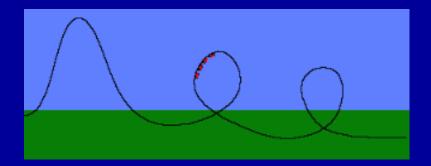
Parametric Curves

Modeling:

- parametric curves (Splines)
- polygonal meshes

Roller coaster

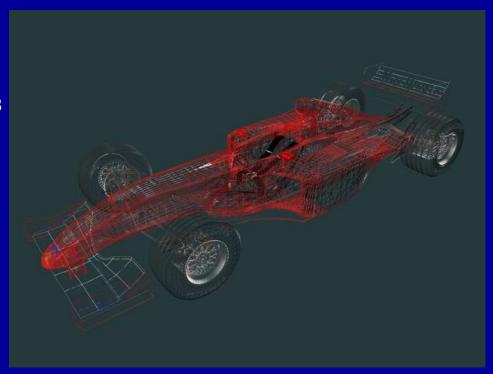
- Next programming assignment involves creating a 3D roller coaster animation
- We must model the 3D curve describing the roller coaster, but how?
- How to make the simulation obey the laws of gravity?



Movie 1:24

Modeling Complex Shapes

- We want to build models of very complicated objects
- An equation for a sphere is possible, but how about an equation for a telephone, or a face?
- Complexity is achieved using simple pieces
 - polygons, parametric curves and surfaces, or implicit curves and surfaces
 - This lecture: parametric curves

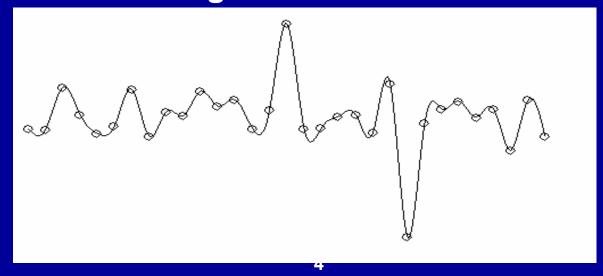


What Do We Need From Curves in Computer Graphics?

- Local control of shape (so that easy to build and modify)
- Stability
- Smoothness and continuity
- Ability to evaluate derivatives

Demo

Ease of rendering

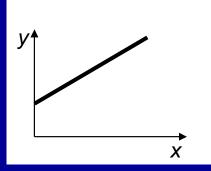


Curve Representations

• Explicit: y = f(x)

$$y = mx + b$$

- Easy to generate points
- Must be a function: big limitation—vertical lines?

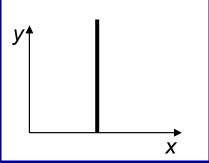


Curve Representations

• Explicit: y = f(x)

$$y = mx + b$$

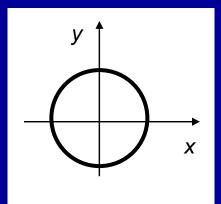
- Easy to generate points
- Must be a function: big limitation—vertical lines?



•Implicit:
$$f(x,y) = 0$$

 $x^2 + y^2 - r^2 = 0$

- +Easy to test if on the curve
- -Hard to generate points

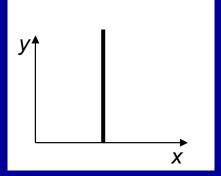


Curve Representations

• Explicit: y = f(x)

$$y = mx + b$$

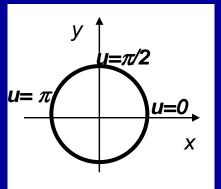
- + Easy to generate points
- Must be a function: big limitation—vertical lines?



•Implicit: f(x,y) = 0

$$x^2 + y^2 - r^2 = 0$$

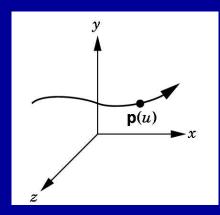
- +Easy to test if on the curve
- -Hard to generate points



•Parametric: (x,y) = (f(u), g(u))

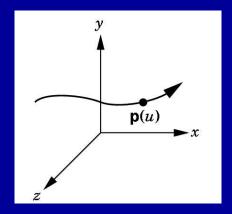
$$(x, y) = (\cos u, \sin u)$$

+Easy to generate points



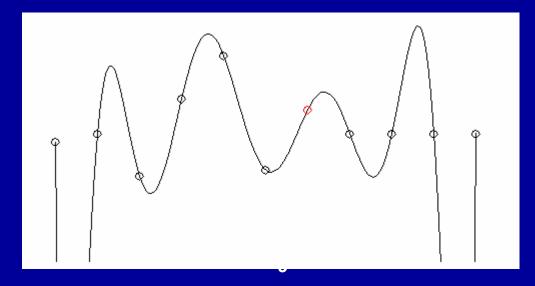
Parameterization of a Curve

- Parameterization of a curve: how a change in u moves you along a given curve in xyz space.
- There are an infinite number of parameterizations of a given curve. Slow, fast, speed continuous or discontinuous, clockwise (CW) or CCW...



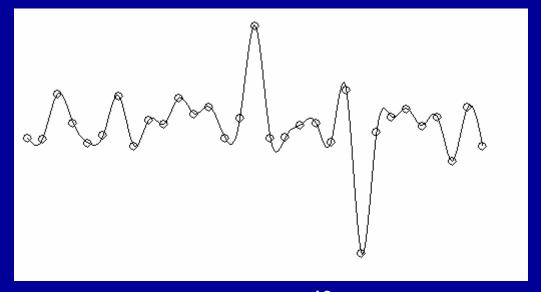
Polynomial Interpolation

- An *n*-th degree polynomial fits a curve to n+1 points
 - called Lagrange Interpolation
 - result is a curve that is too wiggly, change to any control point affects entire curve (nonlocal) – this method is poor
- We usually want the curve to be as smooth as possible
 - minimize the wiggles
 - high-degree polynomials are bad



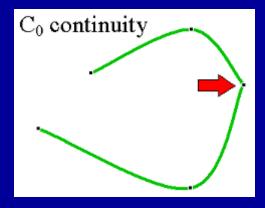
Splines: Piecewise Polynomials

- A spline is a *piecewise polynomial* many low degree polynomials are used to interpolate (pass through) the control points
- Cubic piecewise polynomials are the most common:
 - piecewise definition gives local control

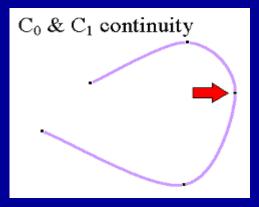


Piecewise Polynomials

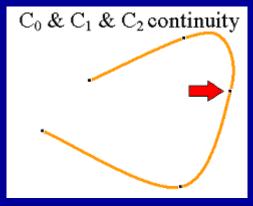
- Spline: lots of little polynomials pieced together
- Want to make sure they fit together nicely



Continuous in position



Continuous in position and tangent vector



Continuous in position, tangent, and curvature

Splines

- Types of splines:
 - Hermite Splines
 - Catmull-Rom Splines
 - Bezier Splines
 - Natural Cubic Splines
 - B-Splines
 - NURBS

Splines

chalkboard

The Cubic Hermite Spline Equation

• Using some algebra, we obtain:

$$p(u) = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \\ \nabla p_1 \\ \nabla p_2 \end{bmatrix}$$

point that gets drawn

basis

control matrix (what the user gets to pick)

- This form typical for splines
 - basis matrix and meaning of control matrix change with the spline type

The Cubic Hermite Spline Equation

• Using some algebra, we obtain:

$$p(u) = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \\ \nabla p_1 \\ \nabla p_2 \end{bmatrix}$$

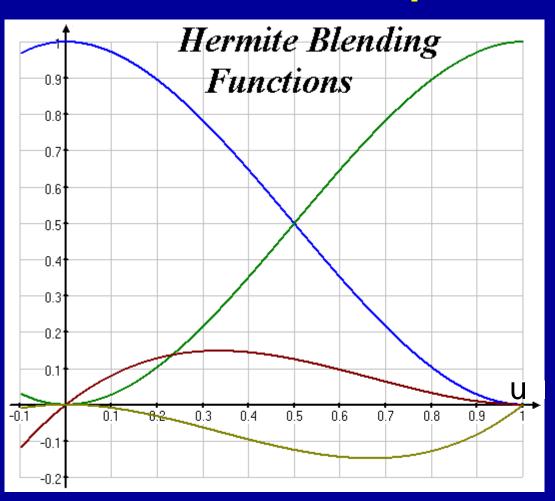
point that gets drawn basis

control matrix (what the user gets to pick)

$$p(u) = \begin{bmatrix} 2u^{3} - 3u^{2} + 1 \\ -2u^{3} + 3u^{2} \\ u^{3} - 2u^{2} + u \\ u^{3} - u^{2} \end{bmatrix} \begin{bmatrix} p_{1} \\ p_{2} \\ \nabla p_{1} \\ \nabla p_{2} \end{bmatrix}$$
4 Basis Functions
$$\nabla p_{1} \nabla p_{2}$$

Four Basis Functions for Hermite splines

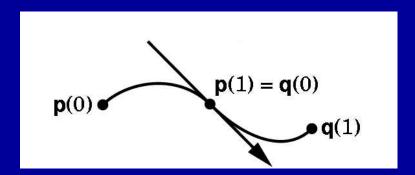
$$p(u) = \begin{bmatrix} 2u^{3} - 3u^{2} + 1 \\ -2u^{3} + 3u^{2} \\ u^{3} - 2u^{2} + u \\ u^{3} - u^{2} \end{bmatrix} \begin{bmatrix} p_{1} \\ p_{2} \\ \nabla p_{1} \\ \nabla p_{2} \end{bmatrix}$$
4 Basis Functions



Every cubic Hermite spline is a linear combination (blend) of these 4 functions

Piecing together Hermite Curves

- It's easy to make a multi-segment Hermite spline
 - each piece is specified by a cubic Hermite curve
 - just specify the position and tangent at each "joint"
 - the pieces fit together with matched positions and first derivatives
 - gives C1 continuity
- The points that the curve has to pass through are called *knots* or *knot points*



Catmull-Rom Splines

- Use for the roller-coaster (next programming assignment)
- With Hermite splines, the designer must arrange for consecutive tangents to be collinear, to get C¹ continuity. This gets tedious.
- Catmull-Rom: an interpolating cubic spline with *built-in* C^1 continuity.

chalkboard

Catmull-Rom Spline Matrix

$$p(u) = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \begin{bmatrix} -s & 2-s & s-2 & s \\ 2s & s-3 & 3-2s & -s \\ -s & 0 & s & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \\ p_3 \\ p_4 \end{bmatrix}$$
spline coefficients
CR basis
control vector

- Derived similarly to Hermite
- Parameter s is typically set to s=1/2.

Catmull-Rom Spline Matrix

$$[x \ y \ z] = [u^{3} \ u^{2} \ u \ 1] \begin{bmatrix} -s \ 2-s \ s-2 \ s \end{bmatrix} \begin{bmatrix} x_{1} \ y_{1} \ z_{1} \ x_{2} \ y_{2} \ z_{2} \ x_{3} \ y_{3} \ z_{3} \ x_{4} \ y_{4} \ z_{4} \end{bmatrix}$$

spline coefficients CR basis

control vector