
1

1Computer Graphics 15-462

Announcements

Assignment 2 due on Friday
Written Assignment 2 out later
today.

Midterm next Thursday—or we
could move it to 10/24 or 10/31?

Shading

Light Sources
Diffuse & Specular Reflection
Phong Illumination Model
Transmission with Refraction
Texture Mapping

Light Sources
Diffuse & Specular Reflection
Phong Illumination Model
Transmission with Refraction
Texture Mapping

COMPUTER GRAPHICS

15-462
9/23/02

Watt, Chapter 6.2 and 6.3

3Computer Graphics 15-462

Illumination

Light Sources emit light
EM spectrum

Position and direction

Surfaces reflect light
Reflectance
Geometry (position, orientation, micro-structure)

Absorption

Transmission

Illumination determined by the interactions between light sources and
surfaces

4Computer Graphics 15-462

Types of Light Sources

• Ambient: equal light in all directions

– a hack to model inter-reflections

• Directional: light rays oriented in same direction

– good for distance light sources (sunlight)

• Point: light rays diverge from a single point

– approximation to a light bulb (but harsher)

5Computer Graphics 15-462

More Light Sources

• Spotlight: point source with directional fall-off

– intensity is maximal along some direction D, falls off away from D
– specified by color, point, direction, fall-off parameters

• Area Source: Luminous 2D surface

– radiates light from all points on its surface

– generates soft shadows

6Computer Graphics 15-462

Diffuse Reflection

• Simplest kind of reflector (also known as Lambertian
Reflection)

• Models a matte surface -- rough at the microscopic level
• Ideal diffuse reflector

– incoming light is scattered equally in all directions
– viewed brightness does not depend on viewing direction
– brightness does depend on direction of illumination

Illumination direction

2

7Computer Graphics 15-462

Lambert’s Law

: Light Source IntensitylightI

dk

θ
: Surface reflectance coefficient in [0,1]

: Light/Normal angle

)(

cos

LNIk

IkI

lightd

lightddiffuse

•=

= θ

V

N
L

θ
LN

LN •=θcos

See Watt if this is confusing

8Computer Graphics 15-462

Examples of Diffuse Illumination

Same sphere lit diffusely from different lighting angles

9Computer Graphics 15-462

Ambient + Diffuse Reflection

CG started using the Lambertian model and then added
more terms as extra effects were required

L
N

V
θ

This is diffuse illumination plus a simple ambient light term

a trick to account for a background light level caused by multiple
reflections from all objects in the scene (less harsh appearance)

)(LNIkIkI lightdaaad •+=+

: Ambient light intensity (global)aI

ak : Ambient reflectance (local)

10Computer Graphics 15-462

Further Simple Illumination Effects
•Light attenuation:

– light intensity falls off with the square of the distance from the
source - so we add an extra term for this

with d the light source to surface distance - more complicated
formulae are possible (see Foley) and work better

•Colored lights and surfaces:
– just have three separate equations for RGB

•Atmospheric attenuation:
– use viewer-to-surface distance to give extra effects
– the distance is used to blend the object’s radiant color with a

“far” color (e.g., a nice hazy gray)

where fatt = 1
d2)(LNIkfIkI lightdattaaad •+=+

11Computer Graphics 15-462

Specular Reflection
• Shiny surfaces change appearance when viewpoint is varied

– specularities (highlights) are view-dependent
– caused by surfaces that are microscopically smooth

• For shiny surfaces part of the incident light reflects
coherently

– an incoming ray is reflected in a single direction (or narrow beam)
– direction is defined by the incoming direction and the surface normal

• A mirror is a perfect specular reflector
– approximate specular reflectors give fuzzy highlights

12Computer Graphics 15-462

Phong Illumination

shinyn

lightsspecular IkI)(cosφ=

: Angle between reflected light ray R and viewer Vφ
sk : Specular reflectance

shinyn : Rate of specular falloff

• One function that approximates specular falloff is called
the Phong Illumination model

– No real physical basis, yet widespread use in computer graphics

θθθθ θθθθ
φφφφ

L
N

R

V

Greater , more focused beamshinyn

3

13Computer Graphics 15-462

Computing the Reflected Ray

θθθθ θθθθ
φφφφ

L
N

R

V

θθθθ

L N(N•L)

Project L onto N

θθθθ

L

2N(N•L)

Double length of vector

θθθθ

L
R = 2N(N•L) - L

θθθθ

Subtract L

LNX •=
14Computer Graphics 15-462

Phong Illumination Curves

• The specular exponents are often much larger than 1;
values of 100 are not uncommon.

shinyn

lightsspecular IkI)(cosφ=
: angle between line of sight and perfect reflectionφ

sk : Specular reflectance

shinyn : Rate of specular falloff

15Computer Graphics 15-462

Phong Illumination

Moving the light source

Changing nshiny

16Computer Graphics 15-462

Putting It All Together
• Combining ambient, diffuse, and specular illumination

• For multiple light sources
– Repeat the diffuse and specular calculations for each light source

– Add the components from all light sources
– The ambient term contributes only once

• The different reflectance coefficients can differ.
– Simple “metal”: ka and kd share material color, ks is white
– Simple plastic: ks also includes material color

[]shinyn
sdlightattaa kkIfIkI)(coscos φθ ++=

17Computer Graphics 15-462

Some Examples

18Computer Graphics 15-462

OpenGL Materials

GLfloat white8[] = {.8, .8, .8, 1.}, white2 = {.2,.2,.2,1.},black={0.,0.,0.};
GLfloat mat_shininess[] = {50.}; /* Phong exponent */

glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, black);
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, white8);
glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, white2);
glMaterialfv(GL_FRONT_AND_BACK, GL_SHININESS, mat_shininess);

4

19Computer Graphics 15-462

OpenGL Lighting

GLfloat white[] = {1., 1., 1., 1.};
GLfloat light0_position[] = {1., 1., 5., 0.}; /* directional light (w=0) */

glLightfv(GL_LIGHT0, GL_POSITION, light0_position);
glLightfv(GL_LIGHT0, GL_DIFFUSE, white);
glLightfv(GL_LIGHT0, GL_SPECULAR, white);
glEnable(GL_LIGHT0);

glEnable(GL_NORMALIZE); /* normalize normal vectors */
glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, GL_TRUE); /* two-sided lighting*/

glEnable(GL_LIGHTING);

20Computer Graphics 15-462

Transmission with Refraction

• Refraction:
– the bending of light due to its different velocities through different

materials

• Refractive index:
– light travels at speed c/n in a material of refractive index n
– c is the speed of light in a vacuum
– varies with wavelength hence rainbows and prisms

MATERIAL INDEX OF REFRACTION
Air/Vacuum 1
Water 1.33
Glass about 1.5
Diamond 2.4

21Computer Graphics 15-462

Snell’s Law

• Light bends by the physics principle of least time, a
consequence of Huygens’ Principle

– light travels from point A to point B by the fastest path
– when passing from a material of index n1 to one of index n2

Snell’s law gives the angle of refraction:
n1 sin θ1 = n2 sin θ2
where θ1 and θ2 are the angles from perpendicular

• When traveling into a denser material (larger n), light
bends to be more perpendicular (eg air to water) and
vice versa

– light travels further in the faster material

– if the indices are the same the light doesn’t bend

• When traveling into a less dense material total

internal reflection occurs if θ1>sin-1(n2/n1)

22Computer Graphics 15-462

Shadows
• Shadows occur where objects are hidden from a light

source
– omit any intensity contribution from hidden light sources

• Working out what it hidden is simply a visibility problem
– can the light source see the object?
– use the z-buffer shadow algorithm:

» run the algorithm from the light source’s viewpoint
» save the z-buffer as the shadow buffer
» run the real z-buffer algorithm, transforming each point into the light

source’s coordinates and comparing the z value against the shadow
buffer

23Computer Graphics 15-462

Shading
Given an equation to calculate surface radiance, we still

must apply it to the real model
– Usually performed during scan conversion
– There are efficient methods for doing this quickly (which we will

discuss in more detail later in the semester

Flat shaded
Gouraud: Normal at vertex is average
of normals for adjacent faces
Phong: interpolate normals instead of
intensities

24Computer Graphics 15-462

Real objects have surface features, or texture
One option: use a huge number of polygons with

appropriate surface coloring and reflectance
characteristics

Texture mapping gets you further
– Assign radiance based on an image

Even better: use Procedural shaders to specify any
function you want to define radiance

– The possibilities are endless…
– Generate radiance on the fly, during shading
– Key ingredient of high-end rendering systems

» Pixar’s Renderman (used for “Toy Story”, “Bug’s Life”, etc.)

Uniformly shaded surfaces are still unrealistic

5

25Computer Graphics 15-462

Break for video…

