15-462: Computer Graphics

Jessica Hodgins Associate Professor Robotics Institute and Computer Science Department

Introduction

- Administrivia
- Who am I?
- What is Computer Graphics

Administration

- Web page
 - http://www-2.cs.cmu.edu/afs/cs.cmu.edu/user/jkh/www/462 f02/
- TA's: Jernej Barbic, Ian Graham, and Mike Hensen - Office hours and contact info on the web
- Textbook: Watt, 3D Computer Graphics
- · Textbook: Open GL

Administration

• Prerequisites (talk to me if you're missing these!)

15-213: Introduction to Computer Systems

21-241: Matrix Algebra (matrix & vector algebra)

21-259: Calculus in Three Dimensions (i.e. planes, quadratic surfaces, basic 3-D geometry, partial derivatives) or equivalent

- Midterm and Final (13% and 22%)
- Four programming assignments (10-13% each)
- Three written assignments (20% total)

You will do fun things in this class!

Quarup Barreirinhas

You will do fun things in this class! Paint program Spline roller coaster Cube of jello Ray tracer

Warning: mathematical programming may be different than what you've done in the past.

Administration

- Late Policy: 3 late days that you can use for any assignment. More than three requires a really good excuse.
- Cheating: Please don't! The detailed definition is in the syllabus. We will pursue the case...
- If you didn't get into this class, talk to me—the waitlist is empty

Other Graphics-related Courses

- 15-???: Computer Animation, Hodgins, Duesing (S03)
- 15-???: Video Games, Kuffner (F02)
- 15-6??: Simulation for Animation, James (S02)
- 15-385: Computer Vision
- 05-331: Building Virtual Worlds, Pausch (F02)
- 24-384A: Computational Geometry, Shimada
- 60-41x: 3-D Animation, Duesing

Introduction

- Administrivia
- Who am I?
- What is Computer Graphics

Any questions?

Who am I?

PhD CS, CMU Legged Locomotion For Rough Terrain Locomotion

On the faculty at Georgia Tech from 1992-2000

Joined CMU in fall 2000

And back to robots

What is this course about?

Computer Graphics...

One agenda: Faking Reality

- Make synthetic images that are *indistinguishable* from the real thing
- Do it in a way that's both practical and scientifically sound. In real time, obviously.

And make it look easy...

Another Agenda: Create a new Reality

- Non-photorealistic Rendering
- Example: Illustrating smooth surfaces

A.Hertzmann, D. Zorin. SIGGRAPH 2000 Conference Proceedings.

Another Example

 Image Analogies A. Hertzmann, C. Jacobs, N. Oliver, B. Curless, D. Salesin. SIGGRAPH 2001 Conference Proceedings.

Things that this course isn't about

Software packages (as opposed to software API's like GL), and much about graphics hardware

User-interfaces

That rely on graphics: interactive simulations vision-based interfaces

The three big topics:

- Modeling: how to represent objects; how to *build* those representations.
- Animation: representing/controlling the way things move.
- Rendering: how to create images

Modeling

- How to represent real environments
 - geometry: modeling surfaces, volumes
 - photometry: light, color, reflectance
- How to build these representations
 - declaratively: write it down
 - interactively: sculpt it
 - programmatically: let it grow
 - via 3D sensing: scan it in

Modeling by Sculpting

Freeform from Sensable Technologies

Synapse Modelmaking

Modeling by Growing

Reproduction of the topiary garden at Levens, England. R. Mech, P. Prusinkiewicz, SIGGRAPH 1994

Modeling by Growing

Modeling Seashells P. Prusinkiewicz, Deborah Fowler, Hans Meinhardt, SIGGRAPH 92.

Modeling by Scanning

Cyberware

Animation

- Model how things *move*
- How to represent motion
 - sequence of stills, parameter curves
- · How to specify motion
 - by hand: tweak it till it looks right
 - key-framing, constraints
 - rule-based behaviors: artificial life
 - physics: simulate Newton's laws
 - motion capture: data from the real world

Hand Animation

Making of Toy Story

Rule-based Behaviors

COURSE: 07 Course organizer: Demetri terzopoulos

"BOINS DEMOS"
(RANG REVNOLDS
SILICON STUDIOS, MS 3L-980
2011 NORTH SHORELINE BLVD.
MOUNTAIN VIEW, (A 94039–7311

Physics for Natural Phenomena

Antz water simulation, related techniques were used in Shrek

Rendering

- · What's an image?
 - distribution of light energy on 2D "film": $E(x,y,\lambda,t)$ (λ is wavelength.)
- How do we represent and store images
 - sampled array of "pixels": p[x,y]
- How to generate images from scenes
 - input: 3D description of scene, camera
 - solve light transport through environment
 - · ray tracing
 - radiosity
 - project to camera's viewpoint

Raytracing

May-June 2001 First Place Winner Internet Ray Tracing Competition warm_up by Norbert Kern

Radiosity

Lightscape, Autodesk

Image-based Rendering

Mike Harris Martin Løvvold Caligari, True Space

Hot Application Areas

- · Special effects
- Feature animation
- PC graphics boards
- Video games, location-based entertainment
- Visualization (science, architecture, space)
- The web

Hot Research Topics

- Modeling
 - getting models from the real world
 - multi-resolution
- Animation
 - physically based simulation
 - motion capture
- Rendering:
 - more realistic: image-based modeling
 - less realistic: impressionist, pen & ink

Starting out Simple

- The field didn't start out with all this difficult stuff.
- First there were wireframes. Then faceted and smooth shading. Advanced ideas such as radiosity and physically based animation came later.
- Only gradually did the idea of "physically based" take hold.
- The simpler models and methods are still very much in use, because they're well understood, they're amenable to hardware implementations, and fast.
- In this class, we concentrate on the simple stuff, but sprinkle in some advanced topics here and there.