Announcements

* Written Assignment 3 is out.
 Due Tuesday (or 9am Wednesday)

Computer Graphics 15-462 1



Spatial Data Structures

Hierarchical Bounding Volumes
Grids

Octrees

BSP Trees

11/7/02




Speeding Up Ray Tracing

Trace fewer rays
— most relevant in recursive ray tracing

Speed up each ray-surface intersection test
— optimize ray-triangle, ray-sphere intersection code

Do fewer ray-surface intersection tests
— subsequent hits on the same object often hit the same polygon.
— shadow object caching

» When a shadow ray hits an object, remember that object and check
it first against the next shadow ray heading toward that light.

» If it hits, you know that shadow applies; it doesn’t matter if some
other shadow source is closer to the object than the light source.

For more info

see chapter by Arvo & Kirk in the book Introduction to Ray Tracing
(Glasner editor)

Computer Graphics 15-462 3



Spatial Data Structures

Data structures for efficiently storing geometric information

They are useful for
— Collision detection (will the spaceships collide?)
— Location queries (which is the nearest post office?)
— Chemical simulations (which protein will this drug molecule interact with?)
— Rendering (is this aircraft carrier on-screen?), and more

Good data structures can give speed up ray tracing by 10x or 100x

We'll look at
— Hierarchical bounding volumes
— Grids
— Octrees
— BSP trees
See also

— Ray Tracing News: http://www.acm.org/tog/resources/RTNews/html/rtn_index.html
— book: Design and Analysis of Spatial Data Structures, Hanan Samet

Computer Graphics 15-462 4



Bounding Volumes

« Simple notion: wrap things that are hard to check for ray
Intersection in things that are easy to check.

— Example: wrap a complicated polygonal mesh in a box
— Ray can't hit the real object unless it hits the box
— Adds some overhead, but generally pays for itself.

« Most common bounding volume types: sphere and box
— box can be axis-aligned or not

e You want a snug fit!
* But you don’t want expensive intersection tests!

|
Good! Bad|

Computer Graphics 15-462 5



Bounding Volumes

e You want a snug fit!
* But you don’t want expensive intersection tests!

e Cost = n*B + m*l where n is the number of rays tested against the
bounding volume, B is the cost of each test, m is the number of rays
which actually hit the bounding volume, and | is the cost of
Intersecting the object within.

« Use the ratio of the object volume to the enclosed volume as a
measure of fit.

Computer Graphics 15-462 6



Hierarchical Bounding Volumes

* Tree data structure:
— List of bounding volumes (BV’s), e.g. spheres, boxes
— Each BV can contain a list of sub-volumes
— E.g., Human figure:

» torso bounding-box contains arm BB, which contgins finger
BB, etc.

 Intersection testing: recursively descend tree

intersect(BV)
If ray misses BV, return MISS
closest = infinity
for each subvolume stored in BV
if (subvolume closer than closest and ray intersects subvolume)
update closest
return closest

Closest allows you to avoid checks inside some bounding
regions—sub regions don’t overlap

Computer Graphics 15-462 7



Hierarchical Bounding Volumes

* Works well if you use good (appropriate) bounding
volumes and hierarchy

e Should give O(log n) rather than O(n) time
complexity/ray test (n=# of objects)

e |f your BVs are objects, you can have multiple classes
and pick the best for each enclosed object

Computer Graphics 15-462 3



3D Spatial Subdivision

 Bounding volumes enclose the objects (object-
centric, bottom up)

 Instead could divide up the space—the further
an object is from the ray the less time we want
to spend checking it (top down)
— Grids
— QOctrees
— BSP trees

* BV select volumes based on given sets of
objects, whereas spatial subdivision selects
objects based on given volumes

Computer Graphics 15-462 9



Grids

« Data structure: a 3-D array of cells (voxels) that tile space
— Each cell points to list of all surfaces intersecting that cell

 |Intersection testing:
— Start tracing at cell where ray begins
— Step from cell to cell, searching for the first intersection point
— At each cell, test for intersection with all surfaces pointed to by that cell
— If there is an intersection, return the closest one

Computer Graphics 15-462 10



More on Grids

« Be Carefull The fact that a ray passes through a cell and hits an
object doesn’t mean the ray hit that object in that cell

« Optimization: cache intersection point and ray id in “mailbox”
associated with each object

Computer Graphics 15-462 11



More on Grids

e Grids are a poor choice when the world is nonhomogeneous

(clumpy)
— e.g. the teapot in a stadium: many polygons clustered in a small space

« How many cells to use?
— too few = many objects per cell = slow
— too many = many empty cells to step through = slow

« Grids work well when you can arrange that each cell lists a few (ten,
say) objects

» Better strategy for some scenes: nested grids

Computer Graphics 15-462 12



Octrees X

o
* Quadtree is the 2-D generalization of binary tree \. ':,_’
— node (cell) is a square ‘. =
— recursively split into four equal sub-squares ()

— stop when leaves get “simple enough”

* Octree is the 3-D generalization of quadtree \
— node (cell) is a cube, recursively split into eight equal sub-cubes
— for ray tracing:

» stop splitting when the number of objects intersecting the cell gets “small
enough” or the tree depth exceeds a limit

» internal nodes store pointers to children, leaves store list of surfaces
— more expensive to traverse than a grid
— but an octree adapts to nonhomogeneous, clumpy scenes better

trace(cell, ray) { /I returns object hit or NONE
if cell is leaf, return closest(objects in_cell(cell))
for child cells pierced by ray, in order Il'1 to 4 of these
obj = trace(child, ray)
if obj'=NONE return obj
return NONE

}

Computer Graphics 15-462 13



Which Data Structure is Best for Ray Tracing?

Grids are easy to implement, but they’re memory hogs (and slow) for
nonhomogeneous scenes, i.e. most scenes

Octrees are pretty good, but not as fast as grids for some scenes
Nested grids seem to be the fastest on static scenes

If scene is dynamic, the cost of regenerating or updating the data
structure may become an issue

In such cases, hierarchical bounding volumes may be best

Hierarchical bounding volumes easy to implement if your model is
naturally hierarchical (e.g. human), otherwise not

For other visibility algorithms:
— BSP trees useful for Painter’s algorithm...

Computer Graphics 15-462 14



k-d Trees and BSP Trees

* Relax the rules for quadtrees and octrees:

o first variant: k-dimensional (k-d) tree

— don’t always split at midpoint

— split only one dimension at a time (i.e. xor y or 2)
— useful for clustering and choosing colormaps for color image

guantization

e second variant: binary space partitioning (BSP)
tree
— permit splits with any line

— in general, split k dimensional space with k-1 dimensional
hyperplanes

» 2-D space split with lines (most of our examples)
» 3-D space split with planes

» each node corresponds to a (potentially unbounded) convex
polyhedron

— for lots of info, see http://reality.sqgi.com/bspfaq/
— useful for Painter’s algorithm

Computer Graphics 15-462 15



Building a BSP Tree

e Let’s look at simple example with 3 line segments
e Arrowheads are to show left and right sides of lines.

Using line 1 or 2 as root is easy.
(examples from http://www.geocities.com/SiliconValley/2151/bsp.html)

%D

‘ .

-

Line 3 Line 2 A B C D \

a BSP tree

using 2 as root the subdivision
of space it implies

Sz Viewpoint

Computer Graphics 15-462 16



Building the Tree 2

Using line 3 for the root requires a split

Line 2a

/ Line 2b

7 Viewpoint

Computer Graphics 15-462 17



Building a Good Tree - the tricky part

A naive partitioning of n polygons will yield O(n3)
polygons because of splitting!

Algorithms exist to find partitionings that produce O(n?).

— For example, try all remaining polygons and add the one which causes
the fewest splits

— Fewer splits -> larger polygons -> better polygon fill efficiency

Also, we want a balanced tree.
— More important for ray casting than scan conversion.

These goals conflict.

Note: in the examples we’ve shown, the geometric
objects being stored are planar, and we split using the
planes of these objects, but that needn’t be so — could
theoretically split with any plane

Computer Graphics 15-462 18



Uses for Binary Space Partitioning (BSP) Trees

« Painter’s algorithm rendering
— good for
» static 3-D scenes with moving viewpoint (flight simulators)
» architectural scenes with a small number of polygons (DOOM)
» if you don’t have z-buffer hardware
— Add a few monsters and such after the environment is drawn

« Ray tracing

o History:
— BSP trees first used by Naylor, Fuchs, et al. for Painter’s algorithm ~1980
— theoreticians scoffed at their worst-case performance
— considered unpromising
— revived by John Carmack, author of Quake, and the PC game community
» out of necessity: no z-buffer hardware for PC’s at the time

Computer Graphics 15-462 19



Painter’s Algorithm with BSP trees

e Build the tree

— Involves splitting some polygons
— Slow, but done only once for static scene

o Correct traversal lets you draw in back-to-front or front-
to-back order for any viewpoint
— Order is view-dependent
— Precompute tree once
— Do the “sort” on the fly

e Cool!

Computer Graphics 15-462 20



Drawing a BSP Tree

Each polygon has a set of coefficients:
Ax+By+Cz+D

Plug the coordinates of the viewpoint in and see:
>0 : front side
<0 : back facing
=0 : on plane of polygon

Back-to-front draw: inorder traversal, do farther child first
Front-to-back draw: inorder traversal, do near child first

front_to_back(tree, viewpt) {

If (tree == null) return;

If (positive_side of(root(tree), viewpt)) {
front_to_back(positive _branch(tree, viewpt);
display _polygon(root(tree));
front_to_back(negative branch(tree, viewpt);

}

else { ...draw negative branch first...}

}

Computer Graphics 15-462 21



Drawing Back to Front

e Use Painter’s Algorithm for hidden surface removal

Steps:
—Draw objects on far side of line 3
»Draw objects on far side of

line 2a
€ 0000000000000000000000000000000000000000000000000000000000000000000, _DraW Iine 1
: »Draw line 2a
—Draw line 3
_ : —Draw objects on near side of line 3
Line 1 »Draw line 2b
Line 2a
Line 3 _
Line 2b :

¥ Viewpoint

Computer Graphics 15-462 22



Further Speedups

* Do backface culling with same sign test

 Draw front to back, and...
— Keep track of partially filled spans
— Only render parts that fall into spans that are still open
— Quit when the image is filled

« Clip the BSP tree against the portions of space that you
can seel
— Called portals
— Initial view volume is entire viewing frustum

— When you look through a doorway, intersect current volume with “beam”
defined by doorway

— Skip a BSP node if it doesn’t intersect the current view volume
— Much faster than clipping every polygon

Computer Graphics 15-462 23



Clipping BSP Trees

e Suppose you have all n polygons in a BSP tree,
and Iit's time to clip them for rendering.

e Clip the tree to the view frustum!

— This is an intersection operation between the tree of polygons
and a BSP tree representing the frustum

— An O(log n) operation, while clipping all n polygons is O(n)

 Algorithm is a bit involved, but straightforward

— merge the polygon tree into the frustum tree

— large parts of the polygon tree lie on known sides of the splits in
the frustum tree, and thus need never be traversed

Computer Graphics 15-462 24



Clipping Using Spatial Data Structures

* The data structures we used to accelerate ray tracing will work here
too!

* In each case, the goal is to accept or reject whole sets of polygons.
 The O(n) task becomes O(log n)

» Scene must be (mostly) fixed, to amortize cost of building the data
structure
— terrain fly-throughs
— gaming

» Off-screen stuff can swap out!

S~ \ /

;I

Hierarchical bounding volumes Octrees

Computer Graphics 15-462 25



Demos

BSP Trees:
http://symbolcraft.com/pjl/graphics/bsp/

KD Trees:
http://www.rolemaker.dk/nonRoleMaker/uni/algogem/kdtree.htm

OOB-Tree: A Hierarchical Structure for Rapid Interference
Detection UNC, SIGGRAPH ‘96

Computer Graphics 15-462 26



What you can do with a big computer

 Interactive Ray Tracing

Steven Parker - William Martin - Peter-Pike J. Sloan - Peter Shirley -
Brian Smits - Charles Hansen, University of Utah

Interactive Ray Tracing
University of Utah

All images 600x400 recorded
directly from screen on

60 195MHz R10k SGI Origin 2000

Computer Graphics 15-462 27



Announcements

* Written Assignment 3 is out.
 Due Tuesday (or 9am Wednesday)

Computer Graphics 15-462 28



