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Abstract 

This paper presents a method based on AdaBoost to identify the 

sex of a person from a low resolution grayscale picture of their 

face.  The method described here is implemented in a system 

that will process well over 109 images.  The goal of this work is 

to create an efficient system that is both simple to implement 

and maintain; the methods described here are extremely fast and 

have straightforward implementations.  We achieve 80% 

accuracy in sex identification with less than 10 pixel 

comparisons and 90% accuracy with less than 50 pixel 

comparisons.  The best classifiers published to date use Support 

Vector Machines; we match their accuracies with as few as 500 

comparison operations on a 20×20 pixel image.  The AdaBoost 

based classifiers presented here achieve over 93% accuracy; 

these match or surpass the accuracies of the SVM-based 

classifiers, and yield performance that is 50 times faster.  

Introduction 

Perhaps the single most requested set of images from 

search engines are those that contain people.  The queries 

for people range from specific individuals, such as 

celebrities, actors, musicians, and politicians, to general 

queries such as adult-content and stock-photography 

images.  Considering the enormous number of images that 

are indexed in search engines today (commonly well 

above 10
9 
images), it is impossible to manually label all of 

the content.  Because of the strong interest in being able 

to retrieve images of people, we are attempting to create a 

variety of filters to better categorize and recognize the 

people that appear in images.  One basic filter is to 

determine the sex of the person in the image.    

Because of the large number of images that must be 

examined, speed is a key concern when deciding whether 

an approach can be used in practice.   Recent work has 

shown that the pose of a face can be determined with high 

accuracy by simply comparing the intensities of a few 

pixels in grayscale images (Baluja, Sahami, and Rowley, 

2004). These pose-classifiers are trained with AdaBoost. 

AdaBoost works by choosing and combining weak 

classifiers together to form a more accurate strong 

classifier.  The weak classifiers used to distinguish pose 

were pixel comparison operations applied to pairs of 

pixels in a 20×20 image.  Two comparison operators (and 

their inverses) were used: equal to and less than.  

Classification of faces into one of five pose classes was 

possible with 92% accuracy using just 30 pixel 

comparisons; 99% accuracy was possible using 150 

comparisons.  Because of the efficiency of the AdaBoost 

approach, we apply it to this task. Sample images for this 

domain are shown in Figure 1.     

 

Figure 1: Samples male (top) and female (bottom) aligned 20×20 

pixel face images which will be used in this paper, along with a 

representative sample at the original resolution. 

 

In the next section, we describe a few recent pieces of 

related work.   Section 3 describes AdaBoost and the 

features used in detail.  Section 4 presents the data that is 

used for training and testing, and the various experiments 

conducted to explore the differences in performance 

obtained by altering the pre-processing steps.  The 

experimental results are given in Section 5.  Section 6 

gives a detailed breakdown of the timing comparisons.  

Finally, we close this paper with conclusions and 

suggestions for future work in Section 7.  



Previous Work 

There have been several pieces of recent work on 

determining sex from facial images that have been tested 

on large data sets.   Three approaches are described here. 

(Shakhnarovich, Viola, and Moghaddam, 2002) applied 

AdaBoost to the features used by the face detection 

system created by (Viola and Jones, 2001) on 24×24 pixel 

images collected by crawling the web.  They obtained an 

accuracy of 79%.   

(Gutta, Wechsler, and Phillips, 1998) applied a hybrid 

system of RBFs and decision trees to FERET images at a 

resolution of 64×72 pixels, and achieved an accuracy of 

96%.  The training and testing sets were augmented with 

artificially generated images (by adding random noise and 

random rotations).  In this paper, for efficiency, we 

concentrate on lower resolution images.  We also do not 

augment the testing or training sets.  

(Moghaddam and Yang, 2002) used SVMs on the FERET 

database of face images and achieved accuracies as high 

as 96.6%.  These are the highest reported to date.  This 

accuracy is much higher than in Shakhnarovich’s work 

for two reasons:  the FERET images are very clean 

(noise-free, fairly consistent lighting, no background 

clutter, etc), and because images of the same person may 

have appeared in both the training and test sets for the 

FERET experiments.  This may have allowed the SVM to 

recognize individual faces rather than generalizing 

properly for this domain.  In our experiments, we will 

control for this explicitly – this will be explored further in 

the experiments section. 

Using Ada-Boost with Pixel-Comparisons 

It is common in vision tasks to compute a variety of 

features that represent a large number of pixels.   In 

contrast, we use only extremely simple features: the 

relationship between two pixels.  Five types of pixel 

comparison operators (and their inverses) are used:
1
 

1. pixeli > pixelj 

2. pixeli intensity within 5 units (out of 255) of  pixelj 

3. pixeli intensity within 10 units (out of 255)  of pixelj 

4. pixeli intensity within 25 units (out of 255)  of pixelj 

5. pixeli intensity within 50 units (out of 255)  of pixelj 

 

                                                           

1 Note that adding other types of comparisons is easy.  Also note that 

adding more comparison types only increases the training time and not 
the run time. Assuming that the comparison operations use roughly 

equal CPU time, only the number of features employed will impact the 

actual classification speed at runtime, not which features are used or the 
number of unique comparison types that are available. 

Each comparison yields a binary feature.  This feature is 

used as a weak-classifier.  A weak classifier is only 

required to have accuracy slightly better than random 

chance.  For this study, the result of the comparison is 

trivially considered the output of the classifier: an output 

corresponds to “male” if the comparison is true, “female” 

if it is false.  Numerically these outputs are represented as 

1 and 0 respectively.     

There exist weak classifiers for each pair of different 

pixels in the image for each comparison operator.  For 

20×20 pixel images, this means there are 2*5*400*399 or 

1,596,000 distinct weak classifiers.  Even accounting for 

symmetries, this still yields an extremely large number of 

classifiers to consider.  The goal, given this large set of 

features, is to minimize the number of features that need 

to be computed when given a new image, while still 

achieving high identification rates.     

We use AdaBoost to combine multiple weak classifiers 

together to form a single strong classifier with better 

accuracy.  The AdaBoost training algorithm is an iterative 

procedure for picking a classifier to add at each step and 

also its associated weight.  The final strong-classifier is a 

thresholded linear function of the selected weak-

classifiers.   

The main steps of the AdaBoost algorithm are shown in 

Figure 2.  Essentially, it is a greedy learner that at each 

step selects the best weak classifier for the weighted 

errors of the previous step. The weight changes in Step 4 

are such that the weak classifier picked in Step 3 would 

have an error of 0.5 on the newly weighted samples, so it 

will not be picked again at the next iteration.  Once all the 

weak classifiers are selected, they are combined to form a 

strong classifier by a weighted sum, where the weights are 

related to the reweighting factors that were applied in 

Step 4 (normalized to sum to one). 

One of the time consuming steps in this algorithm is 

computing the accuracy of all the weak classifiers in each 

iteration.  Although the number of candidate classifiers 

effects only the training-time and not the run-time, there 

are a few easy methods to improve the training time.  One 

approach is presented in (Wu, Rehg, and Mullin, 2003): 

the error rates for each weak classifier are kept fixed, 

rather than being reevaluated in each iteration.  Another 

approach for reducing training times is to randomly select 

which weak classifiers will be evaluated at each iteration, 

and select the new classifier from only those that were 

evaluated.  At each iteration, the set of classifiers to 

evaluate is randomly chosen again.  In the experiments 

reported here, we explored this approach.  In addition to 

running the experiments that evaluated all of the 

classifiers in every iteration, we also experimented with 

evaluating only 10% and 1% of the weak classifiers 

during each iteration. 



As a baseline to compare against, we also applied SVMs 

to the pixel data; this approach parallels the one taken in 

(Moghaddam and Yang, 2002). The SVM implementation 

we used was SVM Light (Joachims, 1999); the 

parameters used will be discussed with the experiments. 

 

 

Figure 2: A boosting algorithm - adapted from (Viola, Jones, 2001).  

Note that the weak classifiers used here are simply the comparison 

operators, and the final classifier output is based on a weighted sum 

of these weak classifiers. 

 

Training and Test Data 

The training data for this algorithm is taken from the 

Color FERET database (Phillips et al., 2000).  This 

database contains images of 994 people (591 male, 403 

female).  We use only frontal images labeled “fa” and 

“fb” in the database that also have their eye coordinates 

labeled in the database, for a total of 2409 faces images 

(1495 male, 914 female).   

Following previous approaches, we partition the sets of 

images 5 different ways.  Each partition uses 80% of the 

data for training and 20% for testing, in such a way that 

each sample is used only once as a test image.  For the 

“unmixed” data sets, we make sure that images of a 

particular individual appear only in the training set or test 

set for a partition of the data.  For the “mixed” data sets, 

there is no such restriction, and the images are mixed 

randomly.  One would expect that the unmixed case is a 

harder task than the mixed case, since for the mixed case 

the classifier has the opportunity to memorize or 

recognize individual faces rather than using more general 

features.  For our tests, the unmixed data sets are the more 

important because of their applicability to the expected 

performance when analyzing billions of images with large 

numbers of faces unseen during training. 

The images are taken with a variety of sizes of faces, 

lighting conditions, and positions.  The following steps 

are used to normalize each image for input to the 

classifier: 

1. Convert the image to grayscale by averaging the red, 

green and blue color components. 

2. Compute a rigid transform which maps the labeled eye 

locations to (5,5) and (15,5) for a 20×20 window, and 

(1.5,8) and (10.5,8) for a 12×21 window as used in 

(Moghaddam and Yang, 2002). 

3. Scale image by averaging blocks of pixels down to the 

smallest size larger than that specified by the rigid 

transform. 

4. Sample each of the pixels for the target window using 

bilinear interpolation. 

5. (Optional) Normalize the intensities of the image to 

have a mean of 127, standard deviation 64, clipped at 

0 and 254.   

6. (Optional) Mask the image by setting pixels 

corresponding to black pixels in the mask to 127 (see 

Figure 3).  When a mask is used, the normalization in 

the previous step does not take the masked pixels into 

account when computing the mean and standard 

deviation. 

7. For the SVM experiments, the range of input values 

was mapped to -1 to 1. 

For the optional steps 5 and 6, we will report results 

separately for the experiments that include the steps and 

those that do not. 

 

 

Figure 3: Masks used to normalize face images for (left) 12×21 pixel 

and (right) 20×20 pixel windows. 

Input: samples (x1,y1) .. (xn,yn) where xi are the images and yi = 0 
for the female and 1 for male samples. 

Initialize weights w1,i = 0.5/F, 0.5/M for yi = 0,1 respectively, 

where F and M are the number of female and male samples. 

For t = 1,…,T (maximum number of weak classifiers to use): 

  1. Normalize weights  wt,i  such that Σi wt,i  = 1.0 

  2. For each weak classifier, Cj, see how well it predicts the   
classification.  Measure the error with respect to the weights wt:   

errort = Σi wt,i | Cj(xi) – yi |   

  3. Choose the weak classifier (denoted Ct) with the lowest errort.  

  4. Update the weights: 

         if example is classified incorrectly: 

  wt+1,i = wt,i 

         else 

  wt+1,i = wt,iBt 

          where 
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Experiments 

In this section we summarize a large set of experiments 

with varying types of preprocessing on the data and 

various types of classifiers.   

We first applied SVMs to this problem to provide a 

baseline, and for comparison with earlier work showing 

state of the art accuracies with SVMs.  All numbers given 

are for SVMs with Radial Basis Function (RBF) kernels.  

In order to find the best setting for the SVM, we tried a 

variety of settings for the parameters.  The settings given 

to SVM Light for gamma (related to the RBF radius) 

ranged from 0.001 to 0.100 (in steps of 0.001), and for C 

(the tradeoff between margin and training error) were the 

default and 100,000.  Based on the preprocessing steps in 

the previous section, there are eight different ways to 

generate train and test images: with or without 

normalization, with or without masking, and at a size of 

20×20 or 12×21 pixels.  For each of these cases, tests of 

all parameters values were tried.  Since each parameter 

setting required 5 SVMs to be trained (for the 5-fold cross 

validation), this resulted in a total of 5*8*200=8,000 

SVMs being trained.
2
  The preprocessing that gave the 

best accuracy was with normalization, no masking, and a 

size of 20×20 pixels; the accuracy for this case as a 

function of the parameters is shown in Figure 4.   

 

For all the results reported below, setting C to 100,000 

gave the highest test accuracy (with very little or no error 

on the training set).  The number of support vectors varied 

quite significantly, ranging from 300 to 600, out of 

around 1,900 training samples.   

                                                           

2 These experiments were done to find the best parameter settings for the 

SVMs, as well as the best preprocessing options.  This baseline will be 

used for the remainder of the experiments to ensure that we compare 
AdaBoost with the best possible SVMs. 

The AdaBoost classifier was trained three times, with a 

limit of 1000 weak classifiers.  The training runs differed 

in the number of weak classifiers that were randomly 

selected for evaluation in each iteration. We examined the 

performance achieved from evaluating 1%, 10% and 

100% of all possible weak classifiers per iteration. The 

results are given in Table 1.  The first row is for the 

preprocessing that gave the best SVM result.  The 

remaining rows each change one preprocessing parameter 

from that best case.  

Table 1: Classification accuracy for a variety of test sets.   

Data Processing Steps Training Algorithm 

AdaBoost 
(1000 Weak-

Classifiers) 
Normalized 
Intensities 

Mask 
Used? 

Window 
Size 

Best 
SVM 

1% 10% 100% 

Yes No 20×20 93.5% 93.6% 94.4%* 94.0% 

Yes Yes 20×20 92.5% 91.5% 91.7% 91.7% 

No No 20×20 92.3% 94.2% 93.8% 94.3% 

Yes No 12×21 90.7% 91.5% 91.4% 91.0% 

 

As can be seen, in all but the second case, the AdaBoost 

algorithm gives slightly better accuracy than the SVM 

result.  Overall, the best accuracy for both types of 

classifiers seems to be the first set of experiments, with 

normalized but unmasked images of 20×20 pixels.   

The differences in the performances are small – we are 

not interested in claiming that one method is better in 

accuracy than another.  Rather, what is most interesting is 

the difference in the amount of computation required.  An 

SVM measures the distance from the test sample to every 

support vector, which for a 20×20 pixel image and 300 

support vectors leads to at least 400*300=120,000 pixel 

comparisons.  The AdaBoost classifier with 1000 weak 

classifiers uses only 1000 pixel comparisons, yielding 

results that should be orders of magnitude faster. 

Figure 4 shows how the accuracy of the classifier varies 

as the number of weak classifiers it contains is varied.  As 

can be seen, we match the accuracy of the SVM classifier 

on the normalized, non-masked, 20×20 data at 500 weak 

classifiers. 

The previous best reported results for this domain are in 

(Moghaddam and Yang, 2002), which use SVMs.  For the 

experiments conducted in this paper, we carefully 

controlled the separation of individuals (not just images) 

between the test and train sets.  In Moghaddam and 

Yang’s work, unlike the above results, pictures of 

individual people may appear in both the training and test 

sets (people have multiple pictures in our image set), 

which makes the task both easier and much less 

applicable to the problem that we are interested in – being 

Figure 4: Accuracy of SVM while varying the C and gamma 

parameters.  



able to recognize identify the sex of people for whom we 

have not trained our classifiers.  For completeness, Table 

2 shows the results of our algorithms on data where 

individuals appear in both the training and test sets. For 

the first test, we used the best preprocessing from Table 1; 

for the second test we used preprocessing matched as 

closely as possible to earlier reported work.    

Table 2: Classification accuracy for test sets in which the people are 

mixed across training and test sets. 

Data Processing Steps Training Algorithm 

AdaBoost 
(1000 Weak-

Classifiers) 
Normalized 
Intensities 

Mask 
Used? 

Window 
Size 

Best 
SVM 

1% 10% 100% 

Yes No 20×20 97.1% 96.3% 96.6% 96.4% 

Yes Yes 12×21 96.9% 94.6% 94.4% 95.6% 

 

As can be seen, when allowed to train on the same people 

who are in the testing set, the SVM gives better accuracy 

than the AdaBoost algorithm – perhaps because the SVM 

has a greater capacity to memorize individual faces and 

their correct classifications.  (Moghaddam and Yang, 

2002) gives an accuracy of 96.6% on their data, which is 

close to that reported in the second line of Table 2 for the 

SVM.  In that work, the SVMs used about 20% of the 

training vectors, while in our experiments, 650 – 950 

support vectors were used out of approximately 1,900 

training vectors.  The high number of support vectors also 

suggests the possibility that the SVM is overfitting. 

Timing Results  

In this section, we give the performance of the algorithms 

in terms of time required to classify an image for both of 

the window sizes examined.  For each window size 

(20×20 & 12×21), we give the timing results for SVM 

classifiers which after training had approximately 300, 

600 and 900 support vectors.   For the classifiers trained 

with AdaBoost, since we explicitly control how many 

features are used, we show timing results using 10, 100, 

500 & 1000 features.
3
   

 

Table 3: Timing Results for 3 SVMs with 300, 600 & 900 support 

vectors, and for Ada-Boost with 10, 100, 500 & 1000 features. 

Window Size Classification Method 
Time 

(µ sec) 

339  support vectors 581 

654 support vectors 1107 SVM 

897 support vectors 1515 

10 features 0.16 

50 features 0.87 

500 features 9.47 

20×20 

AdaBoost 

1000 features 19.53 

338  support vectors 392 

656 support vectors 769 SVM 

899 support vectors 1025 

10 features 0.16 

50 features 0.81 

500 features 9.43 

12×21 

AdaBoost 

1000 features 20.29 

 

As can be seen in Table 3, the difference in timings 

between the fastest SVM (with approximately 330 

support vectors) and the AdaBoost classifier which gives 

                                                           

3
 It should be noted that for the timing results we used SVM-Light (Joachims, 
1999) in its original form, and we compared it to unoptimized AdaBoost code. 

Figure 4: Accuracy as the number of weak classifiers in the 

AdaBoost classifier is varied.  Top: Full graph.  Bottom: First 

100 weak classifiers enlarged. 



comparable performance (with 500 features) is 

significant; the AdaBoost classifiers are approximately 

only 1.6% (9.47/581) as expensive to run with 20×20 

images and approximately 2.4% (9.43/392) as expensive 

to run with 12×21 images.    In both cases, there is 

approximately a 50 times improvement in speed.    

There is little change in speed with window size for the 

AdaBoost classifier; this is because the number of 

features that is examined is independent of window size.  

With SVMs, this is not the case, since the entire image is 

examined.   Note that the most accurate SVM result 

obtained is not based on the number of support vectors 

alone; rather, the number of support vectors varies with 

the training parameters.  The best performance was 

obtained in the 20×20 case with 339 support vectors, and 

in the 12×21 case with 656 support vectors.   

Also shown in Table 3 is the speed of AdaBoost when the 

number of features examined is reduced; if our 

application only requires lower accuracies, significant 

speed gains can be obtained.  Also given for reference is 

the speed with 1000 features. 

Conclusions and Future Work 

We have presented a method to distinguish between male 

and female faces that matches (and slightly exceeds) the 

performance obtained with SVMs. However, the 

classification is achieved with a fraction of the 

computational expense; the classifiers presented here are 

1-2 orders of magnitude faster (approximately 50 times) 

than SVMs.   

Due to space restrictions, we are unable to present the 

extensive studies measuring the robustness of the 

classifiers to translation, scale and rotation.  To 

summarize: in our tests, we varied the angle of the face 

from ±45°, scaled the images by 0.2 to 5, and examined 
translations from ±3 pixels in X and Y.  Despite the fact 

that AdaBoost was used to select only individual pixels to 

compare, in every case, the AdaBoost classifiers 

performed as well, or better than, the SVM classifiers.   

Of course, the larger the variation, the larger the 

performance degredation.  

We achieve 80% accuracy in identification with less than 

10 pixel comparisons and 90% accuracy with less than 50 

pixel comparisons.   Results which match those of SVMs 

are obtained with as few as 500 comparison operations on 

a 20×20 image.  These results support earlier work which 

has found pixel comparisons are effective in determining 

the pose of a face.   

There are at least three areas for immediate future 

exploration.   The first is to evaluate this approach in the 

context of a complete face detection system.  The images 

used here from the standard FERET database are fairly 

clean and well aligned; using this system to classify faces 

that are found with a face detection system (Rowley, 

Baluja & Kanade, 1998) will require the classifier to 

handle much more variability in the data. The second 

future direction is to explore the use of different features.  

For example, following numerous previous approaches, 

box-like features may prove to be useful.   Finally, the 

third direction is to explore the use of new types of 

classifiers.   In this study, we used very simple pixel 

comparisons that mapped directly to a classifier; however, 

more complex transforms of the pixels may provide 

benefits as well.   It will be interesting to measure and 

understand the tradeoffs between weak-classifier 

complexity and number of classifiers in terms of accuracy, 

robustness and speed. 

Acknowledgements 

Portions of the research in this paper use the FERET 

database of facial images collected under the FERET 

program (Phillips et al., 2000).   

References 

Baluja, S, Sahami, M., Rowley, H., “Efficient Face 

Orientation Discrimination” International Conference on 

Image Processing, 2004. 

Gutta, S., Wechsler H., and Phillips, P. J. “Gender and 

ethnic classification”. IEEE Int. Workshop on Automatic 

Face and Gesture Recognition, pages 194-199, 1998. 

Joachims, T. “Making Large-Scale SVM Learning 

Practical”. Advances in Kernel Methods – Support Vector 

Learning, 1999. 

Moghaddam, B. and Yang, M.H. “Learning Gender with 

Support Faces”. IEEE T.PAMI  Vol. 24, No. 5, May 2002. 

Phillips, P.J., Moon, H., Rizvi, S.A., and Rauss, P. “The 

FERET Evaluation Methodology for Face Recognition 

Algorithms”. IEEE PAMI, Vol. 22, p. 1090-1104, 10, 

2000. 

Rowley, H A., Baluja, S., and Kanade, T. “Neural 

Network-Based Face Detection”. T. PAMI Vol. 20, No. 1, 

pages 23-38, January 1998. 

Shakhnarovich, Gregory, Viola, Paul A., and Moghaddam, 

Baback.  “A Unified Learning Framework for Real Time 

Face Detection and Classification”. Int. Conf. on 

Automatic Face and Gesture Recognition, 2002. 

Viola, Paul and Jones, Michael J. “Robust real-time 

object detection”. Proceedings of the IEEE Workshop on 

Statistical and Computational Theories of Vision, 2001. 

Wu, Jianxin, Rehg, James M., and Mullin, Matthew D. 

“Learning a Rare Event Detection Cascade by Direct 

Feature Selection”.  NIPS 16, 2003. 


