
1Computer Graphics 15-462

Announcements

• Written Assignment 3 is out.
• Due Tuesday (or 9am Wednesday)



Spatial Data Structures

Hierarchical Bounding Volumes
Grids
Octrees
BSP Trees

11/7/02



3Computer Graphics 15-462

Speeding Up Ray Tracing

• Trace fewer rays
– most relevant in recursive ray tracing

• Speed up each ray-surface intersection test
– optimize ray-triangle, ray-sphere intersection code

• Do fewer ray-surface intersection tests
– subsequent hits on the same object often hit the same polygon.
– shadow object caching

» When a shadow ray hits an object, remember that object and check
it first against the next shadow ray heading toward that light.

» If it hits, you know that shadow applies; it doesn’t matter if some
other shadow source is closer to the object than the light source.

• For more info
see chapter by Arvo & Kirk in the book Introduction to Ray Tracing

(Glasner editor)



4Computer Graphics 15-462

Spatial Data Structures
• Data structures for efficiently storing geometric information
• They are useful for

– Collision detection (will the spaceships collide?)
– Location queries (which is the nearest post office?)
– Chemical simulations (which protein will this drug molecule interact with?)
– Rendering (is this aircraft carrier on-screen?), and more

• Good data structures can give speed up ray tracing by 10x or 100x
• We’ll look at

– Hierarchical bounding volumes
– Grids
– Octrees
– BSP trees

• See also
– Ray Tracing News: http://www.acm.org/tog/resources/RTNews/html/rtn_index.html
– book: Design and Analysis of Spatial Data Structures, Hanan Samet



5Computer Graphics 15-462

Bounding Volumes
• Simple notion: wrap things that are hard to check for ray

intersection in things that are easy to check.
– Example: wrap a complicated polygonal mesh in a box
– Ray can’t hit the real object unless it hits the box
– Adds some overhead, but generally pays for itself.

• Most common bounding volume types: sphere and box
– box can be axis-aligned or not

• You want a snug fit!
• But you don’t want expensive intersection tests!

Good!
Bad!



6Computer Graphics 15-462

Bounding Volumes

• You want a snug fit!
• But you don’t want expensive intersection tests!
• Cost = n*B + m*I where n is the number of rays tested against the

bounding volume, B is the cost of each test, m is the number of rays
which actually hit the bounding volume, and I is the cost of
intersecting the object within.

• Use the ratio of the object volume to the enclosed volume as a
measure of fit.



7Computer Graphics 15-462

Hierarchical Bounding Volumes

• Tree data structure:
– List of bounding volumes (BV’s), e.g. spheres, boxes
– Each BV can contain a list of sub-volumes
– E.g., Human figure:

» torso bounding-box contains arm BB, which contains finger
BB, etc.

• Intersection testing: recursively descend tree
intersect(BV)

if ray misses BV, return MISS
closest = infinity
for each subvolume stored in BV

if (subvolume closer than closest and ray intersects subvolume)
update closest

return closest

Closest allows you to avoid checks inside some bounding
regions—sub regions don’t overlap



8Computer Graphics 15-462

Hierarchical Bounding Volumes

• Works well if you use good (appropriate) bounding
volumes and hierarchy

• Should give O(log n) rather than O(n) time
complexity/ray test (n=# of objects)

• If your BVs are objects, you can have multiple classes
and pick the best for each enclosed object



9Computer Graphics 15-462

3D Spatial Subdivision

• Bounding volumes enclose the objects (object-
centric, bottom up)

• Instead could divide up the space—the further
an object is from the ray the less time we want
to spend checking it (top down)

– Grids
– Octrees
– BSP trees

• BV select volumes based on given sets of
objects, whereas spatial subdivision selects
objects based on given volumes



10Computer Graphics 15-462

Grids
• Data structure: a 3-D array of cells (voxels) that tile space

– Each cell points to list of all surfaces intersecting that cell

• Intersection testing:
– Start tracing at cell where ray begins
– Step from cell to cell, searching for the first intersection point
– At each cell, test for intersection with all surfaces pointed to by that cell
– If there is an intersection, return the closest one



11Computer Graphics 15-462

More on Grids

• Be Careful! The fact that a ray passes through a cell and hits an
object doesn’t mean the ray hit that object in that cell

• Optimization: cache intersection point and ray id in “mailbox”
associated with each object



12Computer Graphics 15-462

More on Grids

• Grids are a poor choice when the world is nonhomogeneous
(clumpy)

– e.g. the teapot in a stadium: many polygons clustered in a small space

• How many cells to use?
– too few ÿ many objects per cell ÿ slow

– too many ÿ many empty cells to step through ÿ slow

• Grids work well when you can arrange that each cell lists a few (ten,
say) objects

• Better strategy for some scenes: nested grids



13Computer Graphics 15-462

Octrees
• Quadtree is the 2-D generalization of binary tree

– node (cell) is a square
– recursively split into four equal sub-squares
– stop when leaves get “simple enough”

• Octree is the 3-D generalization of quadtree
– node (cell) is a cube, recursively split into eight equal sub-cubes
– for ray tracing:

» stop splitting when the number of objects intersecting the cell gets “small
enough” or the tree depth exceeds a limit

» internal nodes store pointers to children, leaves store list of surfaces
– more expensive to traverse than a grid
– but an octree adapts to nonhomogeneous, clumpy scenes better

trace(cell, ray) { // returns object hit or NONE
if cell is leaf, return closest(objects_in_cell(cell))
for child cells pierced by ray, in order // 1 to 4 of these

obj = trace(child, ray)
if obj!=NONE return obj

return NONE
}



14Computer Graphics 15-462

Which Data Structure is Best for Ray Tracing?

• Grids are easy to implement, but they’re memory hogs (and slow) for
nonhomogeneous scenes, i.e. most scenes

• Octrees are pretty good, but not as fast as grids for some scenes
• Nested grids seem to be the fastest on static scenes

• If scene is dynamic, the cost of regenerating or updating the data
structure may become an issue

• In such cases, hierarchical bounding volumes may be best
• Hierarchical bounding volumes easy to implement if your model is

naturally hierarchical (e.g. human), otherwise not

• For other visibility algorithms:
– BSP trees useful for Painter’s algorithm...



15Computer Graphics 15-462

k-d Trees and BSP Trees

• Relax the rules for quadtrees and octrees:
• first variant: k-dimensional (k-d) tree

– don’t always split at midpoint
– split only one dimension at a time (i.e. x or y or z)
– useful for clustering and choosing colormaps for color image

quantization

• second variant: binary space partitioning (BSP)
tree

– permit splits with any line
– in general, split k dimensional space with k-1 dimensional

hyperplanes
» 2-D space split with lines (most of our examples)
» 3-D space split with planes
» each node corresponds to a (potentially unbounded) convex

polyhedron
– for lots of info, see http://reality.sgi.com/bspfaq/
– useful for Painter’s algorithm



16Computer Graphics 15-462

Building a BSP Tree

• Let’s look at simple example with 3 line segments
• Arrowheads are to show left and right sides of lines.
• Using line 1 or 2 as root is easy.
• (examples from http://www.geocities.com/SiliconValley/2151/bsp.html)

Line 2
Line 3

Line 1

Viewpoint

1
1

2

3

A B C D

a BSP tree
using 2 as root

A

B

D

C

3
2

the subdivision
of space it implies



17Computer Graphics 15-462

Building the Tree 2

Using line 3 for the root requires a split

Line 2a

Line 3

Line 1

Viewpoint

1

2b2a

Line 2b

3



18Computer Graphics 15-462

Building a Good Tree - the tricky part

• A naïve partitioning of n polygons will yield O(n3)
polygons because of splitting!

• Algorithms exist to find partitionings that produce O(n2).
– For example, try all remaining polygons and add the one which causes

the fewest splits

– Fewer splits -> larger polygons -> better polygon fill efficiency

• Also, we want a balanced tree.
– More important for ray casting than scan conversion.

• These goals conflict.
• Note: in the examples we’ve shown, the geometric

objects being stored are planar, and we split using the
planes of these objects, but that needn’t be so – could
theoretically split with any plane



19Computer Graphics 15-462

Uses for Binary Space Partitioning (BSP) Trees

• Painter’s algorithm rendering
– good for

» static 3-D scenes with moving viewpoint (flight simulators)
» architectural scenes with a small number of polygons (DOOM)

» if you don’t have z-buffer hardware

– Add a few monsters and such after the environment is drawn

• Ray tracing

• History:
– BSP trees first used by Naylor, Fuchs, et al. for Painter’s algorithm ~1980

– theoreticians scoffed at their worst-case performance

– considered unpromising

– revived by John Carmack, author of Quake, and the PC game community
» out of necessity: no z-buffer hardware for PC’s at the time



20Computer Graphics 15-462

Painter’s Algorithm with BSP trees

• Build the tree
– Involves splitting some polygons

– Slow, but done only once for static scene

• Correct traversal lets you draw in back-to-front or front-
to-back order for any viewpoint

– Order is view-dependent

– Precompute tree once
– Do the “sort” on the fly

• Cool!



21Computer Graphics 15-462

Drawing a BSP Tree

• Each polygon has a set of coefficients:
Ax + By + Cz + D

• Plug the coordinates of the viewpoint in and see:
>0 : front side

<0 : back facing
=0 : on plane of polygon

• Back-to-front draw: inorder traversal, do farther child first
• Front-to-back draw: inorder traversal, do near child first

front_to_back(tree, viewpt) {
if (tree == null) return;
if (positive_side_of(root(tree), viewpt)) {

front_to_back(positive_branch(tree, viewpt);
display_polygon(root(tree));
front_to_back(negative_branch(tree, viewpt);

}
else { …draw negative branch first…}

}



22Computer Graphics 15-462

Drawing Back to Front

• Use Painter’s Algorithm for hidden surface removal

Line 2a

Line 3

Line 1

Viewpoint
1

2b2a

3

Line 2b

Steps:
–Draw objects on far side of line 3

»Draw objects on far side of
line 2a

–Draw line 1
»Draw line 2a

–Draw line 3
–Draw objects on near side of line 3

»Draw line 2b



23Computer Graphics 15-462

Further Speedups
• Do backface culling with same sign test

• Draw front to back, and…
– Keep track of partially filled spans
– Only render parts that fall into spans that are still open
– Quit when the image is filled

• Clip the BSP tree against the portions of space that you
can see!

– Called portals
– Initial view volume is entire viewing frustum
– When you look through a doorway, intersect current volume with “beam”

defined by doorway
– Skip a BSP node if it doesn’t intersect the current view volume
– Much faster than clipping every polygon



24Computer Graphics 15-462

Clipping BSP Trees

• Suppose you have all n polygons in a BSP tree,
and it’s time to clip them for rendering.

• Clip the tree to the view frustum!
– This is an intersection operation between the tree of polygons

and a BSP tree representing the frustum
– An O(log n) operation, while clipping all n polygons is O(n)

• Algorithm is a bit involved, but straightforward
– merge the polygon tree into the frustum tree
– large parts of the polygon tree lie on known sides of the splits in

the frustum tree, and thus need never be traversed



25Computer Graphics 15-462

Clipping Using Spatial Data Structures
• The data structures we used to accelerate ray tracing will work here

too!
• In each case, the goal is to accept or reject whole sets of polygons.
• The O(n) task becomes O(log n)
• Scene must be (mostly) fixed, to amortize cost of building the data

structure
– terrain fly-throughs
– gaming

• Off-screen stuff can swap out!

Hierarchical bounding volumes Octrees



26Computer Graphics 15-462

Demos

BSP Trees:
http://symbolcraft.com/pjl/graphics/bsp/

KD Trees:
http://www.rolemaker.dk/nonRoleMaker/uni/algogem/kdtree.htm

OOB-Tree: A Hierarchical Structure for Rapid Interference
Detection UNC, SIGGRAPH ‘96



27Computer Graphics 15-462

What you can do with a big computer

• Interactive Ray Tracing
Steven Parker - William Martin - Peter-Pike J. Sloan - Peter Shirley -

Brian Smits - Charles Hansen, University of Utah



28Computer Graphics 15-462

Announcements

• Written Assignment 3 is out.
• Due Tuesday (or 9am Wednesday)


