
Monte Carlo Methods

Geoff Gordon
ggordon@cs.cmu.edu

February 9, 2006

Numerical integration problem

−1

−0.5

0

0.5

1
−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

Y
X

f(
X

,Y
)

∫

x∈X
f(x)dx

Used for: function approximation

f(x) ≈ α1f1(x) + α2f2(x) + . . .

Orthonormal system:
∫

fi(x)
2dx = 1 and

∫

fi(x)fj(x)dx = 0

• Fourier (sinx, cosx, . . .)

• Chebyshev (1, x, 2x2 − 1, 4x3 − 3x, . . .)

• . . .

Coefficients are

αi =
∫

f(x)fi(x)dx

Used for: optimization

Optimization problem: minimize T (x) for x ∈ X

Assume unique global optimum x∗

Define Gibbs distribution with temperature 1/β for β > 0:

Pβ(x) =
1

Z(β)
exp(−βT (x))

As β →∞, have Ex∼Pβ
(x)→ x∗

Simulated annealing: track Eβ(x) =
∫

xPβ(x)dx as β →∞

Used for: Bayes net inference

Undirected Bayes net on x = x1, x2, . . .:

P (x) =
1

Z

∏

j

φj(x)

Typical inference problem: compute E(xi)

Belief propagation is fast if argument lists of φjs are small and form a
junction tree

If not, MCMC

Used for: SLAM

Used for

Image segmentation

Tracking radar/sonar returns

Outline

Uniform sampling, importance sampling

MCMC and Metropolis-Hastings algorithm

What if f(x) has internal structure:

• SIS, SIR (particle filter)

• Gibbs sampler

Combining SIR w/ MCMC

A one-dimensional problem

−1 −0.5 0 0.5 1
0

10

20

30

40

50

60

70

Uniform sampling

−1 −0.5 0 0.5 1
0

10

20

30

40

50

60

70

true integral 24.0; uniform sampling 14.7 w/ 30 samples

Uniform sampling

Pick an x uniformly at random from X

E(f(x)) =
∫

P (x)f(x)dx

=
1

V

∫

f(x)dx

where V is volume of X

So E(V f(x)) = desired integral

But variance can be big (esp. if V large)

Uniform sampling

Do it a bunch of times: pick xi, compute

V

n

n
∑

i=1

f(xi)

Same expectation, lower variance

Variance decreases as 1/n (standard dev 1/
√

n)

Not all that fast; limitation of most MC methods

Nonuniform sampling

−1 −0.5 0 0.5 1
0

10

20

30

40

50

60

70

true integral 24.0; importance sampling (Q = N(0,0.252)) 25.8

Importance sampling

Suppose we pick x nonuniformly, x ∼ Q(x)

Q(x) is importance distribution

Use Q to (approximately) pick out areas where f is large

But EQ(f(x)) =
∫

Q(x)f(x)dx

Not what we want

Importance sampling

Define g(x) = f(x)/Q(x)

Now

EQ(g(x)) =
∫

Q(x)g(x)dx

=
∫

Q(x)f(x)/Q(x)dx

=
∫

f(x)dx

Importance sampling

So, sample xi from Q, take average of g(xi):

1

n

∑

i

f(xi)/Q(xi)

wi = 1/Q(xi) is importance weight

Uniform sampling is just importance sampling with Q = uniform = 1/V

Parallel importance sampling

Suppose f(x) = P (x)g(x)

Desired integral is
∫

f(x)dx = EP (g(x))

But suppose we only know g(x) and λP (x)

Parallel importance sampling

Pick n samples xi from proposal Q(x)

If we could compute importance weights wi = P (xi)/Q(xi), then

EQ [wig(xi)] =
∫

Q(x)
P (x)

Q(x)
g(x)dx

=
∫

f(x)dx

so 1
n

∑

i wig(xi) would be our IS estimate

Parallel importance sampling

Assign raw importance weights ŵi = λP (xi)/Q(xi)

E(ŵi) =
∫

Q(x)(λP (x)/Q(x))dx

= λ
∫

P (x)dx

= λ

So wi is an unbiased estimate of λ

Define w̄ = 1
n

∑

i wi ⇒ also unbiased, but lower variance

Parallel importance sampling

ŵi/w̄ is approximately wi, but computed without knowing λ

So, make the estimate
∫

f(x)dx ≈ 1

n

∑

i

ŵi

w̄
g(xi)

Parallel IS bias

0 1 2 3
0

0.5

1

1.5

2

2.5

3

Parallel IS is biased

E(w̄) = λ, but E(1/w̄) 6= 1/λ in general

Bias→ 0 as n→∞, since variance of w̄ → 0

Parallel IS example

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Q : (x, y) ∼ N(1,1) θ ∼ U(−π, π)

f(x, y, θ) = Q(x, y, θ)P (o = 0.8 | x, y, θ)/Z

Parallel IS example

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Posterior E(x, y, θ) = (0.496,0.350,0.084)

Back to n dimensions

Picking a good sampling distribution becomes hard in high-d

Major contribution to integral can be hidden in small areas

Danger of missing these areas ⇒ need to search for areas of large
f(x)

Naively, searching could bias our choice of x in strange ways, making
it hard to design an unbiased estimator

Markov chain Monte-Carlo

Design a Markov chain M whose moves tend to increase f(x) if it is
small

This chain encodes a search strategy: start at an arbitrary x, run chain
for a while to find an x with reasonably high f(x)

For x found by an arbitrary search algorithm, don’t know what impor-
tance weight we should use to correct for search bias

For x found by M after sufficiently many moves, can use stationary
distribution of M , PM(x), as importance weight

Picking PM

MCMC works well if f(x)/PM(x) has low variance

f(x) � PM(x) means there’s a region of comparatively large f(x)

that we don’t sample enough

f(x)� PM(x) means we waste samples in regions where f(x) ≈ 0

So, e.g., if f(x) = g(x)P (x), could ask for PM = P

Metropolis-Hastings

Way of getting chain M with desired PM

Basic strategy: start from arbitrary x

Repeatedly tweak x a little to get x′

If PM(x′) ≥ PM(x)α, move to x′

If PM(x′)� PM(x)α, stay at x

In intermediate cases, randomize

Proposal distributions

MH has one parameter: how do we tweak x to get x′

Encoded in one-step proposal distribution Q(x′ | x)

Good proposals explore quickly but remain in regions of high PM(x)

Optimal proposal: P (x′ | x) = PM(x′) for all x

Metropolis-Hastings algorithm

MH transition probability TM(x′ | x) is defined as follows:

Sample x′ ∼ Q(x′ | x)

Compute p =
PM(x′)
PM(x)

Q(x|x′)
Q(x′|x) =

PM(x′)
PM(x)

α

With probability p, set x← x′

Repeat

Stop after, say, t steps (possibly� t distinct samples)

Metropolis-Hastings notes

Only need PM up to constant factor—nice for problems where normal-
izing constant is hard

Efficiency determined by

• how fast Q(x′ | x) moves us around

• how high acceptance probability p is

Tension between fast Q and high p

Metropolis-Hastings proof

Given PM(x) and TM(x′ | x)

Want to show PM is stationary distribution for TM

Based on “detailed balance” condition

PM(x)TM(x′ | x) = PM(x′)TM(x | x′) ∀x, x′

Detailed balance implies
∫

PM(x)TM(x′ | x)dx =
∫

PM(x′)TM(x | x′)dx

= PM(x′)
∫

TM(x | x′)dx

= PM(x′)

So, if we can show detailed balance we are done

Proving detailed balance

Want to show PM(x)TM(x′ | x) = PM(x′)TM(x | x′) for x 6= x′

PM(x)TM(x′ | x) = PM(x)Q(x′ | x)max

(

1,
PM(x′)
PM(x)

Q(x | x′)
Q(x′ | x)

)

PM(x′)TM(x | x′) = PM(x′)Q(x | x′)max

(

1,
PM(x)

PM(x′)
Q(x′ | x)
Q(x | x′)

)

Exactly one of the two max statements chooses 1

Wlog, suppose it’s the first

Detailed balance

PM(x)TM(x′ | x) = PM(x)Q(x′ | x)

PM(x′)TM(x | x′) = PM(x′)Q(x | x′) PM(x)

PM(x′)
Q(x′ | x)
Q(x | x′)

= PM(x)Q(x′ | x)

So, PM is stationary distribution of Metropolis-Hastings sampler

Metropolis-Hastings example

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

MH example accuracy

True E(x2) ≈ 0.28

σ = 0.25 in proposal leads to acceptance rate 55–60%

After 1000 samples minus burn-in of 100:

final estimate 0.282361

final estimate 0.271167

final estimate 0.322270

final estimate 0.306541

final estimate 0.308716

Structure in f(x)

Suppose f(x) = g(x)P (x) as above

And suppose P (x) can be factored, e.g.,

P (x) =
1

Z
φ12(x1, x2)φ13(x1, x3)φ245(x2, x4, x5) . . .

Then we can take advantage of structure to sample from P efficiently
and compute EP (g(x))

Linear or tree structure

P (x) =
1

Z
φ12(x1, x2)φ23(x2, x3)φ34(x3, x4)

Pick a node as root arbitrarily

Sample a value for root

Sample children conditional on parents

Repeat until we have sampled all of x

Sequential importance sampling

Assume a chain graph x1 . . . xT (tree would be fine too)

Want to estimate E(xT)

Can evaluate but not sample from P (x1), P (xt+1 | xt)

Sequential importance sampling

Suppose we have proposals Q(x1), Q(xt+1 | xt)

Sample x1 ∼ Q(x1), compute weight w1 = P (x1)/Q(x1)

Sample x2 ∼ Q(x2 | x1), weight w2 = w1 · P (x2 | x1)/Q(x2 | x1)

. . . continue until last variable xT

Weight wT at final step is P (x)/Q(x)

Problems with SIS

wT often has really high variance

We often only know P (xt+1 | xt) up to a constant factor

For example, in an HMM after conditioning on observation yt+1,

P (xt+1 | xt, yt+1) =
1

Z
P (xt+1 | xt)P (yt+1 | xt+1)

Parallel SIS

Apply parallel IS trick to SIS:

• Generate n SIS samples xi with weights wi

• Normalize wi so
∑

i wi = n

Gets rid of problem of having to know normalized Ps

Introduces a bias which→ 0 as n→∞

Still not practical (variance of wi)

Sequential importance resampling

SIR = particle filter, sample = particle

Run SIS, keep weights normalized to sum to n

Monitor variance of weights

If too few particles get most of the weight, resample to fix it

Resampling reduces variance of final estimate, but increases bias due
to normalization

Resampling

After normalization, suppose a particle has weight 0 < w < 1

Set its weight to 1 w/ probability w, or to 0 w/ probability 1− w

E(weight) is still w, but can throw particle away if weight is 0

Resampling

A particle with weight w ≥ 1 will get bwc copies for sure, plus one with
probability w − bwc

Total number of particles is ≈ n

Can make it exactly n:

High-weight particles are replicated at expense of low-weight ones

SIR example

[DC factored filter movie]

Gibbs sampler

Recall

P (x) =
1

Z
φ12(x1, x2)φ13(x1, x3)φ245(x2, x4, x5) . . .

What if we don’t have a nice tree structure?

Gibbs sampler

MH algorithm for sampling from P (x)

Proposal distribution: pick an i at random, resample xi from its condi-
tional distribution holding x¬i fixed

That is, Q(x, x′) = 0 if x and x′ differ in more than one component

If x and x′ differ in component i,

Q(x′ | x) =
1

n
P (x′i | x¬i)

Gibbs acceptance probability

MH acceptance probability is

p =
P (x′)
P (x)

Q(x | x′)
Q(x′ | x)

For Gibbs, suppose we are resampling x1 which participates in φ7(x1, x4)

and φ9(x1, x3, x6)

P (x′)
P (x)

=
φ7(x

′
1, x4)φ9(x

′
1, x3, x6)

φ7(x1, x4)φ9(x1, x3, x6)

First factor is easy

Gibbs acceptance probability

Second factor:

Q(x | x′)
Q(x′ | x) =

P (x1 | x′¬1)
P (x′1 | x¬1)

P (x′1 | x¬1) is simple too:

P (x′1 | x¬1) =
1

Z
φ7(x

′
1, x4)φ9(x

′
1, x3, x6)

So
Q(x | x′)
Q(x′ | x) =

φ7(x1, x4)φ9(x1, x3, x6)

φ7(x
′
1, x4)φ9(x

′
1, x3, x6)

Better yet

P (x′)
P (x)

=
φ7(x

′
1, x4)φ9(x

′
1, x3, x6)

φ7(x1, x4)φ9(x1, x3, x6)

Q(x | x′)
Q(x′ | x) =

φ7(x1, x4)φ9(x1, x3, x6)

φ7(x
′
1, x4)φ9(x

′
1, x3, x6)

The two factors cancel!

So p = 1: always accept

Gibbs in practice

Simple to implement

Often works well

Common failure mode: knowing x¬i “locks down” xi

Results in slow mixing, since it takes a lot of low-probability moves to
get from x to a very different x′

Locking down

E.g., handwriting recognition: “antidisestablishmen?arianism”

Even if we do propose and accept “antidisestablishmenqarianism”, likely
to go right back

E.g., image segmentation: if all my neighboring pixels in an 11 × 11

region are background, I’m highly likely to be background as well

E.g., HMMs: knowing xt−1 and xt+1 often gives a good idea of xt

Sometimes conditional on values of other variables: ai? 7→ {aid, ail, aim, air}
but th? 7→ the (and maybe thy or tho)

Worked example

[switch to Matlab]

Related topics

Reversible-jump MCMC

• for when we don’t know the dimension of x

Rao-Blackwellization

• hybrid between Monte-Carlo and exact

• treat some variables exactly, sample over rest

Swendsen-Wang

• modification to Gibbs that mixes faster in locked-down distributions

Data-driven proposals: EKPF, UPF

