Announcements

Assignment 2 due on Friday
Written Assignment 2 out later
today.

Midterm next Thursday—or we
could move it to 10/24 or 10/31?

Types of Light Sources

* Ambient: equal lightin all directions
— a hack to model inter-reflections

« Directional: light rays oriented in same direction
— good for distance light sources (sunlight)

« Point: light rays diverge from a single point
— approximation to a light bulb (but harsher)

Shading

Light Sources

Diffuse & Specular Reflection
Phong lllumination Model
Transmission with Refraction
Texture Mapping

Watt, Chapter 6.2 and 6.3

COMPUTER GRAPHICS
15-462

More Light Sources

* Spotlight: point source with directional fall-off
— intensity is maximal along some direction D, falls off away from D
— specified by color, point, direction, fall-off parameters

« Area Source: Luminous 2D surface
— radiates light from all points on its surface

— generates soft shadows

lllumination

Light Sources emit light
EM spectrum
Position and direction

Surfaces reflect light
Reflectance
Geometry (position, orientation, micro-structure)

Absorption
Transmission

(a) (b) (c)
lllumination determined by the interactions between light sources and
surfaces

Diffuse Reflection
» Simplest kind of reflector (also known as Lambertian
Reflection)

» Models a matte surface -- rough at the microscopic level
« Ideal diffuse reflector

—incoming light is scattered equally in all directions

—viewed brightness does not depend on viewing direction

— brightness does depend on direction of illumination

Lambert's Cosine Law

Examples of Diffuse lllumination Ambient + Diffuse Reflection
CG started using the Lambertian model and then added

Latuse = Kgljignt COSE D D D D D mlore terlzwls ES Ex:ra eff’;actstere required
= 4e .
= kdllighl(N °L) d+a ala T Ky I|gh[()

Light Source Intensity
|

Same sphere lit diffusely from different lighting angles
ka : Ambient reflectance (local)

ambert’s Law

light *
kd : Surface reflectance coefficient in [0,1]

: Ambient light intensity (global)

@ : Light/Normal angle L

NeL
I
‘ H ‘ This is diffuse illumination plus a simple ambient light term

N N . a trick to account for a background light level caused by multiple
See Watt if this is confusing reflections from all objects in the scene (less harsh appearance)

Phong lllumination

Further Simple lllumination Effects Specular Reflection
«Light attenuation: « Shiny surfaces change appearance when viewpoint is varied One function that approximates specular falloff is called

— light intensity falls off with the square of the distance from the — specularities (highlights) are view-dependent the Phong lllumination model

source - so we add an extra term for this — caused by surfaces that are microscopically smooth _
; e I specutar = Ksligne (COSP)
| =kl + f Kl (N L) where o « For shiny surfaces part of the incident light reflects
d+a a'a " latt'™d ! light : .
coherently
with d the light source to surface distance - more complicated f f f —
. —an incoming ray is reflected in a single direction (or narrow beam
formulae are possible (see Foley) and work better N 9 y)) 9 o () & : Angle between reflected light ray R and viewer V
) —direction is defined by the incoming direction and the surface normal N —
et (A i SiFeesE A mirror is a perfect specular reflector ' lar fall
q * : Rate of falloff
ust have three separate equations for RGB P p shiny Rate of specuiarfaiio
*Atmospheric attenuation:
— use viewer-to-surface distance to give extra effects

he distance is used to blend the object's radiant color with a
“far” color (e.g., a nice hazy gray)

— No real physical basis, yet widespread use in computer graphics

— approximate specular reflectors give fuzzy highlights

Greater N . more focused beam
D — ol VAR tstttdeuinl
Computer Graphi Computer Graphics 15-4¢ 12

Computing the Reflected Ray Phong Illlumination Curves Phong Illlumination

» The specular exponents are often much larger than 1;
values of 100 are not uncommon.
- ”;nmw
| specuiar = Ksl gt (COSE)
: angle between line of sight and perfect reflection

: Specular reflectance Moving the light source
Rate of specular falloff

7 7 7 R ‘
Project L onto N Double length of vector Subtract L _

X[=N-L - A Changing nyyn,

2N(NeL)

Putting It All Together Some Examples OpenGL Materials

« Combining ambient, diffuse, and specular illumination

| =Kk, + fanlllghtlkd coY+ kS(COE@'k”‘”VI . . 4 ¥ GLfloat white8[] = {.8, .8, .8, 1.}, white2 = {.2,.2,.2,1.},black={0.,0.,0.};

GLfloat mat_shininess[] = {50.. I* Phong exponent */

glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, black);
* For multiple light sources glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, white8);
— Repeat the diffuse and specular calculations for each light source giMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, white2);

— Add the components from all light sources M@. . gIMaterialfv(GL_FRONT_AND_BACK, GL_SHININESS, mat_shininess);

— The ambient term contributes only once

« The different reflectance coefficients can differ.
— Simple “metal”: k, and k, share material color, k; is white
— Simple plastic: k, also includes material color

default aunl shiny

OpenGL Lighting

GLfloat white[] = {1., 1., 1. ;
GLfloat light0_position[] = {1., 1., 5., 0.}; /* directional light (w=0) */

glLightfv(GL_LIGHTO, GL_POSITION, light0_position);
glLightfv(GL_LIGHTO, GL_DIFFUSE, white);
glLightfv(GL_LIGHTO, GL_SPECULAR, white);
glEnable(GL_LIGHTO);

glEnable(GL_NORMALIZE); /* normalize normal vectors */
glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, GL_TRUE); /* two-sided lighting*/

glEnable(GL_LIGHTING);

Shadows
« Shadows occur where objects are hidden from a light
source
— omit any intensity contribution from hidden light sources
« Working out what it hidden is simply a visibility problem
—can the light source see the object?
— use the z-buffer shadow algorithm:
» run the algorithm from the light source’s viewpoint
» save the z-buffer as the shadow buffer

» run the real z-buffer algorithm, transforming each point into the light
source's coordinates and comparing the z value against the shadow
buffer

Transmission with Refraction

* Refraction:
—the bending of light due to its different velocities through different
materials
* Refractive index:
—light travels at speed c/nin a material of refractive index n
— cis the speed of light in a vacuum
— varies with wavelength hence rainbows and prisms

MATERIAL | INDEX OF REFRACTION
Air/Vacuum | 1

Water 1.33

Glass about 1.5

Diamond 24

Shading

Given an equation to calculate surface radiance, we still
must apply it to the real model
— Usually performed during scan conversion

— There are efficient methods for doing this quickly (which we will
discuss in more detail later in the semester

Flat shaded

Gouraud: Normal at vertex is average
of normals for adjacent faces

Phong: interpolate normals instead of
intensities

Snell's Law

« Light bends by the physics principle of least time, a
consequence of Huygens’ Principle
— light travels from point A to point B by the fastest path

—when passing from a material of index n, to one of index n,
Snell’s law gives the angle of refraction
n, sin@, = n,sin 6,
where 8, and 6, are the angles from perpendicular

* When traveling into a denser material (larger n), light
bends to be more perpendicular (eg air to water) and
vice versa

—light travels further in the faster material
—if the indices are the same the light doesn’t bend

» When traveling into a less dense material total

internal reflection occurs if 8;,>sin"1(n,/n,)

Computer Graphics 15-4¢ 21

Uniformly shaded surfaces are still unrealistic

Real objects have surface features, or texture
One option: use a huge number of polygons with
appropriate surface coloring and reflectance
characteristics
Texture mapping gets you further
— Assign radiance based on an image
Even better: use Procedural shaders to specify any
function you want to define radiance
— The possibilities are endless...
— Generate radiance on the fly, during shading
— Key ingredient of high-end rendering systems
» Pixar's Renderman (used for “Toy Story”, “Bug’s Life”, etc.)

Break for video...

