
1

1Computer Graphics 15-462

Announcements

• Graded:
– Programming Assignment 1 – Ian or Michael

» Grades in file in your turnin directory
– Written Assignment – Michael
– Derivation for Assignment 2 – Ian

• Programming Assignment 2 due on
Thursday – questions?

• Written Assignment 2 out on Thursday

Polygon Meshes and
Implicit Surfaces

Polygon Meshes
Implicit Surfaces
Constructive Solid Geometry

Polygon Meshes
Implicit Surfaces
Constructive Solid Geometry

10/01/02

Watt: Chapter 2

3Computer Graphics 15-462

What do we need from shapes
in Computer Graphics?

• Local control of shape for modeling
• Ability to model what we need
• Smoothness and continuity
• Ability to evaluate derivatives
• Ability to do collision detection
• Ease of rendering

No one technique solves all problems

4Computer Graphics 15-462

Two Ways to Define a Circle

Parametric

u

x = f(u) = r cos (u)
y = g(u) = r sin (u)

Implicit

F(x,y) = x² + y² - r²

F<0

F>0

F=0

5Computer Graphics 15-462

Curve Representations
• Explicit: y = f(x)

– must be a function (single-valued):
– big limitation—vertical lines?

• Parametric: (x,y) = (f(u),g(u))

+ easy to specify, modify, control

– extra “hidden” variable u, the parameter

• Implicit: f(x,y) = 0

+ y can be multiple valued function of x

– hard to specify, modify, control

bmxy += 2xy =

0222 =−+ ryx

)sin,(cos),(uuyx =

6Computer Graphics 15-462

Surface Representations
• Parametric surface — x(u,v), y(u,v), z(u,v)

– e.g. plane, sphere, cylinder, torus, bicubic surface, swept surface

– parametric functions let you iterate over the surface by incrementing u
and v in nested loops

– great for making polygon meshes, etc

– terrible for intersections: ray/surface, point-inside-boundary, etc.

• Implicit surface: F(x,y,z) = 0
– e.g. plane, sphere, cylinder, quadric, torus, blobby models

– terrible for iterating over the surface
– great for intersections, morphing

• Subdivision surfaces
– defined by a control mesh and a recursive subdivision procedure
– good for interactive design

2

7Computer Graphics 15-462

Modeling Complex Shapes

• We want to build models of very complicated
objects

• An equation for a sphere is possible, but how
about an equation for a telephone, or a face, or a
cloud?

• Complexity is achieved using simple pieces
– polygons, parametric surfaces, or implicit surfaces

• Goals
– Model anything with arbitrary precision (in principle)

– Easy to build and modify

– Efficient computations (for rendering, collisions, etc.)

– Easy to implement (a minor consideration...)

8Computer Graphics 15-462

Polygon Meshes

• Any shape can be modeled out of
polygons

– if you use enough of them…

• Polygons with how many sides?
– Can use triangles, quadrilaterals, pentagons, … n-

gons
– Triangles are most common.
– When > 3 sides are used, ambiguity about what to do

when polygon nonplanar, or concave, or self-
intersecting.

• Polygon meshes are built out of
– vertices (points)
– edges (line segments between vertices)
– faces (polygons bounded by edges)

9Computer Graphics 15-462

Frontfacing / Backfacing

N

A

B

C

•A polygon has two sides, of course.

•Customary in CG to use the right hand rule to pick one
side to call the front face.

•Counterclockwise = front, clockwise = back

•Important for:
–lighting

–backface culling

–for the triangle ABC below, the front face is up.

10Computer Graphics 15-462

Normals and Plane Equations
• Need normals for shading, plane eqns for intersection tests

• A normal to a plane is a vector that is perpendicular to that plane
(two possible choices)

• A plane is specified by a point P and a normal vector N

• N•(X-P) = 0 if and only if X lies in the plane; this is an implicit
equation for the plane

– Expand this out: 0 = N•X - N•P = ax + by + cz + d

• 3 vertices define a plane, its normal is: N=(B-A) x (C-A)

• Unit normal

PX

N

A

B

C
NNN /ˆ =

11Computer Graphics 15-462

Polygon Models in OpenGL

• for faceted shading
< calculate face normal n

using cross product rule >
glNormal3fv(n);
glBegin(GL_POLYGONS);
glVertex3fv(vert1);
glVertex3fv(vert2);
glVertex3fv(vert3);
glEnd();

• for smooth shading
glBegin(GL_POLYGONS);
glNormal3fv(normal1);
glVertex3fv(vert1);
glNormal3fv(normal2);
glVertex3fv(vert2);
glNormal3fv(normal3);
glVertex3fv(vert3);
glEnd();

12Computer Graphics 15-462

Data Structures for Polygon Meshes
• Simplest (but dumb)

– float triangle[n][3][3]; (each triangle stores 3 (x,y,z) points)

– redundant: each vertex stored multiple times

• Vertex List, Face List
– List of vertices, each vertex consists of (x,y,z) geometric (shape)

info only

– List of triangles, each a triple of vertex id’s (or pointers) topological
(connectivity, adjacency) info only

Fine for many purposes, but finding the faces adjacent to a vertex
takes O(F) time for a model with F faces. Such queries are
important for topological editing.

• Fancier schemes:
Store more topological info so adjacency queries can be answered in

O(1) time.

Winged-edge data structure – edge structures contain all topological
info (pointers to adjacent vertices, edges, and faces).

3

13Computer Graphics 15-462

A File Format for Polygon Models: OBJ

OBJ file for a 2x2x2 cube
v -1.0 1.0 1.0 - vertex 1
v -1.0 -1.0 1.0 - vertex 2
v 1.0 -1.0 1.0 - vertex 3
v 1.0 1.0 1.0 - …
v -1.0 1.0 -1.0
v -1.0 -1.0 -1.0
v 1.0 -1.0 -1.0
v 1.0 1.0 -1.0
f 1 2 3 4
f 8 7 6 5
f 4 3 7 8
f 5 1 4 8
f 5 6 2 1
f 2 6 7 3

Syntax:

v x y z - a vertex at (x,y,z)

f v1 v2 … vn
a face with vertices v1, v2, … vn

anything - comment

14Computer Graphics 15-462

How Many Polygons to Use?

15Computer Graphics 15-462

Why Level of Detail?

• Different models for near and far objects

• Different models for rendering and collision detection
• Compression of data recorded from the real world

We need automatic algorithms for reducing the polygon
count without
•losing key features
•getting artifacts in the silhouette
•popping

16Computer Graphics 15-462

Surface Representations

• Parametric surface — x(u,v), y(u,v), z(u,v)
– e.g. plane, cylinder, bicubic surface, swept surface
– parametric functions let you iterate over the surface by

incrementing u and v in nested loops
– great for making polygon meshes, etc
– terrible for intersections: ray/surface, point-inside-

boundary, etc.

• Implicit surface: F(x,y,z) = 0
– e.g. plane, sphere, cylinder, quadric, torus, blobby models
– terrible for iterating over the surface
– great for intersections, morphing

17Computer Graphics 15-462

• Implicit surface: set of all points that satisfy F(x,y,z)=0

• The points that satisfy F(x,y,z)<0 define a solid (or
solids) bounded by the surface

• The solid is directly defined (unlike definitions using
parametric surfaces)

• Example
– An infinitely long (solid) cylinder with radius r:

– To limit cylinder to length L, abs(z) < L/2 and keep the function implicit use
max:

• Implicit functions for a cube? Any convex polyhedron?

Sets of Points, Surfaces and Solids

()F = max abs(z)-L/2,x 2 + y 2 - r2

F = x2 + y2 - r2

18Computer Graphics 15-462

What Implicit Functions are Good For

F < 0 ?

F = 0 ?
F > 0 ?

Inside/Outside Test

X

X + kV

F(X + kV) = 0

Ray - Surface Intersection Test

4

19Computer Graphics 15-462

Surfaces from Implicit Functions
• Constant Value Surfaces are called

(depending on whom you ask):
– constant value surfaces
– level sets
– isosurfaces

• Nice Feature: you can add them! (and other
tricks)

– this merges the shapes
– When you use this with spherical exponential potentials, it’s

called Blobs, Metaballs, or Soft Objects. Great for modeling
animals.

20Computer Graphics 15-462

Blobby Models

• Implicit function is the sum of Gaussians centered at
several points in space, minus a threshold

• varying the standard deviations of the Gaussians
makes each blob bigger

• varying the threshold makes blobs merge or separate

21Computer Graphics 15-462

How to draw implicit surfaces?

• It’s easy to ray trace implicit surfaces
– because of that easy intersection test

• Volume Rendering can display them
• Convert to polygons: the Marching Cubes

algorithm
– Divide space into cubes
– Evaluate implicit function at each cube vertex

– Do root finding or linear interpolation along each
edge

– Polygonize on a cube-by-cube basis

22Computer Graphics 15-462

Isosurfaces of Simulated Tornado

23Computer Graphics 15-462

Constructive Solid Geometry (CSG)
Generate complex shapes with basic building
blocks

machine an object - saw parts off, drill holes

glue pieces together

This is sensible for objects that are actually made
that way (human-made, particularly machined
objects)

24Computer Graphics 15-462

A CSG Train

Brian Wyvill & students, Univ. of Calgary

5

25Computer Graphics 15-462

Negative Objects
•Use point-by-point boolean functions

– remove a volume by using a negative object

– e.g. drill a hole by subtracting a cylinder

Subtract From

To get

Inside(BLOCK-CYL) = Inside(BLOCK) AndNot(Inside(CYL))

26Computer Graphics 15-462

Set Operations
• UNION: Inside(A) || Inside(B)

— Join A and B

• INTERSECTION: Inside(A) && Inside(B)
— Chop off any part of A that sticks out

of B.

• SUBTRACTION: Inside(A) && (! Inside(B))
— Use B to Cut A

Examples:
– Use cylinders to drill holes

– Use rectangular blocks to cut slots

– Use half-spaces to cut planar faces

– Use surfaces swept from curves as jigsaws, etc.

27Computer Graphics 15-462

Implicit Functions for Booleans

•Recall the implicit function for a solid: F(x,y,z)<0

•Boolean operations are replaced by arithmetic:
– MINUS replaces NOT(unary subtraction)

– MAX replaces AND (intersection)

– MIN replaces OR (union)

•Thus
– F(Subtract(A,B)) = MAX(F(A), -F(B))

– F(Intersect(A,B)) = MAX(F(A),F(B))

– F(Union(A,B)) = MIN(F(A),F(B))

28Computer Graphics 15-462

You can try this at home
•Drawing boolean objects - combine parametric and implicit functions

•The boolean object has surfaces from all its constituent objects

•Draw using polygonal meshes, test before drawing using implicit function
– for a hole drilled in a block - the surface of the hole is given by the cylinder used to drill it,

the rest of the object’s surface is defined by the block

– draw points on the block if they are outside the cylinder

– draw points on the cylinder if they are inside the block

•Implementing union:
– draw both objects, use hidden-surface algorithms to take care of visibility

•Implementing intersection:
– draw points only if they are inside both objects

•Implementing subtraction
– points on the positive object’s surface are visible outside the negative object

– points on the negative object’s surface are visible inside the positive object

•Draw using parametric functions, trim using implicit functions
– And that’s where the tricky part comes in

29Computer Graphics 15-462

3-D Object Representation
• Individual elements are voxels (volume

elements)
• Compression is almost mandatory
• Use octrees (3-D version of quadtree)

– adaptively subdivide a cube into 8 sub-cubes forming a tree
– stop dividing when the whole cube is entirely full or empty, or the

minimum resolution is reached
– at minimum resolution fill the block if majority is full
– combine sibling cubes if they all have the same state

• Partially full cubes are nodes, full or empty
cubes are leaves

• Data space requirement is proportional to the
surface area of the object (except a few worst
cases)

30Computer Graphics 15-462

Announcements

• Graded:
– Programming Assignment 1 – Ian or Michael

– Written Assignment – Michael
– Derivation for Assignment 2 – Ian

• Programming Assignment 2 due on
Thursday – questions?

• Written Assignment 2 out on Thursday

