
Grainless Semantics
without Critical Regions

John C. Reynolds

Department of Computer Science

Carnegie Mellon University

April 11, 2007 (corrected April 27, 2007)

(Work in progress, jointly with Ruy Ley-Wild)

(Research partially supported by National Science Foundation Grants CCR-
0204242 and CCF-0541021, by the Basic Research in Computer Science
Centre of the Danish National Research Foundation, and by EPSRC Visiting
Fellowships at Queen Mary, University of London, and Edinburgh University.)

The Problem

What is the meaning of

x := x× x ‖ x := x + 1?

Are the assignments atomic, so that it is either

x := x× x ; x := x + 1 or x := x + 1 ; x := x× x?

or are evaluation and store operations atomic:

(t1 := x× x ; x := t1) ‖ (t2 := x + 1 ; x := t2) ?

or is each lookup and store atomic:

(t1 := x ; t2 := x ; x := t1 × t2) ‖ (t3 := x ; x := t3 + 1)?

or is the granularity even finer:

(t1
low := xlow ; t1

up := xup ; t2
low := xlow ; t2

up := xup ;

xlow := (t1 × t2)
low ; xup := (t1 × t2)

up) ‖
(t3

low := xlow ; t3
up := xup ;

xlow := (t3 + 1)low ; xup := (t3 + 1)up) ?

An Early Answer

In the early 70’s, Hoare and Brinch-Hansen claimed

that constructions such as

x := x× x ‖ x := x + 1

should be syntactically illegal.

Instead, when the same variable appears on both sides

of ‖, the programmer should be required to indicate

the appropriate mutual exclusion explicitly by means

of critical regions.

For example,

with lock do x := x× x ‖with lock do x := x + 1

or

(with lock do t1 := x ; with lock do x := t1 × t1) ‖
(with lock do t2 := x ; with lock do x := t2 + 1).

The Harder Problem

What about lookup and store via pointers,

[x] := [x]× [x] ‖ [y] := [y] + 1,

where aliasing cannot be decided by a compiler?

Our Answer

When the addresses x and y are equal, the meaning of

the above program is simply “wrong”.

No further information makes sense at any level of

abstraction above the machine-language implementa-

tion.

Three Principles for Grainless Concurrency

• All operations except locking and unlocking have

duration, and can overlap one another during ex-

ecution.

• If two overlapping operations touch the same loca-

tion, the meaning of program execution is wrong.

• If, from a given starting state, execution of a pro-

gram can give wrong, then no other possibilities

need be considered.

Examples

y := x− x 6' y := 0

x := x + 1 ; x := x + 2 ' x := x + 3

x := x + 1 ; y := y + 2 ' y := y + 2 ; x := x + 1

[x] := [x] + 1 ; [y] := [y] + 2 ' [y] := [y] + 2 ; [x] := [x] + 1

x := 0 or y := 0 ' (x := 0 ; y := y)

or (y := 0 ; x := x)

The Programming Language

We begin with the simple imperative language:

〈exp〉 ::= 〈var〉 | 〈constant〉 | 〈exp〉+ 〈exp〉 | · · ·

〈boolexp〉 ::= 〈exp〉 = 〈exp〉 | · · · | 〈boolexp〉 ∧ 〈boolexp〉 | · · ·

〈comm〉 ::= 〈var〉 := 〈exp〉 | skip | 〈comm〉 ; 〈comm〉
| if 〈boolexp〉 then 〈comm〉 else 〈comm〉
| while 〈boolexp〉 do 〈comm〉

and add lookup and mutation operations:

〈exp〉 ::= [〈exp〉]

〈comm〉 ::= [〈exp〉] := 〈exp〉
nondeterminism:

〈comm〉 ::= 〈comm〉 or 〈comm〉

and concurrent composition:

〈comm〉 ::= 〈comm〉 ‖ 〈comm〉

What’s Missing?

• Critical Regions

• Allocation and Deallocation

• Passivity

States

Addresses ⊆ Z

Locations = 〈var〉]Addresses

States =
⋃
{ δ → Z | δ

fin
⊆ Locations }.

We write:

• σ ^ σ′ when states σ and σ′ are compatible, i.e.,

when σ ∪ σ′ is a function, or equivalently, when σ

and σ′ agree on the intersection of their domains.

• σ ⊥ σ′ when domσ and domσ′ are disjoint.

• [σ | `:n] for the state such that

dom[σ | `:n] = domσ ∪ {`}
[σ | `:n](`) = n

[σ | `:n](`′) = σ(`′) when ` 6= `′.

Semantics of Expressions

[[〈exp〉]] ∈ States → Z ∪ {wrong}
[[〈boolexp〉]] ∈ States → Bool ∪ {wrong}

[[n]]σ = n

[[v]]σ =

{
σ v when v ∈ domσ

wrong otherwise

[[e + e′]]σ =

[[e]]σ + [[e′]]σ when [[e]]σ 6= wrong

and [[e′]]σ 6= wrong

wrong otherwise

[[[e]]]σ =

σ([[e]]σ) when [[e]]σ 6= wrong

and [[e]]σ ∈ domσ

wrong otherwise

Semantics of Commands

[[〈comm〉]] ∈ States →

{S ∈ P(States ∪ {⊥}) |S 6= {} and S infinite ⇒ ⊥ ∈ S}

∪ {wrong}
where

f v f ′ iff ∀σ. f σ = f ′ σ

or (⊥ ∈ f σ and f σ − {⊥} ⊆ f ′ σ)

or (⊥ ∈ f σ and f ′ σ = wrong)

Since there is no allocation or deallocation,

[[c]]σ 6=wrong and σ′ ∈ [[c]]σ−{⊥} implies domσ′=domσ.

(The domain following → is formed from the Plotkin

powerdomain of the flat domain (States ∪ {wrong})⊥
by the unique retraction that identifies all state sets

containing wrong but no other state sets.)

[[v := e]]σ =

{[σ | v: [[e]]σ]} when [[e]]σ 6= wrong

and v ∈ domσ

wrong otherwise

[[[e] := e′]]σ =

{[σ | [[e]]σ: [[e′]]σ]} when [[e]]σ 6= wrong

and [[e′]]σ 6= wrong

and [[e]]σ ∈ domσ

wrong otherwise

[[c or c′]]σ =

[[c]]σ ∪ [[c′]]σ when [[c]]σ 6= wrong

and [[c′]]σ 6= wrong

wrong otherwise

[[c ; c′]]σ =

wrong when [[c]]σ = wrong

or ∃σ′ ∈ [[c]]σ−{⊥}. [[c′]]σ′= wrong⋃
{ if σ̂′ = ⊥ then ⊥ else [[c′]]σ̂′ | σ̂′ ∈ [[c]]σ }

otherwise

Concurrent Composition

If, for all σ0 and σ1 such that σ = σ0∪σ1 and σ0 ⊥ σ1,

either [[c0]]σ0 = wrong or [[c1]]σ1 = wrong, then:

[[c0 ‖ c1]]σ = wrong.

Otherwise:

[[c0 ‖ c1]]σ =
⊥ σ̂′0 = ⊥

or σ̂′1 = ⊥

σ̂′0 ∪ σ̂′1 otherwise

∣∣∣∣∣∣∣∣∣∣
σ = σ0 ∪ σ1 and σ0 ⊥ σ1

and [[c0]]σ0 6= wrong

and [[c1]]σ1 6= wrong

and σ̂′0 ∈ [[c0]]σ0 and σ̂′1 ∈ [[c1]]σ1

Safety Monotonicity

If σ ⊆ σ′ and [[c]]σ 6= wrong, then [[c]]σ′ 6= wrong.

Strong Frame Property

σ ⊆ σ′ and [[c]]σ 6= wrong implies

[[c]]σ′ = { if σ̂ = ⊥ then ⊥ else σ̂ ∪ (σ′ − σ) | σ̂ ∈ [[c]]σ }.

(This is stronger than O’Hearn’s frame property since

we are not considering allocation.)

Footprints

We define F(c) to be the set of footprints of c, which

are the minimal starting states for which the execution

of c does not go wrong, i.e., σf ∈ F(c) iff:

• [[c]]σf 6= wrong, and

• for all proper σ ⊂ σf , [[c]]σ = wrong.

Footprints of Expressions

F(n) = {[]}

F(v) = { [v:n] | n ∈ Z }

F(e + e′) = {σ ∪ σ′ |
σ ∈ F(e) and σ′ ∈ F(e′) and σ ^ σ′ }

F([e]) = {σ ∪ [[[e]]σ:n] |
σ ∈ F(e) and n ∈ Z and σ ^ [[[e]]σ:n] }

Footprints of Commands

F(v := e) = {σ ∪ [v:n] |
σ ∈ F(e) and n ∈ Z and σ ^ [v:n] }

F([e] := e′) = {σ ∪ σ′ ∪ [[[e]]σ:n] |
σ ∈ F(e) and σ′ ∈ F(e′) and n ∈ Z
and σ ^ σ′ and σ ∪ σ′ ^ [[[e]]σ:n] }

F(c or c′) = {σ ∪ σ′ |
σ ∈ F(c) and σ′ ∈ F(c′) and σ ^ σ′ }

F(c ‖ c′) = {σ ∪ σ′ |
σ ∈ F(c) and σ′ ∈ F(c′) and σ ⊥ σ′ }

Sequential Composition

F(c ; c′) = {σ ∪
⋃n

i=1(σ
′
i − σi) |

σ ∈ F(c) and {σ1, . . . , σn} = [[c]]σ and

∀i ∈ 1 to n. (σ′i ∈ F(c′) and σ′i ^ σi) and

∀i, j ∈ 1 to n. (σ′i − σi) ^ (σ′j − σj) }

Properties of Footprints

We write σf , σ′f for footprints of c. Then

• σf ⊆ σ implies [[c]]σ 6= wrong.

• (∀σf ∈ F(c). σf 6⊆ σ) implies [[c]]σ = wrong.

• σf ^ σ and σf 6⊆ σ implies [[c]]σ = wrong.

• σf ^ σ′f implies σf = σ′f .

• σf ⊆ σ and σ′f ⊆ σ implies σf = σ′f .

In Summary

If ∀σf ∈ F(c). σf 6⊆ σ, then

[[c]]σ = wrong.

Otherwise, there is a unique σf ∈ F(c) such that

σf ⊆ σ, and

[[c]]σ = { if σ̂ = ⊥ then ⊥ else σ̂ ∪ (σ − σf) | σ̂ ∈ [[c]]σf }.

Concurrent Composition is Determinate

Recall that, if there are any σ0 and σ1 such that σ =

σ0∪σ1, σ0 ⊥ σ1, [[c0]]σ0 6= wrong, and [[c1]]σ1 6= wrong,

then:

[[c0 ‖ c1]]σ =
⊥ σ̂′0 = ⊥

or σ̂′1 = ⊥

σ̂′0 ∪ σ̂′1 otherwise

∣∣∣∣∣∣∣∣∣∣
σ = σ0 ∪ σ1 and σ0 ⊥ σ1

and [[c0]]σ0 6= wrong

and [[c1]]σ1 6= wrong

and σ̂′0 ∈ [[c0]]σ0 and σ̂′1 ∈ [[c1]]σ1

In fact, if

σ = σ0 ∪ σ1 and σ0 ⊥ σ1

and [[c0]]σ0 6= wrong

and [[c1]]σ1 6= wrong

and

σ = σ′0 ∪ σ′1 and σ′0 ⊥ σ′1
and [[c0]]σ

′
0 6= wrong

and [[c1]]σ
′
1 6= wrong

then ⊥ σ̂′0 = ⊥ or σ̂′1 = ⊥
σ̂′0 ∪ σ̂′1 otherwise

∣∣∣∣∣ σ̂′0 ∈ [[c0]]σ0

and σ̂′1 ∈ [[c1]]σ1

 =

 ⊥ σ̂′0 = ⊥ or σ̂′1 = ⊥
σ̂′0 ∪ σ̂′1 otherwise

∣∣∣∣∣ σ̂′0 ∈ [[c0]]σ
′
0

and σ̂′1 ∈ [[c1]]σ
′
1

If [[c0]]σ0 and [[c1]]σ1 are singletons, then so is [[c0‖c1]]σ.

