## Resistive Models of a Graph \& Random Walks

Making a recommendation (NETFLIX competition)
A bipartite graph: nodes - Viewers I Movies
weighted edges - weight is ranking by viewer of the movie
A distance metric:

$$
\operatorname{score}(v, m)=1 / \operatorname{rank}
$$

Other metrics:

1. Shortest path

$$
\operatorname{score}(v, m)=\min _{\mathrm{vPm}} w(P)
$$

Problem: a maniac who likes all movies
$\Rightarrow$ all movies will be recommended to me
2. min-cut / max-flow
$\operatorname{score}(v, m)=$ max flow from $v$ to $m$
Problem: popular movies only? shortest paths do not improve score.
3. random walks... we'll start with electrical networks

Gary claims resistive networks do about the right thing ( $\approx$ shortest path AND max-flow)

- Resistive Networks

More on resistive networks: Posted paper by Dole and Snell

## Ohm's law

$R$ : resistance
$C$ : conductance $(C=1 / R)$
$V$ : voltage
$i$ : current

$$
\begin{equation*}
i=C \cdot V=V / R \tag{1}
\end{equation*}
$$

Resistors in series:


$$
\begin{gathered}
R=R_{1}+\ldots+R_{m} \\
C=1 / R=1 /\left(1 / C_{1}+\ldots+1 / C_{m}\right)
\end{gathered}
$$

Conductors in parallel:

$$
\begin{gathered}
C=C_{1}+\ldots+C_{m} \\
R=\left(1 / R_{1}+\ldots+1 / R_{m}\right)^{-1}
\end{gathered}
$$

Application: Siemens image segmentation: edges between pixels with weights $=$ conductance

## Effective Resistance / Conductance

Points $\mathrm{a}, \mathrm{b}$ in a network
Voltage $V_{\mathrm{ab}}=V_{a}-V_{b}$
Current $i_{\mathrm{ab}}=i_{a}-i_{b}$

$$
R_{\mathrm{ab}}=V_{\mathrm{ab}} / i_{\mathrm{ab}}
$$

e.g. use least effective resistance for recommendation
[HW] Show that $R_{\mathrm{ab}}$ is a metric, i.e.
(1) $R_{\mathrm{ab}} \geq 0$
(2) $R_{\mathrm{ab}}=0=>a=b$
(3) $R_{\mathrm{ab}}=R_{\mathrm{ba}}$
(4) $R_{\mathrm{ac}}<=R_{\mathrm{ab}}+R_{\mathrm{bc}}$, triangle inequality

## Computing Effective Resistance

Before getting to computing the effective resistance, we need to introduce some other concepts.

## An example

[Fig.1] Graph $\mathcal{G}$

$$
\begin{gathered}
V_{2}-C_{2}-V-C_{1}-V_{1} \\
\text { । } \\
C_{3} \\
\text { । } \\
V_{3}
\end{gathered}
$$

What happens at V :
$i_{1}=c_{1}\left(V-V_{1}\right)$
$i_{2}=c_{2}\left(V-V_{2}\right)$
$i_{3}=c_{3}\left(V-V_{3}\right)$
$i_{1}+i_{2}+i_{3} \leftarrow$ Residual current at $V$
Suppose $i_{1}+i_{2}+i_{3}=0$. Then

$$
\begin{gathered}
c_{1}\left(V-V_{1}\right)+c_{2}\left(V-V_{2}\right)+c_{3}\left(V-V_{3}\right)=0 \\
\left(c_{1}+c_{2}+c_{3}\right) V=c_{1} V_{1}+c_{2} V_{2}+c_{3} V_{3}
\end{gathered}
$$

let $c=c_{1}+c_{2}+c_{3}$,

$$
\begin{equation*}
V=\frac{c_{1}}{c} V_{1}+\frac{c_{2}}{c} V_{2}+\frac{c_{3}}{c} V_{3} \tag{2}
\end{equation*}
$$

$\Rightarrow V$ is a convex combination of $V_{1}, V_{2}, V_{3}$ (useful)

Now Gary claims there is a natural matrix that occurs we shoud look at.
Consider graph $G=(V, E, w)$.
Adjacency matrix $A$ :

$$
A_{\mathrm{ij}}=\left\{\begin{array}{cc}
w_{\mathrm{ij}} & \text { if }\left(v_{i}, v_{j}\right) \in E \\
0 & \text { otherwise }
\end{array}\right.
$$

Def Laplacian $(G)=L(G)=L$ :

$$
L_{\mathrm{ij}}\left\{\begin{array}{cc}
d\left(V_{i}\right) & \text { if } i=j \\
-w_{\mathrm{ij}} & \text { if }\left(v_{i}, v_{j}\right) \in E \\
0 & \text { otherwise }
\end{array}\right.
$$

where

$$
d\left(v_{i}\right)=\sum w_{\mathrm{ij}},\left(v_{i}, v_{j}\right) \in E
$$

i.e.,

$$
L=D-A, \quad D=\left(\begin{array}{ccc}
d\left(v_{1}\right) & \ldots & 0 \\
0 & \ldots & 0 \\
0 & \ldots & d\left(v_{n}\right)
\end{array}\right)
$$

Note: for $V \equiv$ voltage setting of nodes of $G$,

$$
(\mathrm{LV})_{i} \equiv \text { residual current at } V_{i}
$$

Example: consider graph $\mathcal{G}$ of Fig.1. Its Laplacian is

$$
L(G)=\left(\begin{array}{cccc}
c_{1} & 0 & 0 & -c_{1} \\
0 & c_{2} & 0 & -c_{2} \\
0 & 0 & c_{3} & -c_{3} \\
-c_{1} & -c_{2} & -c_{3} & c
\end{array}\right)
$$

where $c=c_{1}+c_{2}+c_{3}$.
Then the residual current:

$$
\left(\begin{array}{cccc}
c_{1} & 0 & 0 & -c_{1} \\
0 & c_{2} & 0 & -c_{2} \\
0 & 0 & c_{3} & -c_{3} \\
-c_{1} & -c_{2} & -c_{3} & c
\end{array}\right)\left(\begin{array}{l}
V_{1} \\
V_{2} \\
V_{3} \\
V_{4}
\end{array}\right)=\left(\begin{array}{l}
i_{1} \\
i_{2} \\
i_{3} \\
i_{4}
\end{array}\right)
$$

(Back to) Goal: compute effective resistance from $V_{1}$ to $V_{n}$

Method 1: Solve for $V_{2}, \ldots, V_{n-1}, i$.

$$
L\left(\begin{array}{c}
0 \\
V_{2} \\
\ldots \\
V_{n-1} \\
1
\end{array}\right)=\left(\begin{array}{c}
i \\
0 \\
\ldots \\
0 \\
-i
\end{array}\right)
$$

$L$ is singular -- each row adds up to a constant ( 0 here).
A magical solver will come back with numbers. Now how do we get $R_{1 n}$ ?
Recall from Ohm's law,

$$
R=V / i
$$

Since we have $V=1, i=i$ (whatever came back from the solver)

$$
R_{1 n}=1 / i
$$

$\rightarrow$ This is called a boundary-valued problem; $V_{1}, V_{n}$ are the boundary points.
In other words, the problem is:
Compute $\left(V_{1}, \ldots, V_{n}\right)$ given $V_{1}=0, V_{n}=1$.
Note: $\left(V_{1}, \ldots, V_{n}\right)$ is harmonic:
$\forall V_{i} \in$ interior, $V_{i} \equiv$ convex combination of neighbors

## Maxwell's Principle

If $f: V \rightarrow R$ is harmonic, then the minimum and the maximum of $f$ occur on the boundary.
Proof. V is interior $\Rightarrow$ there exist neighbors $V_{i}, V_{j}$ s.t.

$$
V_{i} \leq V \leq V_{j}
$$

## Uniqueness Principle

If $f$ and $g$ are harmonic, with the same boundary conditions, then $f=g$.
Proof. $f-g: V \rightarrow R$ is harmonic with zeros on boundary. Hence $f-g=0$ and $f=g$.

Method 2: Solve for $V$

$$
\mathrm{LV}=\left(\begin{array}{c}
1 \\
0 \\
\ldots \\
0 \\
1
\end{array}\right)
$$

Then,

$$
V_{1 n}=V_{1}-V_{n}
$$

and since $i=1$,

$$
R_{1 n}=V_{1}-V_{n}
$$

## Raleigh's Principle

Consider another matrix, edge-vertex matrix, $\Gamma$

$$
\Gamma^{|E| \times|V|}=\begin{array}{ccccc}
\square & v_{1} & \ldots & \ldots & v_{m} \\
e_{1} & \square & \square & \square & \square \\
\ldots & \square & \square & \square & \square \\
e_{n} & \square & \square & \square & \square
\end{array}
$$

Orient each edge
e.g.

$$
\begin{gathered}
V_{2} \leftarrow e_{2}-V-e_{1} \rightarrow V_{1} \\
\uparrow \\
e_{3} \\
\text { । } \\
V_{3}
\end{gathered}
$$

gives the matrix

| $\square$ | $v_{1}$ | $v_{2}$ | $v_{3}$ | $v_{4}$ |
| :---: | :---: | :---: | :---: | :---: |
| $e_{1}$ | -1 | 0 | 0 | 1 |
| $e_{2}$ | 0 | -1 | 0 | 1 |
| $e_{3}$ | 0 | 0 | 1 | -1 |

Now let

$$
C=\left(\begin{array}{cccc}
c_{1} & 0 & 0 & 0 \\
0 & \ldots & 0 & 0 \\
0 & 0 & \ldots & 0 \\
0 & 0 & 0 & c_{m}
\end{array}\right), \quad V=\left(\begin{array}{c}
V_{1} \\
\ldots \\
\ldots \\
V_{m}
\end{array}\right)
$$

Then,

$$
\begin{gather*}
\Gamma V=\text { voltage change on each edge }  \tag{3}\\
C \Gamma V=\text { current on each edge, by Ohm' } s \text { law }  \tag{4}\\
\Gamma^{T} C \Gamma V=\text { residual current at each vertex } \tag{5}
\end{gather*}
$$

e.g. on the example above with $c_{i}=1 \forall i$,

$$
\begin{gathered}
\Gamma^{T} C \Gamma V=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1 \\
1 & 1 & -1
\end{array}\right)\left(\begin{array}{c}
V_{4}-V_{1} \\
V_{4}-V_{2} \\
V_{3}-V_{4}
\end{array}\right)=\left(\begin{array}{c}
V_{1}-V_{4} \\
V_{2}-V_{4} \\
V_{3}-V_{4} \\
\left(V_{4}-V_{1}\right)+\left(V_{4}-V_{2}\right)+\left(V_{4}-V_{3}\right) \\
=3 V_{4}-V_{1}-V_{2}-V_{3}
\end{array}\right) \\
\Gamma^{T} C \Gamma=L=D-A ? \longleftarrow \text { check that out yourself }
\end{gathered}
$$

Anyway, that means $L$ is a positive semi-definite matrix...!

Once we know what it is, Raleigh's principle would say that in the case of Netflix, adding more reviews decreases resistance.

