
1Computer Graphics 15-462

Announcements

Written Assignment 2 is due 3/8



2Computer Graphics 15-462

Advanced Texturing

Bump Mapping
Displacement Mapping
Environment Mapping
Procedural Textures

Bump Mapping
Displacement Mapping
Environment Mapping
Procedural Textures

COMPUTER GRAPHICS
15-462

03/06/07

Shirley Chapter 11



3Computer Graphics 15-462

Uses for Texture Mapping (Heckbert 1986)

Use texture to affect a variety of parameters
• surface color - color (radiance) of each point on surface 

(Catmull 1974)
• surface reflectance - reflectance coefficients kd, ks, or nshiny 

• normal vector - bump mapping (Blinn 1978)
• geometry - displacement mapping
• transparency - transparency mapping (clouds) (Gardener 1985)
• light source radiance - environment mapping (Blinn 1978)



4Computer Graphics 15-462

Fine Surface Detail

http://www.siggraph.org/education/materials/HyperGraph/mapping/bumpmap.htm

How can we model this level of detail?



5Computer Graphics 15-462

Bump Mapping
• Basic texture mapping paints on to a smooth surface
• How do you make a surface look rough?

– Option 1: model the surface with many small polygons
– Option 2: perturb the normal vectors before the shading calculation

Real Bump Fake Bump Flat Plane

+ =

Sphere w/Diffuse Texture Map Bump Map Sphere w/Diffuse Texture + Bump Map



6Computer Graphics 15-462

Why Does this Work?

• Which spots bulge out, and which are indented?

• The human visual system is hard-coded to expect light to come 
from above (the sun)



7Computer Graphics 15-462

Implementing Bump Mapping
• At each point, displace the normal by some amount to change lighting
• Displacements stored in bump-map (texture image)

blackboard

[Demo]



8Computer Graphics 15-462

Bump Mapping is a Hack

Greg Turk

• What anomalies do you see in the image below?



9Computer Graphics 15-462

Displacement Mapping

• Use texture map to displace each point on the surface
– Texture value gives amount to move in direction normal to surface

• How is this better/worse than bump mapping?

[Demo]



10Computer Graphics 15-462

Environment Mapping

• Very shiny objects show reflections of their surroundings 
– To do this properly, we use ray tracing to calculate multiple bounces
– That’s a lot of computation: how can we fake it?

– Use a pre-rendered environment
– (Won’t support inter-object reflections)



11Computer Graphics 15-462

Environment Mapping (Spherical)

• Imagine that object is surrounded by an infinitely large 
sphere 

– Calculate reflection vector, project on to sphere
– Need a seamless texture for the sphere

blackboard
Jerome Dewhurst



12Computer Graphics 15-462

Environment Mapping (Cube Map)

• Same idea as spherical map, but with 6 textures forming a 
cube

• OpenGL supports both methods of environment mapping:
– glEnable(GL_TEXTURE_CUBE_MAP_EXT);
– glEnable(GL_TEXTURE_GEN_S); glEnable(GL_TEXTURE_GEN_T);

• What are the advantages/disadvantages of each method? 

[Demo]



13Computer Graphics 15-462

Color Mapping

• Mapping from R->R3, specifically from (0,1)->(0,1)3

• Allows us to convert scalar-valued functions to colors
• Option 1: Color table

– Abrupt transitions, but dead simple to implement

• Option 2: Color spline

– Linear/cubic/C-R/Hermite interpolation between colors
– Can create both sharp transitions and smooth gradients

0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0



14Computer Graphics 15-462

Procedural Textures

• What if we want to generate textures procedurally?
– To save space
– To get effects not possible with photographic textures (solid texture)
– To animate textures
– To get the correct texture scale

• Basic procedural textures are regular, boring
– Built with periodic functions like sin(), cos()

• Need to add “interestingness” to textures
– Disturb the regularity of basic textures



15Computer Graphics 15-462

Perlin Noise

• Random perturbation function with the following 
characteristics:

– Repeatable function of <x,y,z> input
– Known range [-1,1]
– Band-limited (coherent)
– No obvious periodicity
– Stationary
– Isotropic

Perlin NoiseWhite Noise



16Computer Graphics 15-462

Perlin Noise Algorithm

• Perlin Noise is also known as gradient noise
– Gradient value at each integer point in the 3-space lattice
– Gradient determined by repeatable hash of floor(x),floor(y),floor(z)
– Take dot product of each gradient with distance to lattice point
– Weighted average using ease function: 6t5-15t4+10t3

blackboard
http://mrl.nyu.edu/~perlin/noise/



17Computer Graphics 15-462

Turbulence

• Noise has a range of [-1,1], must convert to [0,1]
• Can scale noise using 0.5(noise+1)
• abs(noise) creates dark veins at zero crossings



18Computer Graphics 15-462

Octaves of Noise

• Feature size of basic Perlin noise is relatively uniform
• Sum multiple calls to noise(), scaling input
• Typically, we scale the input by 2i

• Number of iterations = number of octaves

1-8 Octaves of Turbulence



19Computer Graphics 15-462

Using Noise

• Clouds: noise(point+offset)*intensity
• Fire: abs(noise3(point)+offset)
• Marble: sin(offset + turbulence(point))
• Wood: noise(point)*scale - int(noise(point)*scale)
• Animated texture: add time-varying offset vector to point

[Demo]



20Computer Graphics 15-462

Reaction Diffusion (Witkin & Kass 91)

• Originally developed by Alan Turing as a way to model 
morphogenesis

• Two (or more) morphogens whose concentration varies 
over a 2D grid

• Concentration affected by:
– Decay of morphogens
– Movement of morphogen from areas of high concentration to low 

(diffusion)
– Interactions between morphogens which create and destroy them 

(reaction)

blackboard



21Computer Graphics 15-462

Reaction Diffusion: R Functions

• Difference in concentrations: giraffe markings
• Max of differences (3+ morphogens): maze-like
• Difference of abs (3+ morphogens): woven twigs

[Video]



22Computer Graphics 15-462

Reaction Diffusion

• Varying anisotropy by curvature or location allows for 
more complicated effects

– Zebra’s stripes wrap correctly
– Girrafe’s pattern is larger on smooth areas

Turk



23Computer Graphics 15-462

Cellular Textures (Worley)

• Based on the idea that there are “feature points” in 3-
space, and we care about the distance to the nth closest 
feature

• Fi(x,y) is the distance to the ith closest randomly 
distributed feature

F1 F2 F3



24Computer Graphics 15-462

Cellular Texture Variations

• Cellular texture algorithm very “hackable”
• Change distribution of feature points
• Fractal sum of multiple octaves (water/tin foil)
• Linear/nonlinear combinations of Fis
• Unique ID number per feature point (flagstones)
• Different distance metrics (Manhattan, super-quadratic)

F2 - F1 Manhattan Distance



25Computer Graphics 15-462

Announcements

Written Assignment 2 is due 3/8


