Grainless Semantics without Critical Regions

John C. Reynolds

Department of Computer Science
Carnegie Mellon University
April 11, 2007 (corrected April 27, 2007)
(Work in progress, jointly with Ruy Ley-Wild)
(Research partially supported by National Science Foundation Grants CCR0204242 and CCF-0541021, by the Basic Research in Computer Science Centre of the Danish National Research Foundation, and by EPSRC Visiting Fellowships at Queen Mary, University of London, and Edinburgh University.)

The Problem

What is the meaning of

$$
x:=x \times x \| x:=x+1 ?
$$

Are the assignments atomic, so that it is either

$$
x:=x \times x ; x:=x+1 \quad \text { or } \quad x:=x+1 ; x:=x \times x ?
$$

or are evaluation and store operations atomic:

$$
\left(\mathrm{t}_{1}:=\mathrm{x} \times \mathrm{x} ; \mathrm{x}:=\mathrm{t}_{1}\right) \|\left(\mathrm{t}_{2}:=\mathrm{x}+1 ; \mathrm{x}:=\mathrm{t}_{2}\right) ?
$$

or is each lookup and store atomic:

$$
\left(\mathrm{t}_{1}:=\mathrm{x} ; \mathrm{t}_{2}:=\mathrm{x} ; \mathrm{x}:=\mathrm{t}_{1} \times \mathrm{t}_{2}\right) \|\left(\mathrm{t}_{3}:=\mathrm{x} ; \mathrm{x}:=\mathrm{t}_{3}+1\right) ?
$$

or is the granularity even finer:
$\left(\mathrm{t}_{1}^{\text {low }}:=\mathrm{x}^{\text {low }} ; \mathrm{t}_{1}^{\text {up }}:=\mathrm{x}^{\text {up }} ; \mathrm{t}_{2}^{\text {low }}:=\mathrm{x}^{\text {low }} ; \mathrm{t}_{2}^{\text {up }}:=\mathrm{x}^{\text {up }} ;\right.$ $\left.x^{\text {low }}:=\left(t_{1} \times t_{2}\right)^{\text {low }} ; x^{\text {up }}:=\left(t_{1} \times t_{2}\right)^{\text {up }}\right) \|$
$\left(\mathrm{t}_{3}{ }^{\text {low }}:=\mathrm{x}^{\text {low }} ; \mathrm{t}_{3}{ }^{\text {up }}:=\mathrm{x}^{\text {up }}\right.$;

$$
\left.x^{\text {low }}:=\left(t_{3}+1\right)^{\text {low }} ; x^{\text {up }}:=\left(t_{3}+1\right)^{\text {up }}\right) ?
$$

An Early Answer

In the early 70's, Hoare and Brinch-Hansen claimed that constructions such as

$$
x:=x \times x \| x:=x+1
$$

should be syntactically illegal.

Instead, when the same variable appears on both sides of $\|$, the programmer should be required to indicate the appropriate mutual exclusion explicitly by means of critical regions.

For example, with lock do $\mathrm{x}:=\mathrm{x} \times \mathrm{x} \|$ with lock do $\mathrm{x}:=\mathrm{x}+1$ or
(with lock do $\mathrm{t}_{1}:=\mathrm{x}$; with lock do $\mathrm{x}:=\mathrm{t}_{1} \times \mathrm{t}_{1}$) \| (with lock do $t_{2}:=x$; with lock do $x:=t_{2}+1$).

The Harder Problem

What about lookup and store via pointers,

$$
[\mathrm{x}]:=[\mathrm{x}] \times[\mathrm{x}] \|[\mathrm{y}]:=[\mathrm{y}]+1,
$$

where aliasing cannot be decided by a compiler?
Our Answer
When the addresses x and y are equal, the meaning of the above program is simply "wrong".

No further information makes sense at any level of abstraction above the machine-language implementation.

Three Principles for Grainless Concurrency

- All operations except locking and unlocking have duration, and can overlap one another during execution.
- If two overlapping operations touch the same location, the meaning of program execution is wrong.
- If, from a given starting state, execution of a program can give wrong, then no other possibilities need be considered.

Examples

$$
\begin{aligned}
& y:=x-x \nsucceq y:=0 \\
& x:=x+1 ; x:=x+2 \simeq x:=x+3 \\
& x:=x+1 ; y:=y+2 \simeq y:=y+2 ; x:=x+1 \\
& {[x]:=[x]+1 ;[y]:=[y]+2 } \simeq[y]:=[y]+2 ;[x]:=[x]+1 \\
& x:=0 \text { or } y:=0 \simeq(x:=0 ; y:=y) \\
& \quad \text { or }(y:=0 ; x:=x)
\end{aligned}
$$

The Programming Language

We begin with the simple imperative language：

$$
\langle\exp \rangle::=\langle\text { var }\rangle \mid\langle\text { constant }\rangle|\langle\exp \rangle+\langle\exp \rangle| \cdots
$$

\langle boolexp $\rangle::=\langle\exp \rangle=\langle\exp \rangle|\cdots|\langle$ boolexp $\rangle \wedge\langle$ boolexp $\rangle \mid$ ．
\langle comm $\rangle::=\langle$ var $\rangle:=\langle\exp \rangle \mid$ skip $\mid\langle c o m m\rangle ;\langle c o m m\rangle$
｜if \langle boolexp〉 then \langle comm \rangle else \langle comm \rangle
｜while 〈boolexp〉 do 〈comm〉
and add lookup and mutation operations:

$$
\begin{aligned}
\langle\exp \rangle & ::=[\langle\exp \rangle] \\
\langle\operatorname{comm}\rangle & ::=[\langle\exp \rangle]:=\langle\exp \rangle
\end{aligned}
$$

nondeterminism:
$\langle c o m m\rangle::=\langle c o m m\rangle$ or $\langle c o m m\rangle$
and concurrent composition:
\langle comm $\rangle::=\langle$ comm $\rangle \|\langle$ comm \rangle

What's Missing?

- Critical Regions
- Allocation and Deallocation
- Passivity

States

Addresses $\subseteq \mathcal{Z}$
Locations $=\langle$ var $\rangle \uplus$ Addresses
States $=\cup\{\delta \rightarrow \mathcal{Z} \mid \delta \stackrel{\text { fin }}{\subseteq}$ Locations $\}$.

We write:

- $\sigma \smile \sigma^{\prime}$ when states σ and σ^{\prime} are compatible, i.e., when $\sigma \cup \sigma^{\prime}$ is a function, or equivalently, when σ and σ^{\prime} agree on the intersection of their domains.
- $\sigma \perp \sigma^{\prime}$ when dom σ and dom σ^{\prime} are disjoint.
- $[\sigma \mid \ell: n]$ for the state such that

$$
\begin{aligned}
\operatorname{dom}[\sigma \mid \ell: n] & =\operatorname{dom} \sigma \cup\{\ell\} \\
{[\sigma \mid \ell: n](\ell) } & =n \\
{[\sigma \mid \ell: n]\left(\ell^{\prime}\right) } & =\sigma\left(\ell^{\prime}\right) \text { when } \ell \neq \ell^{\prime} .
\end{aligned}
$$

Semantics of Expressions

$$
\begin{gathered}
\llbracket\langle\mathrm{exp}\rangle \rrbracket \in \text { States } \rightarrow \mathcal{Z} \cup\{\text { wrong }\} \\
\llbracket\langle\text { boolexp }\rangle \rrbracket \in \text { States } \rightarrow \text { Bool } \cup\{\text { wrong }\} \\
\llbracket n \rrbracket \sigma=n \\
\llbracket v \rrbracket \sigma= \begin{cases}\sigma v & \text { when } v \in \operatorname{dom} \sigma \\
\text { wrong } & \text { otherwise }\end{cases}
\end{gathered}
$$

$$
\begin{aligned}
& \llbracket e+e^{\prime} \rrbracket \sigma= \begin{cases}\llbracket e \rrbracket \sigma+\llbracket e^{\prime} \rrbracket \sigma & \text { when } \llbracket e \rrbracket \sigma \neq \text { wrong } \\
\text { and } \llbracket e^{\prime} \rrbracket \sigma \neq \text { wrong }\end{cases} \\
& \llbracket[e] \rrbracket \sigma= \begin{cases}\sigma(\llbracket e \rrbracket \sigma) & \text { when } \llbracket e \rrbracket \sigma \neq \text { wrong } \\
\text { otherwise }\end{cases} \\
& \text { arong } \begin{array}{l}
\text { atherwise } \llbracket e \rrbracket \sigma \in \operatorname{dom} \sigma
\end{array}
\end{aligned}
$$

Semantics of Commands

$\llbracket\langle$ comm $\rangle \rrbracket \in$ States \rightarrow
$\{S \in \mathcal{P}$ (States $\cup\{\perp\}) \mid S \neq\{ \}$ and S infinite $\Rightarrow \perp \in S\}$
\cup \{wrong $\}$
where

$$
\begin{aligned}
f \sqsubseteq f^{\prime} \text { iff } \forall \sigma . & f \sigma=f^{\prime} \sigma \\
& \text { or }\left(\perp \in f \sigma \text { and } f \sigma-\{\perp\} \subseteq f^{\prime} \sigma\right) \\
& \text { or }\left(\perp \in f \sigma \text { and } f^{\prime} \sigma=\text { wrong }\right)
\end{aligned}
$$

Since there is no allocation or deallocation, $\llbracket c \rrbracket \sigma \neq$ wrong and $\sigma^{\prime} \in \llbracket c \rrbracket \sigma-\{\perp\}$ implies dom $\sigma^{\prime}=\operatorname{dom} \sigma$.
(The domain following \rightarrow is formed from the Plotkin powerdomain of the flat domain (States $\cup\{$ wrong $\}$) \perp by the unique retraction that identifies all state sets containing wrong but no other state sets.)

$$
\begin{aligned}
& \llbracket v:=e \rrbracket \sigma= \begin{cases}\{[\sigma \mid v: \llbracket \llbracket \rrbracket \sigma]\} & \text { when } \llbracket e \rrbracket \rrbracket \neq \text { wrong } \\
\text { arong } & \text { and } v \in \operatorname{dom} \sigma \\
\text { otherwise }\end{cases} \\
& \llbracket[e]:=e^{\prime} \rrbracket \sigma= \begin{cases}\left\{\left[\sigma \mid \llbracket e \rrbracket \sigma: \llbracket e^{\prime} \rrbracket \sigma\right]\right\} & \text { when } \llbracket e \rrbracket \sigma \neq \text { wrong } \\
& \text { and } \llbracket e^{\prime} \rrbracket \sigma \neq \text { wrong } \\
& \text { and } \llbracket e \rrbracket \sigma \in \operatorname{dom} \sigma \\
\text { wrong } & \text { otherwise }\end{cases}
\end{aligned}
$$

$$
\llbracket c \text { or } c^{\prime} \rrbracket \sigma=\left\{\begin{array}{lc}
\llbracket c \rrbracket \sigma \cup \llbracket c^{\prime} \rrbracket \sigma & \text { when } \llbracket c \rrbracket \sigma \neq \text { wrong } \\
\text { wrong } & \text { and } \llbracket c^{\prime} \rrbracket \sigma \neq \text { wrong } \\
\text { otherwise }
\end{array}\right.
$$

$$
\llbracket c ; c^{\prime} \rrbracket \sigma=\left\{\begin{array}{c}
\text { wrong } \quad \text { when } \llbracket c \rrbracket \sigma=\text { wrong } \\
\text { or } \exists \sigma^{\prime} \in \llbracket c \rrbracket \sigma-\{\perp\} \cdot \llbracket c^{\prime} \rrbracket \sigma^{\prime}=\text { wrong } \\
\cup\left\{\text { if } \hat{\sigma}^{\prime}=\perp \text { then } \perp \text { else } \llbracket c^{\prime} \rrbracket \hat{\sigma}^{\prime} \mid \hat{\sigma}^{\prime} \in \llbracket c \rrbracket \sigma\right\} \\
\text { otherwise }
\end{array}\right.
$$

Concurrent Composition

If, for all σ_{0} and σ_{1} such that $\sigma=\sigma_{0} \cup \sigma_{1}$ and $\sigma_{0} \perp \sigma_{1}$, either $\llbracket c_{0} \rrbracket \sigma_{0}=$ wrong or $\llbracket c_{1} \rrbracket \sigma_{1}=$ wrong, then:

$$
\llbracket c_{0} \| c_{1} \rrbracket \sigma=\text { wrong. }
$$

Otherwise:
$\llbracket c_{0} \| c_{1} \rrbracket \sigma=$
$\left\{\begin{array}{ll|l}\perp & \hat{\sigma}_{0}^{\prime}=\perp & \begin{array}{l}\sigma=\sigma_{0} \cup \sigma_{1} \text { and } \sigma_{0} \perp \sigma_{1} \\ \text { ord } \hat{\sigma}_{1}^{\prime}=\perp \\ \text { and } \llbracket c_{0} \rrbracket \sigma_{0} \neq \text { wrong } \\ \text { and } \llbracket c_{1} \rrbracket \sigma_{1} \neq \text { wrong }\end{array} \\ \widehat{\sigma}_{0}^{\prime} \cup \hat{\sigma}_{1}^{\prime} & \text { otherwise } & \begin{array}{l}\text { and } \widehat{\sigma}_{0}^{\prime} \in \llbracket c_{0} \rrbracket \sigma_{0} \text { and } \hat{\sigma}_{1}^{\prime} \in \llbracket c_{1} \rrbracket \sigma_{1}\end{array}\end{array}\right\}$

Safety Monotonicity

If $\sigma \subseteq \sigma^{\prime}$ and $\llbracket c \rrbracket \sigma \neq$ wrong, then $\llbracket c \rrbracket \sigma^{\prime} \neq$ wrong.

Strong Frame Property
$\sigma \subseteq \sigma^{\prime}$ and $\llbracket c \rrbracket \sigma \neq$ wrong implies

$$
\llbracket c \rrbracket \sigma^{\prime}=\left\{\text { if } \hat{\sigma}=\perp \text { then } \perp \text { else } \hat{\sigma} \cup\left(\sigma^{\prime}-\sigma\right) \mid \hat{\sigma} \in \llbracket c \rrbracket \sigma\right\} .
$$

(This is stronger than O'Hearn's frame property since we are not considering allocation.)

Footprints

We define $\mathcal{F}(c)$ to be the set of footprints of c, which are the minimal starting states for which the execution of c does not go wrong, i.e., $\sigma_{f} \in \mathcal{F}(c)$ iff:

- $\llbracket c \rrbracket \sigma_{f} \neq$ wrong, and
- for all proper $\sigma \subset \sigma_{f}, \llbracket c \rrbracket \sigma=$ wrong.

Footprints of Expressions

$$
\begin{aligned}
\mathcal{F}(n)= & \{[]\} \\
\mathcal{F}(v)= & \{[v: n] \mid n \in \mathcal{Z}\} \\
\mathcal{F}\left(e+e^{\prime}\right)= & \left\{\sigma \cup \sigma^{\prime} \mid\right. \\
& \left.\sigma \in \mathcal{F}(e) \text { and } \sigma^{\prime} \in \mathcal{F}\left(e^{\prime}\right) \text { and } \sigma \smile \sigma^{\prime}\right\} \\
\mathcal{F}([e])= & \{\sigma \cup[\llbracket e \rrbracket \sigma: n] \mid \\
& \sigma \in \mathcal{F}(e) \text { and } n \in \mathcal{Z} \text { and } \sigma \smile[\llbracket e \rrbracket \sigma: n]\}
\end{aligned}
$$

Footprints of Commands

$$
\begin{aligned}
\mathcal{F}(v:=e)= & \{\sigma \cup[v: n] \mid \\
& \sigma \in \mathcal{F}(e) \text { and } n \in \mathcal{Z} \text { and } \sigma \smile[v: n]\} \\
\mathcal{F}\left([e]:=e^{\prime}\right)= & \left\{\sigma \cup \sigma^{\prime} \cup[\llbracket e \rrbracket \sigma: n] \mid\right. \\
& \sigma \in \mathcal{F}(e) \text { and } \sigma^{\prime} \in \mathcal{F}\left(e^{\prime}\right) \text { and } n \in \mathcal{Z} \\
& \text { and } \left.\sigma \smile \sigma^{\prime} \text { and } \sigma \cup \sigma^{\prime} \smile[\llbracket e \rrbracket \sigma: n]\right\} \\
\mathcal{F}\left(c \text { or } c^{\prime}\right)= & \left\{\sigma \cup \sigma^{\prime} \mid\right. \\
\mathcal{F}\left(c \| c^{\prime}\right)= & \left\{\sigma \cup \sigma^{\prime}(c) \text { and } \sigma^{\prime} \in \mathcal{F}\left(c^{\prime}\right) \text { and } \sigma \smile \sigma^{\prime}\right\} \\
& \left.\sigma \in \mathcal{F}(c) \text { and } \sigma^{\prime} \in \mathcal{F}\left(c^{\prime}\right) \text { and } \sigma \perp \sigma^{\prime}\right\}
\end{aligned}
$$

Sequential Composition

$$
\begin{aligned}
\mathcal{F}\left(c ; c^{\prime}\right)=\{ & \sigma \cup \bigcup_{i=1}^{n}\left(\sigma_{i}^{\prime}-\sigma_{i}\right) \mid \\
& \sigma \in \mathcal{F}(c) \text { and }\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}=\llbracket c \rrbracket \sigma \text { and } \\
& \forall i \in 1 \text { to } n .\left(\sigma_{i}^{\prime} \in \mathcal{F}\left(c^{\prime}\right) \text { and } \sigma_{i}^{\prime} \smile \sigma_{i}\right) \text { and } \\
& \left.\forall i, j \in 1 \text { to } n .\left(\sigma_{i}^{\prime}-\sigma_{i}\right) \smile\left(\sigma_{j}^{\prime}-\sigma_{j}\right)\right\}
\end{aligned}
$$

Properties of Footprints

We write $\sigma_{f}, \sigma_{f}^{\prime}$ for footprints of c. Then

- $\sigma_{f} \subseteq \sigma$ implies $\llbracket c \rrbracket \sigma \neq$ wrong.
- $\left(\forall \sigma_{f} \in \mathcal{F}(c) . \sigma_{f} \nsubseteq \sigma\right)$ implies $\llbracket c \rrbracket \sigma=$ wrong.
- $\sigma_{f} \smile \sigma$ and $\sigma_{f} \nsubseteq \sigma$ implies $\llbracket c \rrbracket \sigma=$ wrong.
- $\sigma_{f} \smile \sigma_{f}^{\prime}$ implies $\sigma_{f}=\sigma_{f}^{\prime}$.
- $\sigma_{f} \subseteq \sigma$ and $\sigma_{f}^{\prime} \subseteq \sigma$ implies $\sigma_{f}=\sigma_{f}^{\prime}$.

In Summary

If $\forall \sigma_{f} \in \mathcal{F}(c) . \sigma_{f} \mathbb{Z} \sigma$, then

$$
\llbracket c \rrbracket \sigma=\text { wrong. }
$$

Otherwise, there is a unique $\sigma_{f} \in \mathcal{F}(c)$ such that $\sigma_{f} \subseteq \sigma$, and
$\llbracket c \rrbracket \sigma=\left\{\right.$ if $\widehat{\sigma}=\perp$ then \perp else $\left.\widehat{\sigma} \cup\left(\sigma-\sigma_{f}\right) \mid \hat{\sigma} \in \llbracket c \rrbracket \sigma_{f}\right\}$.

Concurrent Composition is Determinate

Recall that, if there are any σ_{0} and σ_{1} such that $\sigma=$ $\sigma_{0} \cup \sigma_{1}, \sigma_{0} \perp \sigma_{1}, \llbracket c_{0} \rrbracket \sigma_{0} \neq$ wrong, and $\llbracket c_{1} \rrbracket \sigma_{1} \neq$ wrong, then:
$\llbracket c_{0} \| c_{1} \rrbracket \sigma=$
$\left\{\begin{array}{ll|l}\perp & \widehat{\sigma}_{0}^{\prime}=\perp & \begin{array}{l}\sigma=\sigma_{0} \cup \sigma_{1} \text { and } \sigma_{0} \perp \sigma_{1} \\ \text { and } \llbracket c_{0} \rrbracket \sigma_{0} \neq \text { wrong } \\ \text { or } \hat{\sigma}_{1}^{\prime}=\perp \\ \text { and } \llbracket c_{1} \rrbracket \sigma_{1} \neq \text { wrong } \\ \text { and } \widehat{\sigma}_{0}^{\prime} \in \llbracket c_{0} \rrbracket \sigma_{0} \text { and } \hat{\sigma}_{1}^{\prime} \in \llbracket c_{1} \rrbracket \sigma_{1}\end{array}\end{array}\right\}$

In fact, if
$\sigma=\sigma_{0} \cup \sigma_{1}$ and $\sigma_{0} \perp \sigma_{1} \quad \sigma=\sigma_{0}^{\prime} \cup \sigma_{1}^{\prime}$ and $\sigma_{0}^{\prime} \perp \sigma_{1}^{\prime}$
and $\llbracket c_{0} \rrbracket \sigma_{0} \neq$ wrong and and $\llbracket c_{0} \rrbracket \sigma_{0}^{\prime} \neq$ wrong
and $\llbracket c_{1} \rrbracket \sigma_{1} \neq$ wrong
then

$$
\begin{aligned}
& \left\{\begin{array}{ll|l}
\perp & \hat{\sigma}_{0}^{\prime}=\perp \text { or } \widehat{\sigma}_{1}^{\prime}=\perp & \left.\begin{array}{c}
\hat{\sigma}_{0}^{\prime} \in \llbracket c_{0} \rrbracket \sigma_{0} \\
\text { and } \hat{\sigma}_{1}^{\prime} \in \llbracket c_{1} \rrbracket \sigma_{1}
\end{array}\right\}= \\
\hat{\sigma}_{0}^{\prime} \cup \hat{\sigma}_{1}^{\prime} & \text { otherwise }
\end{array}\right. \\
& \left\{\begin{array}{ll|l}
\perp & \widehat{\sigma}_{0}^{\prime}=\perp \text { or } \widehat{\sigma}_{1}^{\prime}=\perp & \begin{array}{l}
\widehat{\sigma}_{0}^{\prime} \in \llbracket c_{0} \rrbracket \sigma_{0}^{\prime} \\
\widehat{\sigma}_{0}^{\prime} \cup \hat{\sigma}_{1}^{\prime} \\
\text { otherwise }
\end{array} \\
\text { and } \widehat{\sigma}_{1}^{\prime} \in \llbracket c_{1} \rrbracket \sigma_{1}^{\prime}
\end{array}\right\}
\end{aligned}
$$

If $\llbracket c_{0} \rrbracket \sigma_{0}$ and $\llbracket c_{1} \rrbracket \sigma_{1}$ are singletons, then so is $\llbracket c_{0} \| c_{1} \rrbracket \sigma$.

