Announcements
» Graded:

—Programming Assignment 1 — lan or Michael
» Grades in file in your turnin directory

— Written Assignment — Michael

— Derivation for Assignment 2 — lan

» Programming Assignment 2 due on
Thursday — questions?

» Written Assignment 2 out on Thursday

Computer Grap!

Two Ways to Define a Circle

Parametric Implicit

(u) = rcos (u)

g(u) =rsin (u) Aep=esyE=e

Computer Graphics 15-462

Polygon Meshes and
Implicit Surfaces

Polygon Meshes
Surfaces
e Solid Geometry

Watt: Chapter 2

Curve Representations
» Explicit: y =f(x)
y=mx+b y=x*
— must be a function (single-valued):
— big limitation—vertical lines?

» Parametric: (x,y) = (f(u),g(u))
(%, y) =(cosu,sinu)
+ easy to specify, modify, control
— extra “hidden” variable u, the parameter

* Implicit: f(x,y) =0
X*+y’-r*=0
+ y can be multiple valued function of x
— hard to specify, modify, control

Computer Graphics 15-462 5

What do we need from shapes
in Computer Graphics?

Local control of shape for modeling
Ability to model what we need
Smoothness and continuity

Ability to evaluate derivatives
Ability to do collision detection
Ease of rendering

No one technique solves all problems

Computer Graphics 15-462

Surface Representations

Parametric surface — x(u,v), y(u,v), z(u,v)
— e.g. plane, sphere, cylinder, torus, bicubic surface, swept surface

— parametric functions let you iterate over the surface by incrementing u
and v in nested loops

— great for making polygon meshes, etc

— terrible for intersections: ray/surface, point-inside-boundary, etc.
Implicit surface: F(x,y,z) =0

— e.g. plane, sphere, cylinder, quadric, torus, blobby models

— terrible for iterating over the surface

— great for intersections, morphing
Subdivision surfaces

— defined by a control mesh and a recursive subdivision procedure
— good for interactive design

Computer Graphics 15-462

Modeling Complex Shapes

We want to build models of very complicated
objects

An equation for a sphere is possible, but how
about an equation for a telephone, or a face, or a
cloud?

Complexity is achieved using simple pieces
— polygons, parametric surfaces, or implicit surfaces
Goals

— Model anything with arbitrary precision (in principle)

— Easy to build and modify

— Efficient computations (for rendering, collisions, etc.)

— Easy to implement (a minor consideratiol

Computer Graphic: 62 7

Normals and Plane Equations
Need normals for shading, plane eqns for intersection tests

A normal to a plane is a vector that is perpendicular to that plane
(two possible choices)

A plane is specified by a point P and a normal vector N

Ne(X-P) = 0 if and only if X lies in the plane; this is an implicit
equation for the plane
— Expand this out: 0= NeX- N+P by+cz+d

3 vertices define a plane, its normal is: N=(B-A) x (C-A)
Unit normal

N=N/N|

Computer Graphic

Polygon Meshes

« Any shape can be modeled out of
polygons

— if you use enough of them...

« Polygons with how many sides?
— Can use triangles, quadrilaterals, pentagons, ... n-
gons

— Triangles are most common.

— When > 3 sides are used, ambiguity about what to do
when polygon nonplanar, or concave, or self-
intersecting.

« Polygon meshes are built out of

— vertices (points)

— edges (line segments between vertices)

— faces (polygons bounded by edges)

Computer Graphics 15- 8

Polygon Models in OpenGL

« for faceted shading smooth shading

< calculate face normal n glBegin(GL_POLYGONS);

using cross product rule > gINormal3fv(normall);
gINormal3fv(n); glVertex3fv(vertl);
gIBegin(GL_POLYGONS); glNormal3fv(normal2);
glVertex3fv(vertl); glVertex3fv(vert2);
glVertex3fv(vert2); glNormal3fv(normal3);
glVertex3fv(vert3); glVertex3fv(vert3);
glEnd(); glEnd();

Computer Graphics 15-

Frontfacing / Backfacing
*A polygon has two sides, of course.

«Customary in CG to use the right hand rule to pick one
side to call the front face.

«Counterclockwise = front, clockwise = back

sImportant for:
—lighting
—backface culling
—for the triangle ABC below, the front face is up.
N

Computer Graphics 15

Data Structures for Polygon Meshes
« Simplest (but dumb)

— float triangle[n][3][3]; (each triangle stores 3 (x,y,z) points)
— redundant: each vertex stored multiple times
 Vertex List, Face List

— List of vertices, each vertex consists of (x,y,z) geometric (shape)
info only

— List of triangles, each a triple of vertex id's (or pointers) topological
(connectivity, adjacency) info only

Fine for many purposes, but finding the faces adjacent to a vertex
takes O(F) time for a model with F faces. Such queries are
important for topological editing.

« Fancier schemes:

Store more topological info so adjacency queries can be answered in
0O(1) time.

Winged-edge data structure — edge structures contain all topological
info (pointers to adjacent vertices, edges, and faces).

Computer 12

A File Format for Polygon Models: OBJ How Many Polygons to Use? Why Level of Detail?

OBJ file for a 2x2x2 cube « Different models for near and far objects

i:g ,11_'(? 116) Xi',{ii; « Different models for rendering and collision detection

10 -1.0 1.0 - vertex 3 « Compression of data recorded from the real world

Syntax: We need automatic algorithms for reducing the polygon
count without
VXYyz - avertex at (x,y,z) «losing key features
«getting artifacts in the silhouette
h *popping
verticesyv,, ...

#
%
v
v
v
\%
v
v
v
f
f
f
f
f
f

anything - comment

Computer Grapt 3 Computer Grap} 62 Computer Graphics

Surface Representations Sets of Points, Surfaces and Solids What Implicit Functions are Good For
« Parametric surface — X(U,V), y(u,v), Z(U,V) . Implicit.surface: sgt of all points 1hat.satisfy lf(x,y,z):o
. Lo « The points that satisfy F(x,y,z)<0 define a solid (or
— e.g. plane, cylinder, bicubic surface, swept surface solids) bounded by the surface

— parametric functions let you iterate over the surface by « The solid is directly defined (unlike definitions using
incrementing u and v in nested loops parametric surfaces)

— great for making polygon meshes, etc - Example

— terrible for intersections: ray/surface, point-inside- ~ Aninfinitely long (solid) cylinder with radius r:
boundary, etc. F=x2+y2-12
— To limit cylinder to length L, abs(z) < L/2 and keep the function implicit use

* |mp|IC|t surface: F(vavz) =0 max _ S Ray - Surface Intersection Test Inside/Outside Test
. . F= max (ahs(z)—le,x.+y.—r»‘)
— e.g. plane, sphere, cylinder, quadric, torus, blobby models 5
— terrible for iterating over the surface
— great for intersections, morphing

F(X+kV) =0

« Implicit functions for a cube? Any convex polyhedron?

Computer Graphics 15-462 16 Computer Graphics 15-462 Computer Graphics 15-462

Surfaces from Implicit Functions

« Constant Value Surfaces are called
(depending on whom you ask):
—constant value surfaces
—level sets
—isosurfaces

« Nice Feature: you can add them! (and other
tricks)
— this merges the shapes

— When you use this with spherical exponential potentials, it's
called Blobs, Metaballs, or Soft Objects. Great for modeling
animals.

Computer Grap!

Isosurfaces of Simulated Tornado

Computer Graphics 15-462

Blobby Models

« Implicit function is the sum of Gaussians centered at
several points in space, minus a threshold

« varying the standard deviations of the Gaussians
makes each blob bigger

« varying the threshold makes blobs merge or separate

Computer Graphics 15-462 20

Constructive Solid Geometry (CSG)

Generate complex shapes with basic building
blocks

machine an object - saw parts off, drill holes

glue pieces together

This is sensible for objects that are actually made

that way (human-made, particularly machined
objects)

Computer Graphics 15-462

How to draw implicit surfaces?

* It's easy to ray trace implicit surfaces
—because of that easy intersection test
* Volume Rendering can display them
» Convert to polygons: the Marching Cubes
algorithm
—Divide space into cubes
— Evaluate implicit function at each cube vertex

—Do root finding or linear interpolation along each
edge
—Polygonize on a cube-by-cube basis

Computer Graphics 15-462

A CSG Train

Computer Graphics 15-462

Negative Objects

«Use point-by-point boolean functions
— remove a volume by using a negative object
— e.g. drill a hole by subtracting a cylinder

G 25

You can try this at home

«Drawing boolean objects - combine parametric and implicit functions
*The boolean object has surfaces from all its constituent objects
«Draw using polygonal meshes, test before drawing using implicit function

for a hole drilled in a block - the surface of the hole is given by the cylinder used to dril it,

the rest of the object's surface is defined by the block
— draw points on the block if they are outside the cylinder
— draw points on the cylinder if they are inside the block
«Implementing union:
— draw both objects, use hidden-surface algorithms to take care of visibility
«Implementing intersection:
— draw points only if they are inside both objects
«Implementing subtraction
— points on the positive object’s surface are visible outside the negative object
— points on the negative object’s surface are visible inside the positive object
«Draw using parametric functions, trim using implicit functions
— And that's where the tricky part comes in

Computer Graphics 15

Set Operations

* UNION: Inside(A) || Inside(B)
—JoinAand B
« INTERSECTION: Inside(A) && Inside(B)
— Chop off any part of A that sticks out
of B.
* SUBTRACTION: Inside(A) && (! Inside(B))
— Use Bto CutA

Examples:
— Use cylinders to drill holes
— Use rectangular blocks to cut slots
— Use half-spaces to cut planar faces
— Use surfaces swept from curves as jigsaws, etc.

Computer Graphics 15-4

3-D Object Representation

Individual elements are voxels (volume
elements)

Compression is almost mandatory

Use octrees (3-D version of quadtree)
— adaptively subdivide a cube into 8 sub-cubes forming a tree

— stop dividing when the whole cube is entirely full or empty, or the
minimum resolution is reached

— at minimum resolution fill the block if majority is full

— combine sibling cubes if they all have the same state
Partially full cubes are nodes, full or empty
cubes are leaves

Data space requirement is proportional to the
surface area of the object (except a few worst
cases)

Computer Graphics 15-462

Implicit Functions for Boolean

*Recall the implicit function for a solid: F(x,y,z)<0

*Boolean operations are replaced by arithmetic:
— MINUS replaces NOT(unary subtraction)
- MAX replaces AND (intersection)
— MIN replaces OR (union)

*Thus
— F(Subtract(A,B)) = MAX(F(A), -F(B))
— F(Intersect(A,B)) = MAX(F(A),F(B))
— F(Union(AB)) = MIN(F(A),F(B))

Computer Graphics 1

Announcements
* Graded:

—Programming Assignment 1 — lan or Michael
— Written Assignment — Michael
— Derivation for Assignment 2 — lan

¢ Programming Assignment 2 due on
Thursday — questions?

» Written Assignment 2 out on Thursday

Computer G

