
1

Graphics PipelineGraphics Pipeline

Graphics API and Graphics PipelineGraphics API and Graphics Pipeline
Efficient Rendering and Data transferEfficient Rendering and Data transfer
Event Driven ProgrammingEvent Driven Programming

What is graphics API ?What is graphics API ?
• A low-level interface to graphics hardware

• OpenGL
About 120 commands to specify 2D and 3D graphics

OS independent

OpenGL

What it isnWhat it isn’’ t:t:
A windowing program or input driver because

GLUT: window management, keyboard, mouse, menue
GLU: higher level library, complex objects

OpenGL

How many of you have programmed in OpenGL?

How extensively?

How does it work?How does it work?
From the implementor’sperspective:

geometr ic objects
properties: color…
move camera and objects around

pixels

graphics pipeline

Rotate
Translate
Scale

Is it
visible? 3D to 2D Convert to

pixels

Primitives
+ material
properties

Primitives

Primitives: drawing a polygonPrimitives: drawing a polygon

Build models in appropriate units (microns, meters, etc.).
From simple shapes: triangles, polygons,…

Primitives

2

Primitives: drawing a polygonPrimitives: drawing a polygon

Primitives

Primitives: drawing a polygonPrimitives: drawing a polygon

• Put GL into draw-polygon state
glBegin(GL_POLYGON);

• Send it the points making up the polygon
glVertex2f(x0, y0);

glVertex2f(x1, y1);

glVertex2f(x2, y2) ...

• Tell it we’ re finished
glEnd();

Primitives

9

Triangle StripsTriangle Strips
Minimize number of ver tices to be processed

TR1 = p0, p1, p2
TR2 = p1, p2, p3

Strip = p0, p1, p2, p3, p4,…

10

Polygon Restrictions

• OpenGL Polygons must be simple

• OpenGL Polygons must be convex

(a) simple, but not convex

(b) non-simple

convex

Primitives: Material PropertiesPrimitives: Material Properties

color, transparency, reflection properties, shading properties

Primitives

RGB (Red, Green, Blue)

101magenta

111white

000black

001red

• glColor3f (r , g, b);
Red, green & blue color model

Components are 0-1

Primitives

Material Properties: ColorMaterial Properties: Color

3

Specifying PrimitivesSpecifying Primitives

Code for all of today’s examples available from
http://www.xmission.com/~nate/tutors.html

Primitives

run shapes.exe

Primitives: Material PropertiesPrimitives: Material Properties
Many other material properties available:
glEnable(GL_POLYGON_STIPPLE);

glPolygonStipple(MASK); /* 32x32 pattern of bits * /

…

glDisable (GL_POLYGON_STIPPLE);

Primitives

Primitives: Material PropertiesPrimitives: Material Properties

Diffuse: scattered light independent of angle (rough)

Specular: dependent on angle (shiny)

Primitives

Light SourcesLight Sources

Most often point light sources

Primitives

run lightposition.exe

TransformsTransforms

• Rotate

• Translate

• Scale

• glRotate(x,y,z);

• glTranslate(x,y,z);

• draw geometry

Primitives

Y

X

Z

run transformation.exe

Position it relative to the cameraPosition it relative to the camera

Different views of the objects in the world

Primitives

4

Position it relative to the cameraPosition it relative to the camera

Primitives

Position it relative to the cameraPosition it relative to the camera
Perspective projection

Primitives

eye view plane

Position it relative to the cameraPosition it relative to the camera

Perspective projection

Primitives

glFrustum (left, right, bottom, top, near, far);

Position it relative to the cameraPosition it relative to the camera

Orthographic projection
Flat but preserving distances and shapes.
All the projectors are now parallel.

Primitives

glOrtho (left, right, bottom, top, near, far);

Camera TransformationsCamera Transformations

Camera positioning just results in more
transformations on the objects:
transformations that position the object
wrt to the camera

Primitives

ClippingClipping
Not everything should be visible on the screen

Primitives

any ver tices that lie outside of the viewing volume are clipped

5

RasterizerRasterizer
Go from pixel value in world coordinates to
pixel value in screen coordinates

Primitives

Drawing A BoxDrawing A Box

void DrawBox()
{

MakeWindow("Box", 400, 400);

glOrtho(-1.0,1.0,-1.0,1.0,-1.0,1.0);

glClearColor(1.0, 0.0, 0.0, 1.0);
glClear(GL_COLOR_BUFFER_BIT);

glColor3f(0.0, 1.0, 0.0);

glBegin(GL_POLYGON);
/* or GL_LINES or GL_POINTS... */

glVertex2f(-0.5, -0.5);
glVertex2f(0.5, -0.5);
glVertex2f(0.5, 0.5);
glVertex2f(-0.5, 0.5);

glEnd();
}

Box

(GLUT library)

Getting StartedGetting Started

• Example Code
We will give you example code for each assignment.

• Documentation:
Book

OpenGL pages are on the web.

28

Graphics API and Graphics PipelineGraphics API and Graphics Pipeline
Efficient Rendering and Data transferEfficient Rendering and Data transfer
Event Driven ProgrammingEvent Driven Programming

Graphics Hardware: GoalGraphics Hardware: Goal

Very fast frame rate on scenes with lots
of interesting visual complexity

• Pioneered by Silicon Graphics, picked up by
graphics chips companies (Nvidia, 3dfx, S3,
ATI,...).

• OpenGL library was designed for this architecture
(and vice versa)

• Changed a lot over last years
• Programmable pixel and vertex shaders

Nvidia person in class
February 8

Graphics Hardware: GoalGraphics Hardware: Goal

6

31

Minimize number of OpenGL callsMinimize number of OpenGL calls
Minimize number of VerticesMinimize number of Vertices
Minimize data transfer from CPU to GPUMinimize data transfer from CPU to GPU

Billions of vertices per secondBillions of vertices per second
Every six month the speed doublesEvery six month the speed doubles

Efficient Rendering and Data transferEfficient Rendering and Data transfer

32

• Large set of state var iables:
color
current viewing position
line width
material properties...

• These var iables (the state) then apply to every
subsequent drawing command

State MachineState Machine

33

glBegin(GL_POLYGON);

glColor3f(0.0, 1.0, 0.0)
glVertex2f(x0, y0);

glColor3f(0.0, 1.0, 0.0)
glVertex2f(x1, y1);

glColor3f(0.0, 1.0, 0.0)
glVertex2f(x2, y2) ...

glEnd();

Minimize changes to the state and number of calls

State MachineState Machine

34

glColor3f(0.0, 1.0, 0.0)
glBegin(GL_POLYGON);

glVertex2f(x0, y0);
glVertex2f(x1, y1);
glVertex2f(x2, y2) ...

glEnd();

State MachineState Machine

Minimize changes to the state and number of calls

35

Transfer of data from CPU to GPUTransfer of data from CPU to GPU

glBegin(GL_TRIANGLES);
glColor3f(0.0, 1.0, 0.0)
glVertex2f(x0, y0);

glColor3f(0.0, 1.0, 0.0)
glVertex2f(x1, y1);

glColor3f(0.0, 1.0, 0.0)
glVertex2f(x2, y2)

glEnd();

Immediate transfer

Disadvantage:
static geometry – send the same data every frame
better to store geometry on graphics card memory

36

Display ListsDisplay Lists

• Encapsulate a sequence of drawing commands

• Optimize and store
GLuint listName = glGenLists(1); /* new name */
glNewList (listName, GL_COMPILE); /* new list */

define object (glColor, glVertex, …)

glEndList();

Store object in graphics card memory

glCallList(listName); /* draw one */

• Vertex buffer objects

7

37

Assignment 1Assignment 1

Height Fields

38

Height FieldsHeight Fields

• Why?
Get started with OpenGL

Some room for creativity

• Where?
Wean 5336 or your machine at your risk!

• How?
Cross-realm authentication via andrew

Send problems to me or to the TA’s (soon)

Make sure that you made directory with correct
permissions—most common problem

39

Height FieldsHeight Fields

• What?

• When? -- Due midnight February 1st

40

Next ClassNext Class

Graphics API and Graphics PipelineGraphics API and Graphics Pipeline
Efficient Rendering and Data transferEfficient Rendering and Data transfer
Event Driven ProgrammingEvent Driven Programming

