
1

Announcements

• Written Assignment2 is out, due March 8
• Graded Programming Assignment2 next Tuesday

Spatial Data Structures

Hierarchical Bounding Volumes
Grids
Octrees
BSP Trees

Hierarchical Bounding Volumes
Grids
Octrees
BSP Trees

11/7/02

3

Speeding Up Computations

• Ray Tracing
– Spend a lot of time doing ray object intersection tests

• Hidden Surface Removal – painters algorithm
– Sorting polygons front to back

• Collision between objects
– Quickly determine if two objects collide

n2 computations

Spatial data-structures

4

Spatial Data Structures

• We’ll look at
– Hierarchical bounding volumes
– Grids
– Octrees
– K-d trees and BSP trees

• Good data structures can give speed up ray tracing by 10x or 100x

5

Bounding Volumes
• Wrap things that are hard to check for intersection in things that are

easy to check
– Example: wrap a complicated polygonal mesh in a box
– Ray can’t hit the real object unless it hits the box
– Adds some overhead, but generally pays for itself.

• Most common bounding volume types: sphere and box
– box can be axis-aligned or not

• You want a snug fit!
• But you don’t want expensive intersection tests!

Good!Bad!

6

Bounding Volumes
• You want a snug fit!
• But you don’t want expensive intersection tests!
• Use the ratio of the object volume to the enclosed volume as a measure

of fit.

• Cost = n*B + m*I
n - is the number of rays tested against the bounding volume
B - is the cost of each test (Do not need to compute exact intersection!)

m - is the number of rays which actually hit the bounding volume
I - is the cost of intersecting the object within

7

Bounding Volumes
• You want a snug fit!
• But you don’t want expensive intersection tests!
• Use the ratio of the object volume to the enclosed volume as a measure

of fit.

• Cost = n*B + m*I
n - is the number of rays tested against the bounding volume
B - is the cost of each test (Do not need to compute exact intersection!)

m - is the number of rays which actually hit the bounding volume
I - is the cost of intersecting the object within

8

Hierarchical Bounding Volumes
• Still need to check ray against every object --- O(n)
• Use tree data structure

– Larger bounding volumes contain smaller ones

9

Hierarchical Bounding Volumes
• Still need to check ray against every object --- O(n)
• Use tree data structure

– Larger bounding volumes contain smaller ones

10

Hierarchical Bounding Volumes
• Still need to check ray against every object --- O(n)
• Use tree data structure

– Larger bounding volumes contain smaller ones

11

Hierarchical Bounding Volumes
• Still need to check ray against every object --- O(n)
• Use tree data structure

– Larger bounding volumes contain smaller ones

12

Hierarchical Bounding Volumes
• Still need to check ray against every object --- O(n)
• Use tree data structure

– Larger bounding volumes contain smaller ones

Check intersect root
If not return no intersections

13

Hierarchical Bounding Volumes
• Still need to check ray against every object --- O(n)
• Use tree data structure

– Larger bounding volumes contain smaller ones

Check intersect root
If intersect

check intersect left sub-tree
check intersect right sub-tree

14

Hierarchical Bounding Volumes
• Still need to check ray against every object --- O(n)
• Use tree data structure

– Larger bounding volumes contain smaller ones

Check intersect root
If intersect

check intersect left sub-tree
check intersect right sub-tree

15

Hierarchical Bounding Volumes
• Still need to check ray against every object --- O(n)
• Use tree data structure

– Larger bounding volumes contain smaller ones

Check intersect root
If intersect

check intersect left sub-tree
check intersect right sub-tree

16

Hierarchical Bounding Volumes
• Still need to check ray against every object --- O(n)
• Use tree data structure

– Larger bounding volumes contain smaller ones

Check intersect root
If intersect

check intersect left sub-tree
check intersect right sub-tree

17

Hierarchical Bounding Volumes
• Many ways to build a tree for the hierarchy
• Works well:

– Binary
– Roughly balanced

– Boxes of sibling trees not overlap too much

18

Hierarchical Bounding Volumes
• Sort the surfaces along the axis before dividing into two boxes
• Carefully choose axis each time
• Choose axis that minimizes sum of volumes

19

Hierarchical Bounding Volumes
• Sort the surfaces along the axis before dividing into two boxes
• Carefully choose axis each time
• Choose axis that minimizes sum of volumes

20

Hierarchical Bounding Volumes

• Works well if you use good (appropriate) bounding
volumes and hierarchy

• Should give O(log n) rather than O(n) complexity
(n=# of objects)

• Can have multiple classes of bounding volumes and pick
the best for each enclosed object

21

Hierarchical bounding volumes
Spatial Subdivision

• Grids
• Octrees
• K-d trees and BSP trees

22

3D Spatial Subdivision

• Bounding volumes enclose the objects (object-
centric)

• Instead could divide up the space—the further
an object is from the ray the less time we want
to spend checking it

– Grids
– Octrees
– K-d trees and BSP trees

23

Grids
• Data structure: a 3-D array of cells (voxels) that tile space

– Each cell points to list of all surfaces intersecting that cell

• Intersection testing:
– Start tracing at cell where ray begins
– Step from cell to cell, searching for the first intersection point
– At each cell, test for intersection with all surfaces pointed to by that cell
– If there is an intersection, return the closest one

24

Grids
• Cells are traversed in an incremental fashion
• Hits of sets of parallel lines are very regular

25

More on Grids

• Be Careful! The fact that a ray passes through a cell and hits an
object doesn’t mean the ray hit that object in that cell

• Optimization: cache intersection point and ray id in “mailbox”
associated with each object

• Step from cell to cell
• Get object intersecting cell
• Find closest intersection
• If found intersection --- done

26

More on Grids

• Grids are a poor choice when the world is nonhomogeneous
(clumpy)

– many polygons clustered in a small space

• How many cells to use?
– too few � many objects per cell � slow
– too many � many empty cells to step through � slow

• Non-uniform spatial subdivision is better!

27

Octrees
• Quadtree is the 2-D generalization of binary tree

– node (cell) is a square
– recursively split into four equal sub-squares
– stop when leaves get “simple enough”

28

Octrees
• Quadtree is the 2-D generalization of binary tree

– node (cell) is a square
– recursively split into four equal sub-squares
– stop when leaves get “simple enough”

• Octree is the 3-D generalization of quadtree
– node (cell) is a cube, recursively split into eight equal sub-cubes
– for ray tracing:

� stop subdivision based on number of objects
� internal nodes store pointers to children, leaves store list of surfaces

– more expensive to traverse than a grid
– but an octree adapts to non-homogeneous scenes better

trace(cell, ray) { // returns object hit or NONE
if cell is leaf, return closest(objects_in_cell(cell))
for child cells pierced by ray, in order // 1 to 4 of these

obj = trace(child, ray)

if obj!=NONE return obj

return NONE
}

29

Which Data Structure is Best for Ray Tracing?

Grids

Easy to implement

Require a lot of memory

Poor results for inhomogeneous scenes

Octrees
Better on most scenes (more adaptive)

Spatial subdivision expensive for animations
Hierarchical bounding volumes

Better for dynamic scenes

Natural for hierarchical objects

30

k-d Trees and BSP Trees

• Relax the rules for quadtrees and octrees:

• k-dimensional (k-d) tree
– don’t always split at midpoint
– split only one dimension at a time (i.e. x or y or z)

• binary space partitioning (BSP) tree
– permit splits with any line
– In 2-D space split with lines (most of our examples)
– 3-D space split with planes
– K-D space split with k-1 dimensional hyperplanes

• useful for Painter’s algorithm (hidden surface
removal)

31

Painters Algorithm
Hidden Surface Elimination

32

Painters Algorithm

• Need to sort objects back to front

• Order depends on the view point

• Partition objects using BSP tree

• View independent

33

Building a BSP Tree

• Let’s look at simple example with 3 line segments
• Arrowheads are to show left and right sides of lines.
• Using line 1 or 2 as root is easy.
• (examples from http://www.geocities.com/SiliconValley/2151/bsp.html)

Line 2
Line 3

Line 1

Viewpoint

1

2

3

a BSP tree
using 2 as root

34

Drawing Objects
• Traverse the tree from the root
• If view point is on the left of the line --- traverse right sub-tree first
• Draw the root
• Traverse left sub-tree

Line 2
Line 3

Line 1

Viewpoint

1

2

3

a BSP tree
using 2 as root

35

Building the Tree 2

Using line 3 for the root requires a split

Line 2a

Line 3

Line 1

Viewpoint

1

2b2a

Line 2b

3D

C

B

A

36

Triangles
Use plane containing triangle T1 to split the space

If view point is on one side of the plane draw polygons on the other side first

T2 does not intersect plane of T1

37

Triangles
Use plane containing triangle T1 to split the space

If view point is on one side of the plane draw polygons on the other side first

T2 does not intersect plane of T1

38

Triangles

Split Triangle

39

Building a Good Tree - the tricky part

• A naïve partitioning of n polygons will yield O(n3)
polygons because of splitting!

• Algorithms exist to find partitionings that produce O(n2).
– For example, try all remaining polygons and add the one which causes

the fewest splits

– Fewer splits -> larger polygons -> better polygon fill efficiency

• Also, we want a balanced tree.

40

Painter’s Algorithm with BSP trees

• Build the tree
– Involves splitting some polygons

– Slow, but done only once for static scene

• Correct traversal lets you draw in back-to-front or front-
to-back order for any viewpoint

– Order is view-dependent

– Pre-compute tree once
– Do the “sort” on the fly

• Will not work for changing scenes

41

Drawing a BSP Tree

• Each polygon has a set of coefficients:
Ax + By + Cz + D

• Plug the coordinates of the viewpoint in and see:
>0 : front side

<0 : back facing
=0 : on plane of polygon

• Back-to-front draw: inorder traversal, do farther child first
• Front-to-back draw: inorder traversal, do near child first

f r ont _t o_back(t r ee, v i ewpt) {
i f (t r ee == nul l) r et ur n;
i f (posi t i ve_si de_of (r oot (t r ee) , v i ewpt)) {

f r ont _t o_back(posi t i ve_br anch(t r ee, v i ewpt) ;
di spl ay_pol ygon(r oot (t r ee)) ;
f r ont _t o_back(negat i ve_br anch(t r ee, v i ewpt) ;

}
el se { …dr aw negat i ve br anch f i r st …}

}

42

Drawing Back to Front

• Use Painter’s Algorithm for hidden surface removal

Line 2a

Line 3

Line 1

Viewpoint
1

2b2a

3

Line 2b

Steps:
–Draw objects on far side of line 3

»Draw objects on far side of
line 2a

–Draw line 1
»Draw line 2a

–Draw line 3
–Draw objects on near side of line 3

»Draw line 2b

43

Further Speedups
• Do backface culling

• Draw front to back, and…
– Keep track of partially filled spans
– Only render parts that fall into spans that are still open
– Quit when the image is filled

44

Clipping Using Spatial Data Structures

Clip the BSP tree against the portions of space that you
can see! Accelerate Clipping

— The goal is to accept or reject whole sets of polygons
— Can use spatial data structure
— Much faster than clipping every polygon
— The O(n) task becomes O(log n)

– terrain fly-throughs
– gaming

Hierarchical bounding volumes Octrees

45

Further Speedups
• Clip the BSP tree against the portions of space that you

can see!
– Called portals
– Initial view volume is entire viewing frustum
– When you look through a doorway, intersect current volume with “beam”

defined by doorway

46

Demos

BSP Tree construction

http://symbolcraft.com/graphics/bsp/index.html

• KD Tree construction

http://www.cs.umd.edu/~brabec/quadtree/index.html

47

Real-time and Interactive Ray Tracing

The OpenRT Real-Time Ray-Tracing Project
http://www.openrt.de/index.php

• Interactive ray tracing via space subdivision
http://www.cs.utah.edu/~reinhard/egwr/

• Interactive ray tracing with good hardware
http://www.cs.utah.edu/vissim/projects/raytracing/

48

Announcements

• Written Assignment2 is out, due March 8
• Graded Programming Assignment2 next Tuesday

