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Introduction

We will describe a procedure for inferring permissions
for the proof system described by Uday S. Reddy
in “Syntactic Control of Interference for Concurrent
Separation Logic” (presented earlier at this confer-
ence).

Given a purported proof in Reddy’s formalism in which
the variable permissions have been erased, our goal is
to determine if there is an assignment of permissions
that will give a valid proof.



Contexts

Reddy uses contexts such as
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(We assume that the contexts are in normal form.)
We introduce the set

Owners = Resources U {self},

and treat > as a list associated with self. We also
break out the resource invariants as a separate part
of the context:
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Then we transpose the (Owner, Variable)-matrix to
bring the variables to the outside:
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Contexts (continued)

We |limit our development to fractional permissions,
which are real numbers in the set

Perms={p|0<p<1}.

However, rather than regarding a context A as a
partial function into permissions, we will extend it to
a total function by filling in the missing permissions
with the nonpermission 0. Thus a permission context
is a function

A: Vars — Owners — Perms U {0},
such that

ZOEOwners Avo S 1.

We assume that Vars and Owners are finite sets.



Judgements

The judgements used by Reddy:
> FEExp X F P Assert
> FaVar X|IF{P}C{Q}.
become, with our altered view of contexts:
AT HEExp A|TFEF P Assert (passive)
AT EHFz Var A|TH{P}C{Q}. (active)

To deal with the Rule of Consequence, we will also
need a passive judgement that an assertion is valid:

A|T + P Valid. (passive)

Passive judgements are those which only describe the
reading of variables, while active judgements may de-
scribe writing as well. (Our presentation is simpli-
fied by using the same form of context for all judge-
ments.)

A pre-judgement has the form

THEExp 7YTkFPAssert 7YTF P Valid (passive)
TFaxzVar T H{P} C {Q}. (active)



Rules

The rules of (our slight modification of) Reddy’s logic
are schemas of the form
P, - P
C ;
where the premisses P; and the conclusion C are
schematic judgements.

(An instance of) a pre-rule is obtained from (an in-
stance of) a rule by deleting the permission contexts.



Trees and Proofs

A tree consists of a finite set Nodes, a node root €
Nodes, and a function parents € Nodes — (Nodes*),
satisfying conditions that insure reachability from root,
and the absence of cycles and common ancestors.

A proof (pre-proof) of shape (Nodes,root, parents)
is @ node-indexed family (J,) of judgements (pre-
judgements) such that, for each node n with parents
nyy..., Nk,
Jny o Iy,
JIn
is an instance of a rule (pre-rule).

We say that a node n is passive (active) if J, is passive
(active).



Erasure and Extension

If a pre-judgement, pre-rule instance, or pre-proof X0
is obtained from a judgement, rule instance, or proof
X by deleting all permission contexts, we say that X
is the erasure of X, or that X erases to X0,

If a pre-proof PY is obtained from a proof P by delet-
ing all permission contexts A,, we say that P extends
Py with the node-indexed family (Ay) of contexts.



Passive Rules

Reddy’'s rules with passive conclusions will be re-
placed by two premiss-free rules with side conditions:

A|T + E Exp where Yv e FV(E). Avself >0

A|T P Assert where Yv e FV(P). Avself >0

where Vv € FV(P). A v self > 0

AT = P Valid and P is a valid assertion.

where FV(X) denotes the set of free variables of X.

Write Proofs

A write-proof is a proof in which the side conditions
Vv € FV(X). A v self > 0 of the passive rules are
ignored, so that the permissions needed for variable
reading are not checked.



The Plot (Phase I)

Given a pre-proof P9, our algorithm should produce
a proof that extends P9, if such a proof exists. We
assume that the pre-proof PO and its underlying tree
are fixed.

In its first phase, the algorithm traverses the pre-
proof from leaves to root, and computes at each node
permission restrictions that must be satisfied by any
write-proof.



Permission Restrictions

A permission restriction is a partial function

®: Vars — P(Owners).

If a permission restriction is attached to a node n in
a pre-proof, its domain will be the set of variables
that may be assigned by the right side of the pre-
judgement at n. (If n is passive, the domain will be
empty.)

We say that a context A satisfies a permission re-
striction & iff

and

Vv e dom P,o0 € Owners. o ¢ v implies Avo = 0.

AS a consequence,

Vvedom®d. Y cp,DAvo=1.

Note that, if there is any v € dom & such that ® v is
empty, then no A satisfies &.



The Permission Ordering
We impose the following preorder on permission con-
texts:
A < A" iff Yo e Vars,o € Owners.
Avo >0 implies A’vo > 0.

When A < A/, we say that A’ is more permissive
than A.



The Plot (Phase II)

If any permission restriction computed in the first
phase is unsatisfiable, then there is no proof extend-
ing PY.

Otherwise, in its second phase, the algorithm tra-
verses the pre-proof from root to leaves, computing
contexts that extend the pre-proof to a maximally
permissive write-proof.

During the second phase, the algorithm checks the
side-conditions on the instances of passive rules. Since,
if any write-proof is a proof, the maximally permis-
sive write-proof will be a proof, this suffices to decide
whether a proof (extending PO) exists.



An Example (The Problematic Program)

[p:self: 1] F
{R1 x Ro}
resource r1 in resource 5 in
(with r1{ do ((with ro do p:=0); [0] :=3))
| (with r5 do ((with r{ dop:=1);[0] :=4))
{R1* Ro}

Vars = {p}
Owners = {rq, rp,self}.



T he Resource Invariants

R1 = if p =0 then 0 — 3 else emp
R> = if p = 0 then emp else 0 — 4.
Thus
Rq * Ro

iff if p = 0 then O — 3 xemp else emp *x 0 — 4
iffif p=0then 0+ 3else 0 — 4
implies O — —

and
p=0AR;iffp=0A0+—3
p=0AR> iff p=0Aemp
p#OAR,iff p#E=0Aemp
pFEOARyIiff pZ0AQ— 4.



Using the Rule for (Assignable) Variables

p: [self: 1] - p Var ® = [p: {self}]

Using the Rule for Assignment

A+ p Var ®1 = [p: {self}]
A F 0 Exp Pp =[]
AFO0O+— — Ap=0 Assert b3 =[]

AF{0— —A0=0}
p:=0 b = [p: {self}]
{0O— —Ap=20}



Using the Rule of Consequence

A+ Ry * Ro=>0——A0=0Valid & =][]

A {0— —AO0=0)
p:=0 b5 = [p: {self}]
{0 — — Ap=20}
AFO— —-Ap=0=
R> * (O— — Ap=0) Valid

AF {R1 x Ry}
p:=0 d = [p: {self}]
{RQ*(OI—>—/\p=O)}

Pz =[]




An (Unconditional) Critical Region

Al|ry: Ro - Rq Assert b =[]
Alro: Ro -0 — — Ap =0 Assert by =[]
A {Ry * Ry}
p:=0 b3 = [p: {self}]
{Ry * (0~ — Ap=0)}
Alrpi Ry = {R1}
with ro dop:=0 d = [p: {ro, self}]
{0 — — Ap=20}

where

A'po = Apo when o ¢ {ro,self}
A'pself = Apself +Apro <1
A'pro = 0.
From &3, we have A’po = if o = self then 1 else O,
so that

A po = if o = self then 71 else if o = r, then 75 else O,

where 1 + 1 = 1. Thus & = [p: {ro, self}].



Mutation

A‘TQZRQ - O Exp P = []
A|7“22R2 -3 Exp Py = []
Alro: Ro - {0+— — Ap =0}
0] :=3 & =[]

{0— 3Ap=20}

Sequential Composition

Alrpi Ry = {Rq1}
with ro do p:=0 ®q1 = [p: {ro, self}]
{0 — —Ap=20}

Alro: RoF {0 +— — Ap =0}
0] :=3 by =[]
{OI—>3/\p:O}

Alro: Ro = {R1}

with ro dop:=0; o
[O] .— 3 b = [p {7“2, self}]

{OI—>3/\p:O}




Consequence

A|r2: Ry {Rl}

With’erOp:O’ B |
[0] :=3 ®q = [p: {ro, self}]

{0 —3Ap=0}
A|r2:R2|—O|—>3/\p=O:>R1Valid by =[]

A|7“21 RQ - {Rl}

[0]:=3 ® = [p: {ro,self}]

{R1}




Another Critical Region

A|ri: R1,72: Ro - emp Assert b1 =[]
Alri: R1,72. Ro - emp Assert by =[]
A/ ro. Ro - {Rl}

with ro dop:=0;

[O] .— 3 CD3 = [pI {7“2, self}]
{R1}
A|’I"11 Rqi,70: Ro - {emp}
with 71 do ( B
with ro dop:=0; CD__ 1f
[0] := 3) [p: {r1,ro,self}]
{emp}

where

A'po = Apo when o ¢ {rq,self}
A'pself = Apself +Apri <1
A'pri = 0.
From A’pry = 0, we obtain ®3 = [p: {ro, self}].



Similarly

A|?‘11 Rqi,70: Ry I {emp}

with ro dO( ® —
withr{ dop:=1; B
[O] — 4) [Z? {7“1, ro, Self}]

{emp}



Parallel Composition

Ailr1:Ry,7m2: Ro F {emp} ®; = [p: {r1,ro,self}]
with rq do (with ro do p:=0; [0] := 3)
{emp}
As|r1: R1,ro: Ry F {emp} ®o = [p: {ry1,ro,self}]
with r> do (with r{ dop:=1; [0] :=4)
{emp}
Alri:Ry,m0: Ro - {emp * emp} ® = [p:{r1,m2}]

with r1 do (with ro dop:=0; [0] :=3)

|
with r5 do (withr{ dop:=1;[0] :=4)

{emp * emp}

where
Alp = :7“1: T1,T2. 7T2,Self2 71'5]
DAop = :7“12 m™,TD. T, self: ﬂ';]
Ap = [ri:m,ro: mo,self: g 4+ 7l],
so that

™+ 71+ =1
T + 7o+ T =
T+ mo s+ < 1,
which implies that ns = 7, = ns + n, = 0. Thus
® = [p:{r1,r2}l.

»



Resource Declaration

A1q|r1: R1 F Ry Assert b1 =[]
Ao|ri:Ry,ro: Ro - {emp * emp} o = [p:{r1,r2}]
with r1 do (with ro dop:=0; [0] := 3)

|
with ro do (with r{ dop:=1;[0] :=4)

{emp * emp}

Alri: R1 F {emp * emp * Ry} ® = [p: {r1,self}]
resource ro in
with r1 do (with ro dop:=0; [0] :=3)

I
with r-> do (with r{ dop:=1; [0] :=4)
{emp * emp *x Ro}

where

DAo>p = [r1:71,r0: 7o, self: mg]
A1p = :self:7r2]

Ap = :?“127T1,7“220,Self17'(‘3—|—71'2].
Thus & = [p: {r1,self}].



Another Resource Declaration

A1 F Rq Assert b1 =[]

As|ri: R+ {emp * emp * Ro} do = [p: {r1, self}]
resource ro in
with r1 do (with ro dop:=0; [0] :=3)
|
with 75> do (with r{y dop:=1;[0] :=4)
{emp *x emp * Ry}

A {emp x emp * Rq * Ro} d = [p: {self}]
resource ri in resource ro in
with r1 do (with ro dop:=0; [0] :=3)

|
with r5 do (withr{ dop:=1;[0] :=4)
{emp * emp * R * Ro}

where

Azp — :7“1:7r1,7“2:772,se1f:773]
A1 p = [self: 7]

Ap = :7“1:0,7“2:7r2,self:7r3—|—7r1].
But by &5, mp = 0. Thus & = [p: {self}].



At the Root

We take A%agt to be the maximally permissive con-

text that satisfies ® g0t = [p: {self}]:
root P = [self : 1].
Then we go backwards through our proof.

Passive judgement whose side conditions hold (either
because AM**pself > O or because p is not a free
variable) are marked with an asterisk.



Another Resource Declaration

*A1 - Ry Assert P =[]

As|ri: R+ {emp * emp * Ro} do = [p: {r1, self}]
resource ro in
with r1 do (with ro dop:=0; [0] :=3)
|
with 75> do (with r{y dop:=1;[0] :=4)
{emp *x emp * Ry}

A {emp x emp * Rq * Ro} d = [p: {self}]
resource ri in resource ro in
with r1 do (with ro dop:=0; [0] :=3)

|
with r5 do (withr{ dop:=1;[0] :=4)
{emp * emp * R * Ro}

where

Azp — :7“1:7r1,7“2:772,se1f:773]
A1 p = [self: 7]

Ap = :7“12 0, ro: 7o, self: g + 7T1].
From AM®*p = [self : 1], we get 7o = 0 and ns+m1 =
1. Choosing s = w1 = 5, we have

AT p = [self: }] A5 p = [r1:3,self: 1]



Resource Declaration

xA1|r1: R1 F Ry Assert b1 =[]
Aslry: Ry, r2i Ro F {emp * emp} ®o = [p:{r1,m2}]
with r1 do (with ro dop:=0; [0] :=3)

|
with ro do (with r{ dop:=1;[0] :=4)

{emp * emp}

Alri: R1 F {emp * emp * Ry} ® = [p: {r1,self}]
resource ro in
with r1 do (with ro dop:=0; [0] :=3)

I
with r-> do (with r{ dop:=1; [0] :=4)
{emp * emp *x Ro}

where

DAo>p = [r1:71,r0: 7o, self: mg]
A1p = :self:7r2]

Ap = :?“127T1,7“220,Self17'(‘3—|—71'2].
From A™™p = [ry:3,self: 1], we get 71 = 3 and =5 +
np = 5. But d,p forces ms = 0, so that mp = 4 and

AT p = [self: 3] AT p = [r1:3,r0:3].



Parallel Composition

Ailr1:Ry,7m2: Ro F {emp} ®; = [p: {r1,ro,self}]
with rq do (with ro do p:=0; [0] := 3)
{emp}
As|r1: R1,ro: Ry F {emp} ®o = [p: {ry1,ro,self}]
with r> do (with r{ dop:=1; [0] :=4)
{emp}
Alri:Ry,m0: Ro - {emp * emp} ® = [p:{r1,m2}]

with r1 do (with ro dop:=0; [0] :=3)

|
with r5 do (withr{ dop:=1;[0] :=4)

{emp * emp}
where
A1p = [r1:71,r0: 75, self: mg]
DAop = [rq1:mq, 0. T, self: wl]

Ap = :7“127T1,7“227T2,Self271'3—|—7T;].
From A™p = [r1:4,r2:1], we find that 75 = 0 and
. = 0, and

Arlnaxp — ArQnaxp — Amaxp.



Another Critical Region

xA|r1: R, 72 Ro - emp Assert Py =[]
*A|rq1: R1,r2: Ro F emp Assert by =]

Allro: Ro - {Rq}
with ro dop:=0;

[O] .— 3 CD3 = [pI {7“2, self}]
{R1}
A|’I"11 Rqi,70: Ro - {emp}
with 71 do ( B
with ro dop:=0; CD__ 1f
[0] := 3) [p: {r1,ro,self}]
{emp}

where

A'po = Apo when o ¢ {rq,self}
A'pself = Apself +Apri <1
A'pri = 0.

From A™™p = [r1:4,r2: 4] we get

/ . .
AT p = [ry: 5, self: 1].



Consequence

Alro: Ro - {R1}

With’erOp:O’ B |
[0] :=3 ®q = [p: {ro, self}]

{0 —3Ap=0}
«A|ro: Ro -0 3Ap=0= Ry Valid &, =]

Alro: Ry - {R1}

with ro dop:=0; o
0] =3 d = [p: {ro, self}]

{R1}

Obviously, AM2* is preserved.




Mutation

*A‘TQZ Ro - 0 Exp
*A|T22 R> 3 Exp

Alro: Ro - {0 +— — Ap =0}
[0] : =3
{0— 3 Ap=20}

Obviously, AM2* s preserved.

Sequential Composition

Alrp: Rp B {R1}
with ro dop:=0
{0— —Ap=20}

*A|T22R2|— {Ol—>—/\p:0}
[0] : =3
{0— 3Ap=0}

Alry: Ry = {Rq}
with ro dop:=0;
[0] :=3
{O — 3Ap = O}

Obviously, AM* is preserved.

Py = [p:{ro,self}]



An (Unconditional) Critical Region

x*A|ro: Ry = Ry Assert P =[]
*A|ro: Ro 0 — — Ap =0 Assert Py =[]
A'F {R1 * Ry}
p:=0 b3 = [p: {self}]
{R2 ES (OI—>—/\p=O)}

Alrpi Ry = {R1}
with rodop:=0 ® = [p: {ro, self}]
{0 — — Ap=20}

where
A'po = Apo when o ¢ {ro,self}
A'pself = Apself +Apro <1
A'pro = 0.

From AM™>p = [ro: 1, self: 1], we get

A = [self: 1].



Using the Rule of Consequence

* A+ R1 * Ro =0~ — A0 =0 Valid

AF {0O— —AN0=0}
p:=0
{0 — — Ap=20}

* AFOQO— —-—Ap=0=
R> * (O— — Ap=0) Valid
AF {R1 x Ry}
p:=0
{RQ * (Ol—>—/\p:0)}

Obviously, AM2* is preserved.

®; =[]

b5 = [p: {self}]
P3 =[]

d = [p: {self}]



Using the Rule for (Assignable) Variables

p: [self: 1] - p Var ® = [p: {self}]
which is satisfied by AM®p = [self: 1].

Using the Rule for Assignment

A+ p Var b1 = [p: {self}]
*A F 0 Exp Dy =[]
*A O~ — Ap=0 Assert b3 =[]
AF{0— —AN0=0}
p:=0 d = [p: {self}]

{O0+— —Ap=0}
Obviously, AM2* is preserved.



At each Node during Phase I

Consider a node n in PY whose parents are nq,...,ng.
The judgements at these nodes will form an instance
of a pre-rule:

Y, = Sh.
During Phase I, the algorithm will accept permission

restrictions ®gq,..., Py, and will produce a permis-
sion restriction d,, such that

(1) If

IS a rule instance that erases to RO, and if Ay, satisfies
by, for 1 <@ < k, then Ay, will satisfy oy,




The Result of Phase 1

In Phase I, the algorithm will produce a permission
restriction &,, for each node n in PY.

By structural induction on P9, using (1):

(2) If P¥ is a write-proof that extends P9 with con-
texts (Ap), then each A, satisfies &,.



At the Root

In Phase II, the algorithm will search for a proof
whose root judgement contains the context AR,
which must satisfy ®,.0t. T here are two cases:

Specified Root Context: We take ALY} to be the
specified root context, providing it satisfies P,oot.
Otherwise, by (2), there is no write-proof (and there-
fore no proof) that extends PO and has the specified
root context.

Arbitrary Root Context: If, for every v in dom P,got,
Proot v IS NONEeMpty, then we take AT to be

( if v e dom Cbroot then
AR vo = 4 if 0 € Proot v then 1/#P oot v else O
\ else 1/(#Owners 4+ 1)

(where #S is the size of S), which is (one of) the
Most permissive contexts satisfying ®qot.

On the other hand, if there is some variable v such
that Pt v IS empty, then there is no root context
satsifying ®o0t, and by (2), no proof extends PP.



At each Node during Phase II

During Phase II, the algorithm will accept a con-
text AN that satisfies &, and will produce contexts
AR, .., AR such that

(3) Each AR satisfies ®p; and

INCTR N

is a rule instance that erases to RP. Moreover,

(4) If Any,...,Ap,, and Ay, satisfy &py,..., Py, and
d,, respectively,
Ap|Th Sy

is a rule instance that erases to R?, and A, < AN
then A, < Agﬁiax for 1 < <k.




The Result of Phase 11

In Phase II, given a context AP satisfying ®o0t, the
algorithm will produce a context AM®* for each node

n.
By induction on distance from the root, using (3):
(5) There is a write-proof that extends P9 with (AMax),

Moreover, using (2), and then induction on distance
from the root, using (4):

(6) If there is a write-proof that extends P9 with
(Ap), and Aot < ANZX then A, < AN for each
node n.



The Finale

In Phase II, while generating the AN, the algorithm
can check whether, at all passive nodes, the side con-
ditions of the rules

AT+ E Exp where Yo e FV(E). Avself >0

A|T + P Assert where Yv e FV(P). Avself >0

where Yv € FV(P). A vself >0

AT = P Valid and P is a valid assertion.

are satisfied. If and only if these conditions are satis-
fied, the write-proof that extends PO with (AMaX) will
be a proof.

Moreover, suppose there is some proof that extends
PO with (Ay) and that Aot < AT Then by (6),
Ap < AV for all nodes n. It follows that, since the
side conditions at passive n are met by Ay, they will
be met by AN, so that the write-proof that extends
PO with AMa will also be a proof.

It follows that either the algorithm will find a proof
that extends P9 with AM2% at the root, or there is no
proof that extends PO with any Aot < AM2X



The Finale (continued)

It follows that either the algorithm will find a proof
that extends PO with AM2X at the root, or there is no
proof that extends PO with any Ayoot < AM3X,

Specified Root Context: If AT is the specified
root context, then either the algorithm will find a
proof that extends P9 with AMNZX at the root, or,
since AMax < AMax there is no proof that extends PO

with ARY at the root.

Arbitrary Root Context: Here A} is the most
permissive context satisfying ®..0t. Either the algo-
rithm will find a proof that extends PO, or there is no
proof that extends PO with any Aot that satisfies
Poot. But by (2), there is no proof that extends P
with any Acot that does not satisfies ®yoot.



T he Passive Rules

AT F E Exp where Vv € FV(FE). A vself >0

A|T P Assert where Yv e FV(P). Avself >0

A|T F P Valid where Yv € FV(P). A v self > 0,

where FV(X) denotes the set of free variables of X.

P is the empty function.

Since there are no premisses, there are no A;"‘ax to be
computed. But the side conditions must be checked
to determine if a write-proof is a proof.



The Rule for (Assignable) Variables

A|YT Fov Var,

where

Av'o =0 when v #v
Avo = if o = self then 1 else O.

dom ® = {v} b v = {self}.

Since there are no premisses, there are no Ag‘“ax to be
computed. Moreover, it is clear that A™M@* will meet
the side condition since A™M#* will satisfy &.



Sequential Composition (Many rules are similar.)

AT HEA{PYC{Q} Ao|THA{Q} C'{R}
A|T F{P}C;C' {R},

where

A1 = Ao = A.

dom® =dom P Uudom Po.

When v € dom &:

(vedomd) = o0€ Do)
o€ Do iff A
(v edomds = 0 € Drv),

or equivalently

(vedomdi Ao ¢ dqv)
o¢ b iff V
(vedomds Ao ¢ Do),

ATaX — Agax — Amax



Conditionals

A1|T - B Assert
DS T HE{PAB}YC{Q} As3TH{PA-B}C {Q}

A|T F {P} if B then C else C' {Q},

where

Aq

= Ao = A3 = A.

dom® = dom Pd; Udom b, U dom Ps.

When v € dom &:

o€ v iff «

max __
A7 =

([ (vedomdq = 0 dqyv)
N\

(vedomds = 0 € Dyv)
N\

| (vedom Pz = 0€ d3v).

Agax — Agax — Amax.

Note that ®4 will be the empty function.



Parallel Composition (Frame is similar)

AT HL{P}C{Q} AT H{P}C'{Q}
AT E{P = P} C||C"{Q * Q},

where
Avo= Ajvo= Asvo when o # self (A)
Avself = Aqvself + Asvself < 1.
dom® =dom Py udom P,
When v e dom &:
([ (vedom®dy = 0e dqyv)
N\
o€ v iff { (vedomdy, = 0e Prv)
N\
\ (v e dom P Ndom P, = o #= self),
or equivalently,
[ (vedom®di Ao ¢ Dyv)
V
o¢g v iff { (vedomds Ao ¢ Pov) (B)
V
\ (v e dom dq Ndom P, A o = self).




Parallel Composition (continued)

Arlnaxv o)
A?axv 0)

ANy o0
ANKLERY TG

Arlnaxvself = AM*yself
AT vself = 0

Arlnaxvself =0
AT vself = AM™yself

AT vself = T ATy self
AN vself = 1 AM™yself

AT v self = T ANy self
AN pself = S ANy self

\

J

;

when o # self

when

when

when

when

{

{
{

vedomdq A
v ¢ dom P,

v¢&domdy A
v e dom P,

(<)

vedomdi A
v e dom P,

v¢&domdg A
v ¢ dom ds



Parallel Composition — Proof of (1)

(1) If A4 satisfies ®1, A, satisfies 5, and (A) and
(B), then A satisfies &.

Proof Suppose, for i € {1,2}, A, satisfies &, so
that

Yv € dom CDZ'. zoéOwners Ai’UO =1
Vv edomd,,oe Owners. o ¢ d;v implies A;vo = 0.

Now suppose v €e dom®P = dom Py udomPb,. If v €
dom &4, then by (A):

>_0cOowners D v 0o = (ZOEOWHGI’S Ajvo) + Apvself
= 1+ Asvself.

But > scowners DA vo < 1, so

ZOEOWHGI’SAUO — 1 and AQUSGIf — O.

Similarly, if v e dom &5, then

ZOEOWHQI’S A’UO — 1 and Al ’USGlf — O.



Suppose v € domd and o ¢ ®v. Then, by (B),
there are three possibilities, each of which implies
Avo=0:
e vedom®Py and o ¢ dq1,v, so that A{yvo =0 and
Ao>vself = 0.
e vedom®P, and o & o, v, so that Arvo =0 and
Aqvself = 0.
e v € domdq, v € dom P, and o = self, so that
Asvself =0, Ajvself =0, and o = self.
Thus we have
Vvedom®. > cowners Dvo =1
Vv e domP,o0 € Owners. o ¢ v implies A;vo =0,

so that A satisfies &.



Parallel Composition — Proof of (3)

(3) If A™M® satisfies &, then AT? and AT, as de-
fined by (C), satisfy ®¢1 and ¥, respectively, and

AMyo = AT vo = AF*vo when o # self
AN yself = AT vself + AR vself < 1.

Proof It is easily seen that (C) satisfies (D).

(D)

To show that Vv € dom®y. > scowners- D] vo, as-
sume v e dom®;. From (D) we have

> ocowners AT vo = (O ocowners AT v 0) — AT self.

When v ¢ dom @5, (C) gives AT vself = 0 directly.
When v € dom @5, (B) gives self ¢ ® v and since A™MaX
is assumed to satisfy &, AM*yself = 0, so that the
penultimate case of (C) gives AT vself = 0. Thus,
in either case,

max — max —
ZoEOwners Al VO — ZoEOwners A vo=1.



To show that

Vv e dom 1,0 € Owners. o ¢ ®1 v implies AT vo =0,

assume v € dom d1, o € Owners and o ¢ ®1v. Then
(B) gives o ¢ ® v, and the the assumption that AMaX
satisfies ® gives AM™*Xpo = 0. Finally, (D) gives
AT vo = 0.

Thus AT satisfies ;. The argument for A5 sat-
isfies 5 is symmetric.



Parallel Composition — Proof of (4)

If A1, Ao, and A satisfy &1, $o, and P respectively,
(A) holds, and A <A™, then A; < AT* and Ao <
AR,

Proof Assume the hypotheses of the lemma, and
Ajvo > 0. To show AT vo > 0, we first note that
(A) gives Ajvo < Awvo, which, with A < A™ gives

A1vo>0=Avo>0= A" vo> 0.
So we need to show A vo > 0= AT%vo > 0.

e When o # self, (D) gives AT vo= AM™vo.

e When o = self, (A) gives Ajwvself < Awself.
When v ¢ dom 4 and v € dom &5, since A, sat-
isfies 5, (A) gives

(ZOEOwners Ao v 0) + Aqv self
1 + Aqvself.

so that > cowners D vo < 1 gives Aqjvself = 0,
which contradicts Ajvo > 0.

ZoEOwners Avo

Otherwise, (C) gives
AT yself > 0= AT vself > 0.

The argument for A, < AR is symmetric.



Resource Declaration

AT FRAssert AT, mmRF{P}C{Q} (R precise)
AT F{Px* R} resource r in C {Q * R},
where

Avo = Asvo when o ¢ {self,r}
Avself = Asvself + Arvr <1
Aqvo = 0 when o # self
Aqvself = Aswvr.

dom d = dom Po.

When v € dom &:

o€ Pviff o€ Prv when o ¢ {self, r}
ré¢ v
self € v iff self € PrvVre dyw.



Resource Declaration (continued)

AN vo = A" vo when o ¢ {self,r}

AP vself = L A" yself |
AR yr = L AM™yself

when v ¢ dom &,

7

(v e dom D5 A
> when self ¢ v A
/ | 7 ¢ Pov

\ (v e dom D5 A
> when < self € 50 A
J \’r§é¢2v

\ (v e dom ds A
> when < self ¢ dov A

AT vself = 0
AT vr =0

7\

Ag”axvself = AM*yself
ASvr =0

AT vself = 0
Ag‘axfur = AM*yself

/ | 7€ P
)
AN yself = %Amaxvself v € dom ®3 A
AMAX ) — & AMAX ) golf when < self € Prv A
2 2 r E CDQ )

\

AT"vo=0 when o # self
AT vself = AT vr



Critical Regions

A1|T,r: RF P Assert As|T,r: RE Q Assert
A3|T - B Assert Ay T H{(P*xR)NB} C{Q=x*R}

A|T,r: R+ {P} with » when B do C {Q},
where

A =Ar=A A3z = Ay,

Agvo = Avo when o ¢ {self, r}
Agvself = Avself + Avr <1
Agvr = 0.

dom d = dom Py.

When v € dom &;

o€ b iff o € Pgv when o ¢ {self,r}
self € ® v iff self € Py v
r € O iff self € Oy 0.

ATax — Agax — Amax Agax — ATaX,

AZ’ax VO
ATaX v self
AQfaX VT

A" yo when o ¢ {self, r}
AM*yself + ANy p
0.



Variable Declaration

A1|T + P Assert AT+ Q Assert
A3|T|—EEXP A4|T|—{P}C{Q}
A|T F{P}localv:=FEin C {Q},

where
A1 = A= A3 = A,

Asv'o = Av o when v £ v
Agvo = if o = self then 1 else O.

If v e dom®d, and self ¢ P, v then there is no write-
proof extending PO. Otherwise,

dom® = (dom Py) — {v}
When v/ € dom &:

b v = dy0’ when v € dom b.

max __ max __ max __ max
AT = A7 = A3 = A7,
ATy o = Ay o when v # v

if o = self then 1 else 0.

ATaX VO



