
Automatic Computation of Static
Variable Permissions

John C. Reynolds

Carnegie Mellon University

MFPS, May 28, 2011

Research partially supported by National Science Foundation Grant

CCF-0916808

Introduction

We will describe a procedure for inferring permissions

for the proof system described by Uday S. Reddy

in “Syntactic Control of Interference for Concurrent

Separation Logic” (presented earlier at this confer-

ence).

Given a purported proof in Reddy’s formalism in which

the variable permissions have been erased, our goal is

to determine if there is an assignment of permissions

that will give a valid proof.

Contexts

Reddy uses contexts such as

Σ︷ ︸︸ ︷
xpx

, ypy
, zpz

|
Γ︷ ︸︸ ︷

r1(x
p1x

, yp1y
):R1, r2(x

p2x
, zp2z

):R2 ` · · ·

(We assume that the contexts are in normal form.)

We introduce the set

Owners = Resources ∪ {self},

and treat Σ as a list associated with self . We also

break out the resource invariants as a separate part

of the context:

self(xpx
, ypy

, zpz
), r1(x

p1x
, yp1y

), r2(x
p2x

, zp2z
) |

Υ︷ ︸︸ ︷
r1:R1, r2:R2 ` · · ·

Then we transpose the (Owner, Variable)-matrix to

bring the variables to the outside:

∆︷ ︸︸ ︷
x(selfpx

, r
p1x

1 , r
p2x

2), y(selfpy
, r

p1y

1), z(selfpz
, r

p2z

2) |
Υ︷ ︸︸ ︷

r1:R1, r2:R2 ` · · ·

Contexts (continued)

We limit our development to fractional permissions,

which are real numbers in the set

Perms = { p | 0 < p ≤ 1 }.

However, rather than regarding a context ∆ as a

partial function into permissions, we will extend it to

a total function by filling in the missing permissions

with the nonpermission 0. Thus a permission context

is a function

∆: Vars → Owners → Perms ∪ {0},

such that ∑
o∈Owners ∆ v o ≤ 1.

We assume that Vars and Owners are finite sets.

Judgements

The judgements used by Reddy:

Σ ` E Exp Σ ` P Assert

Σ ` x Var Σ|Γ ` {P} C {Q}.
become, with our altered view of contexts:

∆|Υ ` E Exp ∆|Υ ` P Assert (passive)

∆|Υ ` x Var ∆|Υ ` {P} C {Q}. (active)

To deal with the Rule of Consequence, we will also

need a passive judgement that an assertion is valid:

∆|Υ ` P Valid. (passive)

Passive judgements are those which only describe the

reading of variables, while active judgements may de-

scribe writing as well. (Our presentation is simpli-

fied by using the same form of context for all judge-

ments.)

A pre-judgement has the form

Υ ` E Exp Υ ` P Assert Υ ` P Valid (passive)

Υ ` x Var Υ ` {P} C {Q}. (active)

Rules

The rules of (our slight modification of) Reddy’s logic

are schemas of the form

P1 · · · Pk

C
,

where the premisses Pi and the conclusion C are

schematic judgements.

(An instance of) a pre-rule is obtained from (an in-

stance of) a rule by deleting the permission contexts.

Trees and Proofs

A tree consists of a finite set Nodes, a node root ∈

Nodes, and a function parents ∈ Nodes → (Nodes∗),
satisfying conditions that insure reachability from root,

and the absence of cycles and common ancestors.

A proof (pre-proof) of shape 〈Nodes, root, parents〉
is a node-indexed family 〈Jn〉 of judgements (pre-

judgements) such that, for each node n with parents

n1, . . . , nk,

Jn1 · · · Jnk

Jn

is an instance of a rule (pre-rule).

We say that a node n is passive (active) if Jn is passive

(active).

Erasure and Extension

If a pre-judgement, pre-rule instance, or pre-proof X0

is obtained from a judgement, rule instance, or proof

X by deleting all permission contexts, we say that X0

is the erasure of X, or that X erases to X0.

If a pre-proof P0 is obtained from a proof P by delet-

ing all permission contexts ∆n, we say that P extends

P0 with the node-indexed family 〈∆n〉 of contexts.

Passive Rules

Reddy’s rules with passive conclusions will be re-

placed by two premiss-free rules with side conditions:

∆|Υ ` E Exp where ∀v ∈ FV(E). ∆ v self > 0

∆|Υ ` P Assert where ∀v ∈ FV(P). ∆ v self > 0

∆|Υ ` P Valid
where ∀v ∈ FV(P). ∆ v self > 0
and P is a valid assertion.

where FV(X) denotes the set of free variables of X.

Write Proofs

A write-proof is a proof in which the side conditions

∀v ∈ FV(X). ∆ v self > 0 of the passive rules are

ignored, so that the permissions needed for variable

reading are not checked.

The Plot (Phase I)

Given a pre-proof P0, our algorithm should produce

a proof that extends P0, if such a proof exists. We

assume that the pre-proof P0 and its underlying tree

are fixed.

In its first phase, the algorithm traverses the pre-

proof from leaves to root, and computes at each node

permission restrictions that must be satisfied by any

write-proof.

Permission Restrictions

A permission restriction is a partial function

Φ: Vars ⇀ P(Owners).

If a permission restriction is attached to a node n in

a pre-proof, its domain will be the set of variables

that may be assigned by the right side of the pre-

judgement at n. (If n is passive, the domain will be

empty.)

We say that a context ∆ satisfies a permission re-

striction Φ iff

∀v ∈ domΦ.
∑

o∈Owners ∆ v o = 1

and

∀v ∈ domΦ, o ∈ Owners. o /∈ Φ v implies ∆ v o = 0.

As a consequence,

∀v ∈ domΦ.
∑

o∈Φ v ∆ v o = 1.

Note that, if there is any v ∈ domΦ such that Φ v is

empty, then no ∆ satisfies Φ.

The Permission Ordering

We impose the following preorder on permission con-

texts:

∆ ≤ ∆′ iff ∀v ∈ Vars, o ∈ Owners.

∆ v o > 0 implies ∆′ v o > 0.

When ∆ ≤ ∆′, we say that ∆′ is more permissive

than ∆.

The Plot (Phase II)

If any permission restriction computed in the first

phase is unsatisfiable, then there is no proof extend-

ing P0.

Otherwise, in its second phase, the algorithm tra-

verses the pre-proof from root to leaves, computing

contexts that extend the pre-proof to a maximally

permissive write-proof.

During the second phase, the algorithm checks the

side-conditions on the instances of passive rules. Since,

if any write-proof is a proof, the maximally permis-

sive write-proof will be a proof, this suffices to decide

whether a proof (extending P0) exists.

An Example (The Problematic Program)

[p: self : 1] `
{R1 ∗R2}
resource r1 in resource r2 in

(with r1 do ((with r2 do p := 0); [0] := 3))

‖ (with r2 do ((with r1 do p := 1); [0] := 4))

{R1 ∗R2}

Vars = {p}
Owners = {r1, r2, self}.

The Resource Invariants

R1 = if p = 0 then 0 7→ 3 else emp

R2 = if p = 0 then emp else 0 7→ 4.

Thus

R1 ∗R2

iff if p = 0 then 0 7→ 3 ∗ emp else emp ∗ 0 7→ 4

iff if p = 0 then 0 7→ 3 else 0 7→ 4

implies 0 7→ −
and

p = 0 ∧R1 iff p = 0 ∧ 0 7→ 3

p = 0 ∧R2 iff p = 0 ∧ emp

p 6= 0 ∧R1 iff p 6= 0 ∧ emp

p 6= 0 ∧R2 iff p 6= 0 ∧ 0 7→ 4.

Using the Rule for (Assignable) Variables

p: [self : 1] ` p Var Φ = [p: {self}]

Using the Rule for Assignment

∆ ` p Var Φ1 = [p: {self}]

∆ ` 0 Exp Φ2 = []

∆ ` 0 7→ − ∧ p = 0 Assert Φ3 = []

∆ ` {0 7→ − ∧ 0 = 0}
p := 0
{0 7→ − ∧ p = 0}

Φ = [p: {self}]

Using the Rule of Consequence

∆ ` R1 ∗ R2 ⇒ 0 7→ − ∧ 0 = 0 Valid Φ1 = []

∆ ` {0 7→ − ∧ 0 = 0}
p := 0
{0 7→ − ∧ p = 0}

Φ2 = [p: {self}]

∆ ` 0 7→ − ∧ p = 0 ⇒
R2 ∗ (0 7→ − ∧ p = 0) Valid

Φ3 = []

∆ ` {R1 ∗ R2}
p := 0
{R2 ∗ (0 7→ − ∧ p = 0)}

Φ = [p: {self}]

An (Unconditional) Critical Region

∆|r2:R2 ` R1 Assert Φ1 = []

∆|r2:R2 ` 0 7→ − ∧ p = 0 Assert Φ2 = []

∆′ ` {R1 ∗ R2}
p := 0
{R2 ∗ (0 7→ − ∧ p = 0)}

Φ3 = [p: {self}]

∆|r2:R2 ` {R1}
with r2 do p := 0
{0 7→ − ∧ p = 0}

Φ = [p: {r2, self}]

where

∆′ p o = ∆ p o when o /∈ {r2, self}
∆′ p self = ∆ p self + ∆ p r2 ≤ 1

∆′ p r2 = 0.

From Φ3, we have ∆′ p o = if o = self then 1 else 0,

so that

∆ p o = if o = self then π1 else if o = r2 then π2 else 0,

where π1 + π2 = 1. Thus Φ = [p: {r2, self}].

Mutation

∆|r2:R2 ` 0 Exp Φ1 = []

∆|r2:R2 ` 3 Exp Φ2 = []

∆|r2:R2 ` {0 7→ − ∧ p = 0}
[0] := 3
{0 7→ 3 ∧ p = 0}

Φ = []

Sequential Composition

∆|r2:R2 ` {R1}
with r2 do p := 0
{0 7→ − ∧ p = 0}

Φ1 = [p: {r2, self}]

∆|r2:R2 ` {0 7→ − ∧ p = 0}
[0] := 3
{0 7→ 3 ∧ p = 0}

Φ2 = []

∆|r2:R2 ` {R1}
with r2 do p := 0 ;
[0] := 3
{0 7→ 3 ∧ p = 0}

Φ = [p: {r2, self}]

Consequence

∆|r2:R2 ` {R1}
with r2 do p := 0 ;
[0] := 3
{0 7→ 3 ∧ p = 0}

Φ1 = [p: {r2, self}]

∆|r2:R2 ` 0 7→ 3 ∧ p = 0 ⇒ R1 Valid Φ2 = []

∆|r2:R2 ` {R1}
with r2 do p := 0 ;
[0] := 3
{R1}

Φ = [p: {r2, self}]

Another Critical Region

∆|r1:R1, r2:R2 ` emp Assert Φ1 = []

∆|r1:R1, r2:R2 ` emp Assert Φ2 = []

∆′|r2:R2 ` {R1}
with r2 do p := 0 ;
[0] := 3
{R1}

Φ3 = [p: {r2, self}]

∆|r1:R1, r2:R2 ` {emp}
with r1 do (

with r2 do p := 0 ;
[0] := 3)

{emp}

Φ =
[p: {r1, r2, self}]

where

∆′ p o = ∆ p o when o /∈ {r1, self}
∆′ p self = ∆ p self + ∆ p r1 ≤ 1

∆′ p r1 = 0.

From ∆′ p r1 = 0, we obtain Φ3 = [p: {r2, self}].

Similarly

∆|r1:R1, r2:R2 ` {emp}
with r2 do (

with r1 do p := 1 ;
[0] := 4)

{emp}

Φ =
[p: {r1, r2, self}]

Parallel Composition

∆1|r1:R1, r2:R2 ` {emp} Φ1 = [p: {r1, r2, self}]
with r1 do (with r2 do p := 0 ; [0] := 3)
{emp}

∆2|r1:R1, r2:R2 ` {emp} Φ2 = [p: {r1, r2, self}]
with r2 do (with r1 do p := 1 ; [0] := 4)
{emp}

∆|r1:R1, r2:R2 ` {emp ∗ emp} Φ = [p: {r1, r2}]
with r1 do (with r2 do p := 0 ; [0] := 3)

‖
with r2 do (with r1 do p := 1 ; [0] := 4)
{emp ∗ emp}

where

∆1 p = [r1:π1, r2:π2, self :πs]

∆2 p = [r1:π1, r2:π2, self :π′s]
∆ p = [r1:π1, r2:π2, self :πs + π′s],

so that

π1 + π2 + πs = 1

π1 + π2 + π′s = 1

π1 + π2 + πs + π′s ≤ 1,

which implies that πs = π′s = πs + π′s = 0. Thus

Φ = [p: {r1, r2}].

Resource Declaration

∆1|r1:R1 ` R2 Assert Φ1 = []

∆2|r1:R1, r2:R2 ` {emp ∗ emp} Φ2 = [p: {r1, r2}]
with r1 do (with r2 do p := 0 ; [0] := 3)

‖
with r2 do (with r1 do p := 1 ; [0] := 4)
{emp ∗ emp}

∆|r1:R1 ` {emp ∗ emp ∗ R2} Φ = [p: {r1, self}]
resource r2 in

with r1 do (with r2 do p := 0 ; [0] := 3)
‖

with r2 do (with r1 do p := 1 ; [0] := 4)
{emp ∗ emp ∗ R2}

where

∆2 p = [r1:π1, r2:π2, self :πs]

∆1 p = [self :π2]

∆ p = [r1:π1, r2: 0, self :πs + π2].

Thus Φ = [p: {r1, self}].

Another Resource Declaration

∆1 ` R1 Assert Φ1 = []

∆2|r1:R1 ` {emp ∗ emp ∗ R2} Φ2 = [p: {r1, self}]
resource r2 in

with r1 do (with r2 do p := 0 ; [0] := 3)
‖

with r2 do (with r1 do p := 1 ; [0] := 4)
{emp ∗ emp ∗ R2}

∆ ` {emp ∗ emp ∗ R1 ∗ R2} Φ = [p: {self}]
resource r1 in resource r2 in

with r1 do (with r2 do p := 0 ; [0] := 3)
‖

with r2 do (with r1 do p := 1 ; [0] := 4)
{emp ∗ emp ∗ R1 ∗ R2}

where

∆2 p = [r1:π1, r2:π2, self :πs]

∆1 p = [self :π1]

∆ p = [r1: 0, r2:π2, self :πs + π1].

But by Φ2, π2 = 0. Thus Φ = [p: {self}].

At the Root

We take ∆max
root to be the maximally permissive con-

text that satisfies Φroot = [p: {self}]:

∆max
root p = [self : 1].

Then we go backwards through our proof.

Passive judgement whose side conditions hold (either

because ∆max p self > 0 or because p is not a free

variable) are marked with an asterisk.

Another Resource Declaration

∗∆1 ` R1 Assert Φ1 = []

∆2|r1:R1 ` {emp ∗ emp ∗ R2} Φ2 = [p: {r1, self}]
resource r2 in

with r1 do (with r2 do p := 0 ; [0] := 3)
‖

with r2 do (with r1 do p := 1 ; [0] := 4)
{emp ∗ emp ∗ R2}

∆ ` {emp ∗ emp ∗ R1 ∗ R2} Φ = [p: {self}]
resource r1 in resource r2 in

with r1 do (with r2 do p := 0 ; [0] := 3)
‖

with r2 do (with r1 do p := 1 ; [0] := 4)
{emp ∗ emp ∗ R1 ∗ R2}

where

∆2 p = [r1:π1, r2:π2, self :πs]

∆1 p = [self :π1]

∆ p = [r1: 0, r2:π2, self :πs + π1].

From ∆max p = [self : 1], we get π2 = 0 and πs+π1 =

1. Choosing πs = π1 = 1
2, we have

∆max
1 p = [self : 1

2] ∆max
2 p = [r1:

1
2, self : 1

2]

Resource Declaration

∗∆1|r1:R1 ` R2 Assert Φ1 = []

∆2|r1:R1, r2:R2 ` {emp ∗ emp} Φ2 = [p: {r1, r2}]
with r1 do (with r2 do p := 0 ; [0] := 3)

‖
with r2 do (with r1 do p := 1 ; [0] := 4)
{emp ∗ emp}

∆|r1:R1 ` {emp ∗ emp ∗ R2} Φ = [p: {r1, self}]
resource r2 in

with r1 do (with r2 do p := 0 ; [0] := 3)
‖

with r2 do (with r1 do p := 1 ; [0] := 4)
{emp ∗ emp ∗ R2}

where

∆2 p = [r1:π1, r2:π2, self :πs]

∆1 p = [self :π2]

∆ p = [r1:π1, r2: 0, self :πs + π2].

From ∆max p = [r1:
1
2, self : 1

2], we get π1 = 1
2 and πs +

π2 = 1
2. But Φ2 p forces πs = 0, so that π2 = 1

2 and

∆max
1 p = [self : 1

2] ∆max
2 p = [r1:

1
2, r2:

1
2].

Parallel Composition

∆1|r1:R1, r2:R2 ` {emp} Φ1 = [p: {r1, r2, self}]
with r1 do (with r2 do p := 0 ; [0] := 3)
{emp}

∆2|r1:R1, r2:R2 ` {emp} Φ2 = [p: {r1, r2, self}]
with r2 do (with r1 do p := 1 ; [0] := 4)
{emp}

∆|r1:R1, r2:R2 ` {emp ∗ emp} Φ = [p: {r1, r2}]
with r1 do (with r2 do p := 0 ; [0] := 3)

‖
with r2 do (with r1 do p := 1 ; [0] := 4)
{emp ∗ emp}

where

∆1 p = [r1:π1, r2:π2, self :πs]

∆2 p = [r1:π1, r2:π2, self :π′s]
∆ p = [r1:π1, r2:π2, self :πs + π′s].

From ∆max p = [r1:
1
2, r2:

1
2], we find that πs = 0 and

π′s = 0, and

∆max
1 p = ∆max

2 p = ∆max p.

Another Critical Region

∗∆|r1:R1, r2:R2 ` emp Assert Φ1 = []

∗∆|r1:R1, r2:R2 ` emp Assert Φ2 = []

∆′|r2:R2 ` {R1}
with r2 do p := 0 ;
[0] := 3
{R1}

Φ3 = [p: {r2, self}]

∆|r1:R1, r2:R2 ` {emp}
with r1 do (

with r2 do p := 0 ;
[0] := 3)

{emp}

Φ =
[p: {r1, r2, self}]

where

∆′ p o = ∆ p o when o /∈ {r1, self}
∆′ p self = ∆ p self + ∆ p r1 ≤ 1

∆′ p r1 = 0.

From ∆max p = [r1:
1
2, r2:

1
2] we get

∆max′ p = [r2:
1
2, self : 1

2].

Consequence

∆|r2:R2 ` {R1}
with r2 do p := 0 ;
[0] := 3
{0 7→ 3 ∧ p = 0}

Φ1 = [p: {r2, self}]

∗∆|r2:R2 ` 0 7→ 3 ∧ p = 0 ⇒ R1 Valid Φ2 = []

∆|r2:R2 ` {R1}
with r2 do p := 0 ;
[0] := 3
{R1}

Φ = [p: {r2, self}]

Obviously, ∆max is preserved.

Mutation

∗∆|r2:R2 ` 0 Exp Φ1 = []

∗∆|r2:R2 ` 3 Exp Φ2 = []

∆|r2:R2 ` {0 7→ − ∧ p = 0}
[0] := 3
{0 7→ 3 ∧ p = 0}

Φ = []

Obviously, ∆max is preserved.

Sequential Composition

∆|r2:R2 ` {R1}
with r2 do p := 0
{0 7→ − ∧ p = 0}

Φ1 = [p: {r2, self}]

∗∆|r2:R2 ` {0 7→ − ∧ p = 0}
[0] := 3
{0 7→ 3 ∧ p = 0}

Φ2 = []

∆|r2:R2 ` {R1}
with r2 do p := 0 ;
[0] := 3
{0 7→ 3 ∧ p = 0}

Φ = [p: {r2, self}]

Obviously, ∆max is preserved.

An (Unconditional) Critical Region

∗∆|r2:R2 ` R1 Assert Φ1 = []

∗∆|r2:R2 ` 0 7→ − ∧ p = 0 Assert Φ2 = []

∆′ ` {R1 ∗ R2}
p := 0
{R2 ∗ (0 7→ − ∧ p = 0)}

Φ3 = [p: {self}]

∆|r2:R2 ` {R1}
with r2 do p := 0
{0 7→ − ∧ p = 0}

Φ = [p: {r2, self}]

where

∆′ p o = ∆ p o when o /∈ {r2, self}
∆′ p self = ∆ p self + ∆ p r2 ≤ 1

∆′ p r2 = 0.

From ∆max p = [r2:
1
2, self : 1

2], we get

∆max′ p = [self : 1].

Using the Rule of Consequence

∗∆ ` R1 ∗ R2 ⇒ 0 7→ − ∧ 0 = 0 Valid Φ1 = []

∆ ` {0 7→ − ∧ 0 = 0}
p := 0
{0 7→ − ∧ p = 0}

Φ2 = [p: {self}]

∗∆ ` 0 7→ − ∧ p = 0 ⇒
R2 ∗ (0 7→ − ∧ p = 0) Valid

Φ3 = []

∆ ` {R1 ∗ R2}
p := 0
{R2 ∗ (0 7→ − ∧ p = 0)}

Φ = [p: {self}]

Obviously, ∆max is preserved.

Using the Rule for (Assignable) Variables

p: [self : 1] ` p Var Φ = [p: {self}]

which is satisfied by ∆max p = [self : 1].

Using the Rule for Assignment

∆ ` p Var Φ1 = [p: {self}]

∗∆ ` 0 Exp Φ2 = []

∗∆ ` 0 7→ − ∧ p = 0 Assert Φ3 = []

∆ ` {0 7→ − ∧ 0 = 0}
p := 0
{0 7→ − ∧ p = 0}

Φ = [p: {self}]

Obviously, ∆max is preserved.

At each Node during Phase I

Consider a node n in P0 whose parents are n1, . . . , nk.

The judgements at these nodes will form an instance

of a pre-rule:

R0:
Υn1 ` Sn1 · · · Υnk ` Snk

Υn ` Sn.

During Phase I, the algorithm will accept permission

restrictions Φn1, . . . ,Φnk and will produce a permis-

sion restriction Φn such that

(1) If

∆n1|Υn1 ` Sn1 · · · ∆nk|Υnk ` Snk

∆n|Υn ` Sn.

is a rule instance that erases to R0, and if ∆ni satisfies

Φni for 1 ≤ i ≤ k, then ∆n will satisfy Φn.

The Result of Phase I

In Phase I, the algorithm will produce a permission

restriction Φn for each node n in P0.

By structural induction on P0, using (1):

(2) If Pw is a write-proof that extends P0 with con-

texts 〈∆n〉, then each ∆n satisfies Φn.

At the Root

In Phase II, the algorithm will search for a proof

whose root judgement contains the context ∆max
root,

which must satisfy Φroot. There are two cases:

Specified Root Context: We take ∆max
root to be the

specified root context, providing it satisfies Φroot.

Otherwise, by (2), there is no write-proof (and there-

fore no proof) that extends P0 and has the specified

root context.

Arbitrary Root Context: If, for every v in domΦroot,

Φroot v is nonempty, then we take ∆max
root to be

∆max
root v o =


if v ∈ domΦroot then

if o ∈ Φroot v then 1/#Φroot v else 0

else 1/(#Owners + 1)

(where #S is the size of S), which is (one of) the

most permissive contexts satisfying Φroot.

On the other hand, if there is some variable v such

that Φroot v is empty, then there is no root context

satsifying Φroot, and by (2), no proof extends P0.

At each Node during Phase II

During Phase II, the algorithm will accept a con-

text ∆max
n that satisfies Φn and will produce contexts

∆max
n1

, . . . ,∆max
nk

such that

(3) Each ∆max
ni

satisfies Φni and

∆max
n1

|Υn1 ` Sn1 · · · ∆max
nk

|Υnk ` Snk

∆max
n |Υn ` Sn.

is a rule instance that erases to R0. Moreover,

(4) If ∆n1, . . . ,∆nk, and ∆n satisfy Φn1, . . . ,Φnk, and

Φn respectively,

∆n1|Υn1 ` Sn1 · · · ∆nk|Υnk ` Snk

∆n|Υn ` Sn

is a rule instance that erases to R0, and ∆n ≤ ∆max
n ,

then ∆ni ≤ ∆max
ni

for 1 ≤ i ≤ k.

The Result of Phase II

In Phase II, given a context ∆max
root satisfying Φroot, the

algorithm will produce a context ∆max
n for each node

n.

By induction on distance from the root, using (3):

(5) There is a write-proof that extends P0 with 〈∆max
n 〉.

Moreover, using (2), and then induction on distance

from the root, using (4):

(6) If there is a write-proof that extends P0 with

〈∆n〉, and ∆root ≤ ∆max
root, then ∆n ≤ ∆max

n for each

node n.

The Finale

In Phase II, while generating the ∆max
n , the algorithm

can check whether, at all passive nodes, the side con-

ditions of the rules

∆|Υ ` E Exp where ∀v ∈ FV(E). ∆ v self > 0

∆|Υ ` P Assert where ∀v ∈ FV(P). ∆ v self > 0

∆|Υ ` P Valid
where ∀v ∈ FV(P). ∆ v self > 0
and P is a valid assertion.

are satisfied. If and only if these conditions are satis-

fied, the write-proof that extends P0 with 〈∆max
n 〉 will

be a proof.

Moreover, suppose there is some proof that extends

P0 with 〈∆n〉 and that ∆root ≤ ∆max
root. Then by (6),

∆n ≤ ∆max
n for all nodes n. It follows that, since the

side conditions at passive n are met by ∆n, they will

be met by ∆max
n , so that the write-proof that extends

P0 with ∆max
n will also be a proof.

It follows that either the algorithm will find a proof

that extends P0 with ∆max
root at the root, or there is no

proof that extends P0 with any ∆root ≤ ∆max
root.

The Finale (continued)

It follows that either the algorithm will find a proof

that extends P0 with ∆max
root at the root, or there is no

proof that extends P0 with any ∆root ≤ ∆max
root.

Specified Root Context: If ∆max
root is the specified

root context, then either the algorithm will find a

proof that extends P0 with ∆max
root at the root, or,

since ∆max
root ≤ ∆max

root, there is no proof that extends P0

with ∆max
root at the root.

Arbitrary Root Context: Here ∆max
root is the most

permissive context satisfying Φroot. Either the algo-

rithm will find a proof that extends P0, or there is no

proof that extends P0 with any ∆root that satisfies

Φroot. But by (2), there is no proof that extends P0

with any ∆root that does not satisfies Φroot.

The Passive Rules

∆|Υ ` E Exp where ∀v ∈ FV(E). ∆ v self > 0

∆|Υ ` P Assert where ∀v ∈ FV(P). ∆ v self > 0

∆|Υ ` P Valid where ∀v ∈ FV(P). ∆ v self > 0,

where FV(X) denotes the set of free variables of X.

Φ is the empty function.

Since there are no premisses, there are no ∆max
i to be

computed. But the side conditions must be checked

to determine if a write-proof is a proof.

The Rule for (Assignable) Variables

∆|Υ ` v Var ,

where

∆ v′ o = 0 when v′ 6= v

∆ v o = if o = self then 1 else 0.

domΦ = {v} Φ v = {self}.

Since there are no premisses, there are no ∆max
i to be

computed. Moreover, it is clear that ∆max will meet

the side condition since ∆max will satisfy Φ.

Sequential Composition (Many rules are similar.)

∆1|Υ ` {P} C {Q} ∆2|Υ ` {Q} C′ {R}
∆|Υ ` {P} C ; C′ {R},

where

∆1 = ∆2 = ∆.

domΦ = domΦ1 ∪ domΦ2.

When v ∈ domΦ:

o ∈ Φ v iff


(v ∈ domΦ1 ⇒ o ∈ Φ1 v)

∧
(v ∈ domΦ2 ⇒ o ∈ Φ2 v),

or equivalently

o /∈ Φ v iff


(v ∈ domΦ1 ∧ o /∈ Φ1 v)

∨
(v ∈ domΦ2 ∧ o /∈ Φ2 v).

∆max
1 = ∆max

2 = ∆max.

Conditionals

∆1|Υ ` B Assert

∆2|Υ ` {P ∧B} C {Q} ∆3|Υ ` {P ∧ ¬B} C′ {Q}
∆|Υ ` {P} if B then C else C′ {Q},

where

∆1 = ∆2 = ∆3 = ∆.

domΦ = domΦ1 ∪ domΦ2 ∪ domΦ3.

When v ∈ domΦ:

o ∈ Φ v iff



(v ∈ domΦ1 ⇒ o ∈ Φ1 v)
∧

(v ∈ domΦ2 ⇒ o ∈ Φ2 v)
∧

(v ∈ domΦ3 ⇒ o ∈ Φ3 v).

∆max
1 = ∆max

2 = ∆max
3 = ∆max.

Note that Φ1 will be the empty function.

Parallel Composition (Frame is similar)

∆1|Υ ` {P} C {Q} ∆2|Υ ` {P ′} C′ {Q′}
∆|Υ ` {P ∗ P ′} C ‖ C′ {Q ∗ Q′},

where

∆ v o = ∆1 v o = ∆2 v o when o 6= self

∆ v self = ∆1 v self + ∆2 v self ≤ 1.
(A)

domΦ = domΦ1 ∪ domΦ2.

When v ∈ domΦ:

o ∈ Φ v iff



(v ∈ domΦ1 ⇒ o ∈ Φ1 v)
∧

(v ∈ domΦ2 ⇒ o ∈ Φ2 v)
∧

(v ∈ domΦ1 ∩ domΦ2 ⇒ o 6= self),

or equivalently,

o /∈ Φ v iff



(v ∈ domΦ1 ∧ o /∈ Φ1 v)
∨

(v ∈ domΦ2 ∧ o /∈ Φ2 v) (B)
∨

(v ∈ domΦ1 ∩ domΦ2 ∧ o = self).

Parallel Composition (continued)

∆max
1 v o = ∆max v o

∆max
2 v o = ∆max v o

}
when o 6= self

∆max
1 v self = ∆max v self

∆max
2 v self = 0

}
when

{
v ∈ domΦ1 ∧
v /∈ domΦ2

∆max
1 v self = 0

∆max
2 v self = ∆max v self

}
when

{
v /∈ domΦ1 ∧
v ∈ domΦ2

∆max
1 v self = 1

2
∆max v self

∆max
2 v self = 1

2
∆max v self

}
when

{
v ∈ domΦ1 ∧
v ∈ domΦ2

∆max
1 v self = 1

2
∆max v self

∆max
2 v self = 1

2
∆max v self

}
when

{
v /∈ domΦ1 ∧
v /∈ domΦ2

(C)

Parallel Composition — Proof of (1)

(1) If ∆1 satisfies Φ1, ∆2 satisfies Φ2, and (A) and

(B), then ∆ satisfies Φ.

Proof Suppose, for i ∈ {1,2}, ∆i satisfies Φi, so

that

∀v ∈ domΦi.
∑

o∈Owners ∆i v o = 1

∀v ∈ domΦi, o ∈ Owners. o /∈ Φi v implies ∆i v o = 0.

Now suppose v ∈ domΦ = domΦ1 ∪ domΦ2. If v ∈

domΦ1, then by (A):∑
o∈Owners ∆ v o = (

∑
o∈Owners ∆1 v o) + ∆2 v self

= 1 + ∆2 v self .

But
∑

o∈Owners ∆ v o ≤ 1, so∑
o∈Owners ∆ v o = 1 and ∆2 v self = 0.

Similarly, if v ∈ domΦ2, then∑
o∈Owners ∆ v o = 1 and ∆1 v self = 0.

Suppose v ∈ domΦ and o /∈ Φ v. Then, by (B),

there are three possibilities, each of which implies

∆ v o = 0:

• v ∈ domΦ1 and o /∈ Φ1, v, so that ∆1 v o = 0 and

∆2 v self = 0.

• v ∈ domΦ2 and o /∈ Φ2, v, so that ∆2 v o = 0 and

∆1 v self = 0.

• v ∈ domΦ1, v ∈ domΦ2 and o = self , so that

∆2 v self = 0, ∆1 v self = 0, and o = self .

Thus we have

∀v ∈ domΦ.
∑

o∈Owners ∆ v o = 1

∀v ∈ domΦ, o ∈ Owners. o /∈ Φ v implies ∆i v o = 0,

so that ∆ satisfies Φ.

Parallel Composition — Proof of (3)

(3) If ∆max satisfies Φ, then ∆max
1 and ∆max

2 , as de-

fined by (C), satisfy Φ1 and Φ2 respectively, and

∆max v o = ∆max
1 v o = ∆max

2 v o when o 6= self

∆max v self = ∆max
1 v self + ∆max

2 v self ≤ 1.
(D)

Proof It is easily seen that (C) satisfies (D).

To show that ∀v ∈ domΦ1.
∑

o∈Owners . ∆max
1 v o, as-

sume v ∈ domΦ1. From (D) we have∑
o∈Owners ∆

max
1 v o = (

∑
o∈Owners ∆

max v o)−∆max
2 v self .

When v /∈ domΦ2, (C) gives ∆max
2 v self = 0 directly.

When v ∈ domΦ2, (B) gives self /∈ Φ v and since ∆max

is assumed to satisfy Φ, ∆max v self = 0, so that the

penultimate case of (C) gives ∆max
2 v self = 0. Thus,

in either case,∑
o∈Owners ∆

max
1 v o =

∑
o∈Owners ∆

max v o = 1.

To show that

∀v ∈ domΦ1, o ∈ Owners. o /∈ Φ1 v implies ∆max
1 v o = 0,

assume v ∈ domΦ1, o ∈ Owners and o /∈ Φ1 v. Then

(B) gives o /∈ Φ v, and the the assumption that ∆max

satisfies Φ gives ∆max v o = 0. Finally, (D) gives

∆max
1 v o = 0.

Thus ∆max
1 satisfies Φ1. The argument for ∆max

2 sat-

isfies Φ2 is symmetric.

Parallel Composition — Proof of (4)

If ∆1, ∆2, and ∆ satisfy Φ1, Φ2, and Φ respectively,

(A) holds, and ∆ ≤ ∆max, then ∆1 ≤ ∆max
1 and ∆2 ≤

∆max
2 .

Proof Assume the hypotheses of the lemma, and

∆1 v o > 0. To show ∆max
1 v o > 0, we first note that

(A) gives ∆1 v o ≤ ∆ v o, which, with ∆ ≤ ∆max, gives

∆1 v o > 0⇒∆ v o > 0⇒∆max v o > 0.

So we need to show ∆max v o > 0⇒∆max
1 v o > 0.

• When o 6= self , (D) gives ∆max
1 v o = ∆max v o.

• When o = self , (A) gives ∆1 v self ≤ ∆ v self .

When v /∈ domΦ1 and v ∈ domΦ2, since ∆2 sat-

isfies Φ2, (A) gives∑
o∈Owners ∆ v o = (

∑
o∈Owners ∆2 v o) + ∆1 v self

= 1 + ∆1 v self .

so that
∑

o∈Owners ∆ v o ≤ 1 gives ∆1 v self = 0,

which contradicts ∆1 v o > 0.

Otherwise, (C) gives

∆max v self > 0⇒∆max
1 v self > 0.

The argument for ∆2 ≤ ∆max
2 is symmetric.

Resource Declaration

∆1|Υ ` R Assert ∆2|Υ, r:R ` {P} C {Q}
∆|Υ ` {P ∗R} resource r in C {Q ∗R},

(R precise)

where

∆ v o = ∆2 v o when o /∈ {self , r}
∆ v self = ∆2 v self + ∆2 v r ≤ 1

∆1 v o = 0 when o 6= self

∆1 v self = ∆2 v r.

domΦ = domΦ2.

When v ∈ domΦ:

o ∈ Φ v iff o ∈ Φ2 v when o /∈ {self , r}
r /∈ Φ v

self ∈ Φ v iff self ∈ Φ2 v ∨ r ∈ Φ2 v.

Resource Declaration (continued)

∆max
2 v o = ∆max v o when o /∈ {self , r}

∆max
2 v self = 1

2
∆max v self

∆max
2 v r = 1

2
∆max v self

}
when v /∈ domΦ2

∆max
2 v self = 0
∆max

2 v r = 0

}
when


v ∈ domΦ2 ∧
self /∈ Φ2 v ∧
r /∈ Φ2 v

∆max
2 v self = ∆max v self
∆max

2 v r = 0

}
when


v ∈ domΦ2 ∧
self ∈ Φ2 v ∧
r /∈ Φ2 v

∆max
2 v self = 0
∆max

2 v r = ∆max v self

}
when


v ∈ domΦ2 ∧
self /∈ Φ2 v ∧
r ∈ Φ2 v

∆max
2 v self = 1

2
∆max v self

∆max
2 v r = 1

2
∆max v self

}
when


v ∈ domΦ2 ∧
self ∈ Φ2 v ∧
r ∈ Φ2 v

∆max
1 v o = 0 when o 6= self

∆max
1 v self = ∆max

2 v r

Critical Regions

∆1|Υ, r:R ` P Assert ∆2|Υ, r:R ` Q Assert

∆3|Υ ` B Assert ∆4|Υ ` {(P ∗R) ∧B} C {Q ∗R}
∆|Υ, r:R ` {P} with r when B do C {Q},

where

∆1 = ∆2 = ∆ ∆3 = ∆4,

∆4 v o = ∆ v o when o /∈ {self , r}
∆4 v self = ∆ v self + ∆ v r ≤ 1

∆4 v r = 0.

domΦ = domΦ4.

When v ∈ domΦ:

o ∈ Φ v iff o ∈ Φ4 v when o /∈ {self , r}
self ∈ Φ v iff self ∈ Φ4 v

r ∈ Φ v iff self ∈ Φ4 v.

∆max
1 = ∆max

2 = ∆max ∆max
3 = ∆max

4 ,

∆max
4 v o = ∆max v o when o /∈ {self , r}

∆max
4 v self = ∆max v self + ∆max v r

∆max
4 v r = 0.

Variable Declaration

∆1|Υ ` P Assert ∆2|Υ ` Q Assert

∆3|Υ ` E Exp ∆4|Υ ` {P} C {Q}
∆|Υ ` {P} local v := E in C {Q},

where

∆1 = ∆2 = ∆3 = ∆,

∆4 v′ o = ∆ v′ o when v′ 6= v

∆4 v o = if o = self then 1 else 0.

If v ∈ domΦ4 and self /∈ Φ4 v then there is no write-

proof extending P0. Otherwise,

domΦ = (domΦ4)− {v}

When v′ ∈ domΦ:

Φ v′ = Φ4 v′ when v′ ∈ domΦ.

∆max
1 = ∆max

2 = ∆max
3 = ∆max,

∆max
4 v′ o = ∆max v′ o when v′ 6= v

∆max
4 v o = if o = self then 1 else 0.

