

surface reflectance - reflectance coefficients ky, kg, or n
normal vector - bump mapping (Blinn 1978)
geometry - displacement mapping
transparency - transparency mapping (clouds) (Gardener 1985)
light source radiance - environment mapping (Blinn 1978)

shiny

Computer Graphics 15-462




Fine Surface Detall

http://www.siggraph.org/education/material s/Hyper Graph/mapping/bumpmap.htm

How can we model this level of detail?

Computer Graphics 15-462 4




Bump Mapping

e Basic texture mapping paints on to a smooth surface

 How do you make a surface look rough?
— Option 1: model the surface with many small polygons
— Option 2: perturb the normal vectors before the shading calculation

Dl O\ 11

Real Bump Fake Bump Flat Plane

+

Sphere w/Diffuse Texture Map Sphere w/Diffuse Texture + Bump Map

Computer Graphics 15-462




Why Does this Work?

« Which spots bulge out, and which are indented?

(1 0107 Q10

 The human visual system is hard-coded to expect light to come
from above (the sun)

Computer Graphics 15-462




Implementing Bump Mapping
« At each point, displace the normal by some amount to change lighting
» Displacements stored in bump-map (texture image)

Computer Graphics 15-462




Bump Mapping is a Hack

 What anomalies do you see in the image below?

Greg Turk

Computer Graphics 15-462




Displacement Mapping

o Use texture map to displace each point on the surface
— Texture value gives amount to move in direction normal to surface

e How Is this better/worse than bump mapping?

Computer Graphics 15-462




Environment Mapping

» Very shiny objects show reflections of their surroundings
— To do this properly, we use ray tracing to calculate multiple bounces
— That’s a lot of computation: how can we fake it?

— Use a pre-rendered environment
— (Won't support inter-object reflections)

Computer Graphics 15-462




Environment Mapping (Spherical)

* Imagine that object is surrounded by an infinitely large
sphere
— Calculate reflection vector, project on to sphere
— Need a seamless texture for the sphere

Jerome Dewhurst

Computer Graphics 15-462




Environment Mapping (Cube Map)

e Same idea as spherical map, but with 6 textures forming a
cube

e OpenGL supports both methods of environment mapping:

— glEnable(GL_TEXTURE_CUBE_MAP_EXT);
— glEnable(GL_TEXTURE_GEN_S); glEnable(GL_TEXTURE_GEN_T):

 What are the advantages/disadvantages of each method?

Computer Graphics 15-462 12 [Demo]




Color Mapping

Mapping from R->R3, specifically from (0,1)->(0,1)3
Allows us to convert scalar-valued functions to colors

Option 1: Color table

0.2-04 04-06 @ 0.6-08
— Abrupt transitions, but dead simple to implement

Option 2: Color spline

— Linear/cubic/C-R/Hermite interpolation between colors
— Can create both sharp transitions and smooth gradients

Computer Graphics 15-462




Procedural Textures

 What if we want to generate textures procedurally?
— To save space
— To get effects not possible with photographic textures (solid texture)
— To animate textures
— To get the correct texture scale

» Basic procedural textures are regular, boring
— Built with periodic functions like sin(), cos()

* Need to add “interestingness” to textures
— Disturb the regularity of basic textures

Computer Graphics 15-462




Perlin Noise

« Random perturbation function with the following
characteristics:
— Repeatable function of <x,y,z> input
— Known range [-1,1]
— Band-limited (coherent)
— No obvious periodicity
— Stationary
— Isotropic

M.tb'

White Noise Perlin Noise

Computer Graphics 15-462




Perlin Noise Algorithm

e Perlin Noise is also known as gradient noise
— Gradient value at each integer point in the 3-space lattice
— Gradient determined by repeatable hash of floor(x),floor(y),floor(z)
— Take dot product of each gradient with distance to lattice point
— Weighted average using ease function: 6t>-15t4+10t3

http://mrl.nyu.edu/~perlin/noise/

Computer Graphics 15-462




Turbulence

* Noise has a range of [-1,1], must convert to [0,1]
e Can scale noise using 0.5(noise+1)
e abs(noise) creates dark veins at zero crossings

Computer Graphics 15-462




Octaves of Noise

Feature size of basic Perlin noise is relatively uniform
Sum multiple calls to noise(), scaling input

Typically, we scale the input by 2
Number of iterations = number of octaves

1-8 Octaves of Turbulence

Computer Graphics 15-462 18




Using Noise

Clouds: noise(point+offset)*intensity
Fire: abs(noise3(point)+offset)
Marble: sin(offset + turbulence(point))
Wood: noise(point)*scale - int(hoise(point)*scale)
o Animated texture: add time-varying offset vector to point

Computer Graphics 15-462




Reaction Diffusion (Witkin & Kass 91)

 Originally developed by Alan Turing as a way to model
morphogenesis

e Two (or more) morphogens whose concentration varies
over a 2D grid

o Concentration affected by:
— Decay of morphogens

— Movement of morphogen from areas of high concentration to low
(diffusion)

— Interactions between morphogens which create and destroy them
(reaction)

Computer Graphics 15-462




Reaction Diffusion: R Functions

» Difference in concentrations: giraffe markings
 Max of differences (3+ morphogens). maze-like
» Difference of abs (3+ morphogens): woven twigs

Computer Graphics 15-462




Reaction Diffusion

 Varying anisotropy by curvature or location allows for
more complicated effects

— Zebra’s stripes wrap correctly
— Girrafe’s pattern is larger on smooth areas

N
ﬁ(////

';7,-5““!\“))

Computer Graphics 15-462




Cellular Textures (Worley)

 Based on the idea that there are “feature points” in 3-
space, and we care about the distance to the nt" closest

feature

* F(x,y) is the distance to the i" closest randomly
distributed feature

Computer Graphics 15-462




Cellular Texture Variations

Cellular texture algorithm very “hackable”

Change distribution of feature points

Fractal sum of multiple octaves (water/tin foil)
Linear/nonlinear combinations of F;s

Unique ID number per feature point (flagstones)
Different distance metrics (Manhattan, super-quadratic)

K .

Fo- Fy Manhattan Distance

Computer Graphics 15-462




Announcements

Written Assignment 2 is due 3/8

Computer Graphics 15-462




