15-859N Lecture 1, 9/11/2007

Scribe: Sue Ann Hong

Resistive Models of a Graph & Random Walks

Making a recommendation (NETFLIX competition)

A bipartite graph: nodes - Viewers | Movies

weighted edges - weight is ranking by viewer of the movie

A distance metric:

score(v, m) = 1 / rank

Other metrics:

1. Shortest path

```
score(v, m) = \min_{vPm} w(P)
```

Problem: a maniac who likes all movies

 \Rightarrow all movies will be recommended to me

2. min-cut / max-flow

score(v, m) = max flow from v to m

Problem: popular movies only? shortest paths do not improve score.

3. random walks... we'll start with electrical networks

Gary claims resistive networks do about the right thing (~ shortest path AND max-flow)

Resistive Networks

More on resistive networks: Posted paper by Dole and Snell

Ohm's law

R : resistance *C* : conductance (C = 1/R) *V* : voltage *i* : current

$$i = C \cdot V = V/R \tag{1}$$

Resistors in series:

$$R = R_1 + \dots + R_m$$
$$C = 1/R = 1/(1/C_1 + \dots + 1/C_m)$$

Conductors in parallel:

--- R₁------ | | ----| --- R₂ --- | | | |

$$C = C_1 + \dots + C_m$$

 $R = (1/R_1 + \dots + 1/R_m)^{-1}$

Application: Siemens image segmentation: edges between pixels with weights = conductance

Effective Resistance / Conductance

Points a, b in a network

Voltage $V_{ab} = V_a - V_b$ Current $i_{ab} = i_a - i_b$

$$R_{\rm ab} = V_{\rm ab} / i_{\rm ab}$$

e.g. use least effective resistance for recommendation

[*HW*] Show that R_{ab} is a metric, i.e.

(1) $R_{ab} \ge 0$ (2) $R_{ab} = 0 \implies a = b$ (3) $R_{ab} = R_{ba}$ (4) $R_{ac} \le R_{ab} + R_{bc}$, triangle inequality

Computing Effective Resistance

Before getting to computing the effective resistance, we need to introduce some other concepts.

An example

[Fig.1] Graph \mathcal{G} $V_2 - C_2 - V - C_1 - V_1$ I V_3 What happens at V: $i_1 = c_1(V - V_1)$ $i_2 = c_2(V - V_2)$ $i_3 = c_3(V - V_3)$ $i_1 + i_2 + i_3 \leftarrow Residual current$ at V

Suppose $i_1 + i_2 + i_3 = 0$. Then

$$c_1(V - V_1) + c_2(V - V_2) + c_3(V - V_3) = 0$$

$$(c_1 + c_2 + c_3) V = c_1 V_1 + c_2 V_2 + c_3 V_3$$

let $c = c_1 + c_2 + c_3$,

$$V = \frac{c_1}{c} V_1 + \frac{c_2}{c} V_2 + \frac{c_3}{c} V_3$$
(2)

 \Rightarrow V is a convex combination of V₁, V₂, V₃ (useful)

Now Gary claims there is a natural matrix that occurs we shoud look at.

Consider graph G = (V, E, w).

Adjacency matrix A:

$$A_{ij} = \begin{cases} w_{ij} & \text{if } (v_i, v_j) \in E \\ 0 & \text{otherwise} \end{cases}$$

<u>Def</u> Laplacian(G) = L(G) = L:

$$L_{ij} \begin{cases} d(V_i) & \text{if } i = j \\ -w_{ij} & \text{if } (v_i, v_j) \in E \\ 0 & \text{otherwise} \end{cases}$$

where

$$d(v_i) = \sum w_{ij}, \ (v_i, v_j) \in E$$

i.e.,

$$L = D - A, D = \begin{pmatrix} d(v_1) & \dots & 0 \\ 0 & \dots & 0 \\ 0 & \dots & d(v_n) \end{pmatrix}$$

<u>Note</u>: for $V \equiv$ voltage setting of nodes of G,

 $(LV)_i \equiv residual current at V_i$

<u>Example</u>: consider graph G of Fig.1. Its Laplacian is

$$L(G) = \begin{pmatrix} c_1 & 0 & 0 & -c_1 \\ 0 & c_2 & 0 & -c_2 \\ 0 & 0 & c_3 & -c_3 \\ -c_1 & -c_2 & -c_3 & c_2 \end{pmatrix}$$

where $c = c_1 + c_2 + c_3$.

Then the residual current:

$$\begin{pmatrix} c_1 & 0 & 0 & -c_1 \\ 0 & c_2 & 0 & -c_2 \\ 0 & 0 & c_3 & -c_3 \\ -c_1 & -c_2 & -c_3 & c \end{pmatrix} \begin{pmatrix} V_1 \\ V_2 \\ V_3 \\ V_4 \end{pmatrix} = \begin{pmatrix} i_1 \\ i_2 \\ i_3 \\ i_4 \end{pmatrix}$$

(Back to) Goal: compute effective resistance from V_1 to V_n

<u>Method 1</u>: Solve for $V_2, ..., V_{n-1}, i$.

$$L\begin{pmatrix}0\\V_2\\\dots\\V_{n-1}\\1\end{pmatrix} = \begin{pmatrix}i\\0\\\dots\\0\\-i\end{pmatrix}$$

L is singular -- each row adds up to a constant (0 here).

A magical solver will come back with numbers. Now how do we get R_{1n} ? Recall from Ohm's law,

$$R = V/i$$

Since we have V = 1, i = i (whatever came back from the solver)

$$R_{1n} = 1/i$$

 \rightarrow This is called a *boundary-valued problem*; V_1 , V_n are the boundary points.

In other words, the problem is:

Compute $(V_1, ..., V_n)$ given $V_1 = 0, V_n = 1$.

<u>Note</u>: $(V_1, ..., V_n)$ is harmonic:

 $\forall V_i \in \text{interior}, V_i \equiv \text{convex combination of neighbors}$

Maxwell's Principle

If $f: V \to R$ is harmonic, then the minimum and the maximum of foccur on the boundary.

Proof. V is interior \Rightarrow there exist neighbors V_i , V_j s.t.

$$V_i \leq V \leq V_i$$

Uniqueness Principle

If f and g are harmonic, with the same boundary conditions, then f = g. Proof. $f - g : V \to R$ is harmonic with zeros on boundary. Hence f - g = 0 and f = g.

Method 2: Solve for V

$$LV = \begin{pmatrix} 1\\ 0\\ \dots\\ 0\\ 1 \end{pmatrix}$$

Then,

$$V_{1n} = V_1 - V_n$$

and since i = 1,

 $R_{1n} = V_1 - V_n$

Raleigh's Principle

Consider another matrix, edge-vertex matrix, $\boldsymbol{\Gamma}$

		v_1	 •••	v_m
$\Gamma^{ E \times V } =$	e_1			
	e_n			

Orient each edge

e.g.

$$V_2 \leftarrow e_2 - V - e_1 \rightarrow V_1$$

$$\uparrow$$

$$e_3$$

$$i$$

$$V_3$$

gives the matrix

	v_1	v_2	v_3	v_4
e_1	-1	0	0	1
e_2	0	-1	0	1
e_3	0	0	1	-1

Now let

$$C = \begin{pmatrix} c_1 & 0 & 0 & 0 \\ 0 & \dots & 0 & 0 \\ 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & c_m \end{pmatrix}, \quad V = \begin{pmatrix} V_1 \\ \dots \\ \dots \\ V_m \end{pmatrix}$$

Then,

$$\Gamma V = \text{voltage change on each edge}$$
(3)

$$C \Gamma V = \text{current on each edge, by Ohm's law}$$
 (4)

$$\Gamma^{T} C \Gamma V = \text{residual current at each vertex}$$
(5)

e.g. on the example above with $c_i = 1 \forall i$,

$$\Gamma^{T} C \Gamma V = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & -1 \end{pmatrix} \begin{pmatrix} V_{4} - V_{1} \\ V_{4} - V_{2} \\ V_{3} - V_{4} \end{pmatrix} = \begin{pmatrix} V_{1} - V_{4} \\ V_{2} - V_{4} \\ V_{3} - V_{4} \\ (V_{4} - V_{1}) + (V_{4} - V_{2}) + (V_{4} - V_{3}) \\ = 3 V_{4} - V_{1} - V_{2} - V_{3} \end{pmatrix}$$

 $\Gamma^T C \Gamma = L = D - A? \leftarrow \text{check that out yourself}$

Printed by Mathematica for Students

Anyway, that means L is a positive semi-definite matrix...!

Once we know what it is, Raleigh's principle would say that in the case of Netflix, adding more reviews decreases resistance.