Announcements
Movie from Assignment 1
Grades out soon

3D Viewing & Clipping

Where do geometries come from?
• Pin-hole camera
• Perspective projection
• Viewing transformation
• Clipping lines & polygons

Watt 5.2 and 6.1
COMPUTER GRAPHICS
15-462

Where do geometries come from?
• Build them with 3D modelers
• Digitize or scan them
• Results of simulation/physically based modeling
• Combinations:
 – Edit a digitized model
 – Simplify a scanned model
 – “Evolve” a model
• Often, need multiple models at different complexity

Getting Geometry on the Screen
Given geometry in the world coordinate system, how do we get it to the display?
• Transform to camera coordinate system
• Transform (warp) into canonical view volume
• Clip
• Project to display coordinates
• (Rasterize)

Viewing and Projection
• Our eyes collapse 3-D world to 2-D retinal image (brain then has to reconstruct 3D)
• In CG, this process occurs by projection
• Projection has two parts:
 – Viewing transformations: camera position and direction
 – Perspective/orthographic transformation: reduces 3-D to 2-D
• Use homogeneous transformations
• As you learned in Assignment 1, camera can be animated by changing these transformations—the root of the hierarchy

Pinhole Optics
• Stand at point P, and look through the hole - anything within the cone is visible, and nothing else is
• Reduces the hole to a point - the cone becomes a ray
• Pin hole is the focal point, eye point or center of projection.
Perspective Projection of a Point

- **View plane or image plane** - a plane behind the pinhole on which the image is formed
 - A point I sees anything on the line (ray) through the pinhole F
 - A point W projects along the ray through F to appear at I (intersection of WF with image plane)

Problems with Pinholes

- Correct optics requires infinitely small pinhole
 - No light gets through
 - Diffraction
- Solution: Lens with finite aperture

Image Formation

- Projecting a shape
 - Project each point onto the image plane
 - Lines are projected by projecting end points only

Orthographic Projection

- When the focal point is at infinity, the rays are parallel and orthogonal to the image plane
- Good model for telephoto lens. No perspective effects.
- When xy-plane is the image plane, $(x,y,z) \rightarrow (x,y,0)$

A Simple Perspective Camera

- Canonical case:
 - Camera looks along the z-axis
 - Focal point is the origin
 - Image plane is parallel to the xy-plane at distance d
 - $\text{Lens Law}: \frac{1}{v} = \frac{1}{u} + \frac{1}{f}$

Similar Triangles

- ν_{up}: a vector that is pointing straight up in the image; usually want world “up” direction
- Diagram shows y-coordinate, x-coordinate is similar
- Using similar triangles:
 - $\text{point } [x,y,z]$ projects to $(d\nu_{x}, d\nu_{y}, d)$
A Perspective Projection Matrix

- Projection using homogeneous coordinates:
 - transform \([x, y, z]\) to \([d/zx, d/zy, d]\)

\[
\begin{bmatrix}
0 & 0 & 0 & x \\
0 & 0 & 0 & y \\
0 & 0 & 0 & z \\
0 & 0 & 1 & 1
\end{bmatrix}
\begin{bmatrix}
dx \\
dy \\
dz \\
1
\end{bmatrix}
\]

- Divide by 4th coordinate (the "w" coordinate)

- 2-D image point:
 - discard third coordinate
 - apply viewport transformation to obtain physical pixel coordinates

Wait, there’s more!

Perspective transformation can also

- map rectangle in the image plane to the viewport
- specify near and far clipping planes
 - instead of mapping \(z\) to \(d\), transform \(z\) between \(z_{\text{near}}\) and \(z_{\text{far}}\) on to a fixed range
 - used for z-buffer hidden surface removal
- specify field-of-view (fov) angle

The View Volume

- Pyramid in space defined by focal point and window in the image plane (assume window mapped to viewport)
- Defines visible region of space
- Pyramid edges are clipping planes
- Frustum = truncated pyramid with near and far clipping planes
 - Why near plane? Prevent points behind the camera being seen
 - Why far plane? Allows \(z\) to be scaled to a limited fixed-point value (z-buffering)

But wait...

- What if we want the camera somewhere other than the canonical location?
- Alternative #1: derive a general projection matrix. (hard)
- Alternative #2: transform the world so that the camera is in canonical position and orientation (much simpler)
- These transformations are viewing transformations
- They can be specified in many ways - some more sensible than others (beware of Foley, Angel and Watt are ok)

Camera Control Values

- All we need is a single translation and angle-axis rotation (orientation), but...
- Good animation requires good camera control—we need better control knobs
- Translation knob - move to the \(\text{lookfrom}\) point
- Orientation can be specified in several ways:
 - specify camera rotations
 - specify a \(\text{lookat}\) point (solve for camera rotations)

A Popular View Specification Approach

- Focal length, image size/shape and clipping planes are in the perspective transformation
- In addition:
 - \(\text{lookfrom}:\) where the focal point (camera) is
 - \(\text{lookat}:\) the world point to be centered in the image
- Also specify camera orientation about the \(\text{lookat-lookfrom}\) axis
Implementation

Implementing the lookat/lookfrom/vup viewing scheme

1. Translate by -lookfrom, bring focal point to origin
2. Rotate lookat-lookfrom to the z-axis with matrix R:
 - rotation axis: \(a = (v \times z)/|v \times z| \)
 - rotation angle: \(\cos \theta = v \cdot z \) and \(\sin \theta = |v \times z| \)
 \(\text{glRotate}(\theta, a_x, a_y, a_z) \)
3. Rotate about z-axis to get vup parallel to the y-axis

The Whole Picture

- **LOOKFROM**: Where the camera is
- **LOOKAT**: A point that should be centered in the image
- **VUP**: A vector that will be pointing straight up in the image
- **FOV**: Field-of-view angle
- **d**: Focal length
- **WORLD COORDINATES**

Virtual Trackballs

- Imagine world contained in crystal ball, rotates about center
- Spin the ball (and the world) with the mouse
- Given old and new mouse positions
 - project screen points onto the sphere surface
 - rotation axis is normal to plane of points and sphere center
- There are other methods to map screen coordinates to rotations

Clipping

- There is something missing between projection and viewing.
- Before projecting, we need to eliminate the portion of scene that is outside the viewing frustum.
- Need to clip objects to the frustum (truncated pyramid)

Normalizing the Viewing Frustum

- Solution: transform frustum to a cube before clipping
- Converts perspective frustum to orthographic frustum
- This is yet another homogeneous transform!
The Normalized Frustum

- OpenGL uses \(-1 \leq x \leq 1, -1 \leq y \leq 1, -1 \leq z \leq 1\)
- But it doesn’t really matter… we can clip against any such cube.
 - Or, we can translate normalizing transformations by applying the appropriate transforms.
- Must clip in homogeneous coordinates:
 \(w > 0: -w \leq x \leq w, -w \leq y \leq w, -w \leq z \leq w\)
 \(w < 0: -w \geq x \geq w, -w \geq y \geq w, -w \geq z \geq w\)

But wait! Divide by zero?

- But doesn’t projection require dividing by the \(z\) coordinate? If \(-1 \leq z \leq 1\), won’t we get divide by 0?
 - Ah, but it’s really the \(w\) coordinate we divide by, and it’s positive definite!
 - The original perspective transformation puts a vertex’s \(z\) value in \(w\)
 - Since \(hither <= z <= yon\) for vertices that don’t get clipped, \(w\) is positive definite (modulo sign convention for \(hither\) and \(yon\))
 - Hence, no worries on that front. All the \(z=0\) vertices will get clipped before we divide out the homogeneous coordinate.

Clipping to a Cube

- Determine which parts of the scene lie within cube
- We will consider the 2D version: clip to rectangle
 - This has its own uses (viewport clipping)
- Two approaches:
 - clip during scan conversion (rasterization) - check per pixel or end-point
 - clip before scan conversion
 - We will cover
 - clip to rectangular viewport before scan conversion

Line Clipping

- Modify endpoints of lines to lie in rectangle
- How to define “interior” of rectangle?
 - Convenient definition: intersection of 4 half-planes
 - Nice way to decompose the problem
 - Generalizes easily to 3D (intersection of 6 half-planes)

Line Clipping

- Modify endpoints of lines to lie in rectangle
 - Convenient definition: intersection of 4 half-planes
 - Nice way to decompose the problem
 - Generalizes easily to 3D (intersection of 6 half-planes)

Cohen-Sutherland Algorithm

- Uses outcodes to encode the half-plane tests results
 - bit 1: \(y>y_{\text{max}}\)
 - bit 2: \(y<y_{\text{min}}\)
 - bit 3: \(x>x_{\text{max}}\)
 - bit 4: \(x<x_{\text{min}}\)

- Rules:
 - Trivial accept: outcode(end1) and outcode(end2) both zero
 - Trivial reject: outcode(end1) & (bitwise and) outcode(end2) nonzero
 - Else subdivide

More algebraically “nuanced” special cases:
- One inside: find intersection and clip
- Both outside: either clip or reject (tacky case)
Cohen-Sutherland Algorithm

- Uses outcodes to encode the half-plane tests results

\[
\begin{array}{cccc}
0101 & 0100 & 0110 & 0010 \\
\text{bit 1: } y > \text{ymax} & \text{bit 2: } y < \text{ymin} & \text{bit 3: } x > \text{xmax} & \text{bit 4: } x < \text{xmin} \\
0001 & 0000 & 0011 & 1010 \\
\text{Trivial accept: outcode(end1) and outcode(end2) both zero} & \text{Trivial reject: outcode(end1) & (bitwise and) outcode(end2) nonzero} & \text{else subdivision}
\end{array}
\]

Cohen-Sutherland Algorithm: Subdivision

- If neither trivial accept nor reject:
 - Pick an outside endpoint (with nonzero outcode)
 - Pick an edge that is crossed (nonzero bit of outcode)
 - Find line’s intersection with that edge
 - Replace outside endpoint with intersection point
 - Repeat until trivial accept or reject

Sutherland-Hodgman Polygon Clipping Algorithm

- Subproblem:
 - clip a polygon (vertex list) against a single clip plane
 - output the vertex list(s) for the resulting clipped polygon(s)

- Clip against all four planes
 - generalizes to 3D (6 planes)
 - generalizes to any convex clip polygon/polyhedron

Sutherland-Hodgman Polygon Clipping Algorithm (Cont.)

To clip vertex list against one half-plane:
- if first vertex is inside - output it
- loop through list testing inside/outside transition - output depends on transition:

 - in-to-in: output vertex
 - in-to-out: no output
 - out-to-in: output intersection

Polyon Clipping

- Convert a polygon into one or more polygons that form the intersection of the original with the clip window

Cleaning Up

- Post-processing is required when clipping creates multiple polygons
- As external vertices are clipped away, one is left with edges running along the boundary of the clip region.
- Sometimes those edges dead-end, hitting a vertex on the boundary and doubling back.
 - Need to prune back those edges
- Sometimes the edges form infinitely-thin bridges between polygons.
 - Need to cut those polygons apart