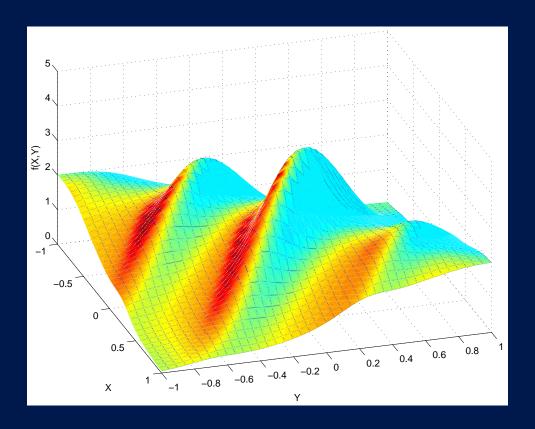
Monte Carlo Methods

Geoff Gordon
ggordon@cs.cmu.edu

February 9, 2006

Numerical integration problem



$$\int_{x \in \mathcal{X}} f(x) dx$$

Used for: function approximation

$$f(x) \approx \alpha_1 f_1(x) + \alpha_2 f_2(x) + \dots$$

Orthonormal system: $\int f_i(x)^2 dx = 1$ and $\int f_i(x) f_j(x) dx = 0$

- Fourier ($\sin x$, $\cos x$, ...)
- Chebyshev $(1, x, 2x^2 1, 4x^3 3x, ...)$
- ...

Coefficients are

$$\alpha_i = \int f(x)f_i(x)dx$$

Used for: optimization

Optimization problem: minimize T(x) for $x \in \mathcal{X}$

Assume unique global optimum x^*

Define Gibbs distribution with temperature $1/\beta$ for $\beta > 0$:

$$P_{\beta}(x) = \frac{1}{Z(\beta)} \exp(-\beta T(x))$$

As $\beta o \infty$, have $E_{x \sim P_{\beta}}(x) o x^*$

Simulated annealing: track $E_{\beta}(x) = \int x P_{\beta}(x) dx$ as $\beta \to \infty$

Used for: Bayes net inference

Undirected Bayes net on $x = x_1, x_2, \ldots$:

$$P(x) = \frac{1}{Z} \prod_{j} \phi_{j}(x)$$

Typical inference problem: compute $E(x_i)$

Belief propagation is fast if argument lists of ϕ_j s are small and form a junction tree

If not, MCMC

Used for: SLAM

Used for

Image segmentation

Tracking radar/sonar returns

Outline

Uniform sampling, importance sampling

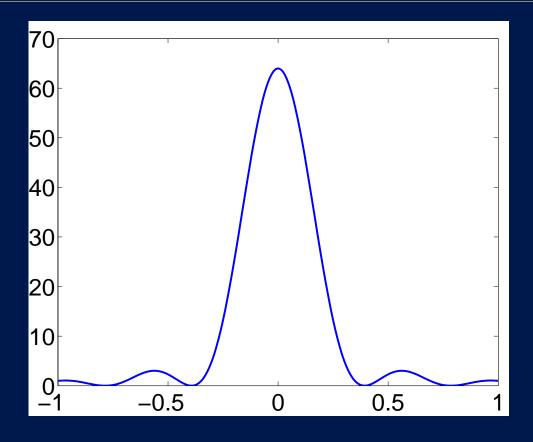
MCMC and Metropolis-Hastings algorithm

What if f(x) has internal structure:

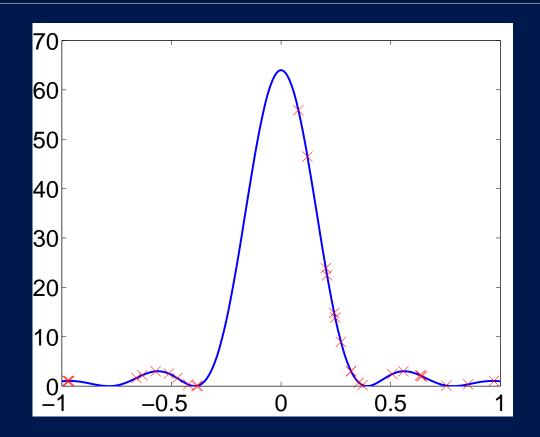
- SIS, SIR (particle filter)
- Gibbs sampler

Combining SIR w/ MCMC

A one-dimensional problem



Uniform sampling



true integral 24.0; uniform sampling 14.7 w/ 30 samples

Uniform sampling

Pick an x uniformly at random from \mathcal{X}

$$E(f(x)) = \int P(x)f(x)dx$$
$$= \frac{1}{V} \int f(x)dx$$

where V is volume of \mathcal{X}

So E(Vf(x)) = desired integral

But variance can be big (esp. if V large)

Uniform sampling

Do it a bunch of times: pick x_i , compute

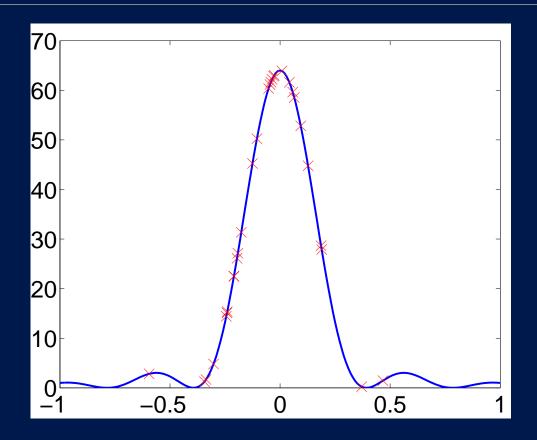
$$\frac{V}{n} \sum_{i=1}^{n} f(x_i)$$

Same expectation, lower variance

Variance decreases as 1/n (standard dev $1/\sqrt{n}$)

Not all that fast; limitation of most MC methods

Nonuniform sampling



true integral 24.0; importance sampling $(Q = N(0, 0.25^2))$ 25.8

Importance sampling

Suppose we pick x nonuniformly, $x \sim Q(x)$

Q(x) is importance distribution

Use Q to (approximately) pick out areas where f is large

But
$$E_Q(f(x)) = \int Q(x)f(x)dx$$

Not what we want

Importance sampling

Define
$$g(x) = f(x)/Q(x)$$

Now

$$E_{Q}(g(x)) = \int Q(x)g(x)dx$$

$$= \int Q(x)f(x)/Q(x)dx$$

$$= \int f(x)dx$$

Importance sampling

So, sample x_i from Q, take average of $g(x_i)$:

$$\frac{1}{n}\sum_{i}f(x_{i})/Q(x_{i})$$

 $w_i = 1/Q(x_i)$ is importance weight

Uniform sampling is just importance sampling with Q = uniform = 1/V

Suppose f(x) = P(x)g(x)

Desired integral is $\int f(x)dx = E_P(g(x))$

But suppose we only know g(x) and $\lambda P(x)$

Pick n samples x_i from proposal Q(x)

If we could compute importance weights $w_i = P(x_i)/Q(x_i)$, then

$$E_Q[w_i g(x_i)] = \int Q(x) \frac{P(x)}{Q(x)} g(x) dx$$
$$= \int f(x) dx$$

so $\frac{1}{n}\sum_{i}w_{i}g(x_{i})$ would be our IS estimate

Assign raw importance weights $\hat{w}_i = \lambda P(x_i)/Q(x_i)$

$$E(\hat{w}_i) = \int Q(x)(\lambda P(x)/Q(x))dx$$
$$= \lambda \int P(x)dx$$
$$= \lambda$$

So w_i is an unbiased estimate of λ

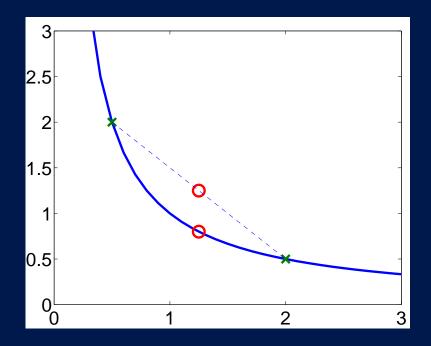
Define $\bar{w} = \frac{1}{n} \sum_{i} w_{i} \implies$ also unbiased, but lower variance

 \hat{w}_i/\bar{w} is approximately w_i , but computed without knowing λ

So, make the estimate

$$\int f(x)dx \approx \frac{1}{n} \sum_{i} \frac{\widehat{w}_{i}}{\overline{w}} g(x_{i})$$

Parallel IS bias

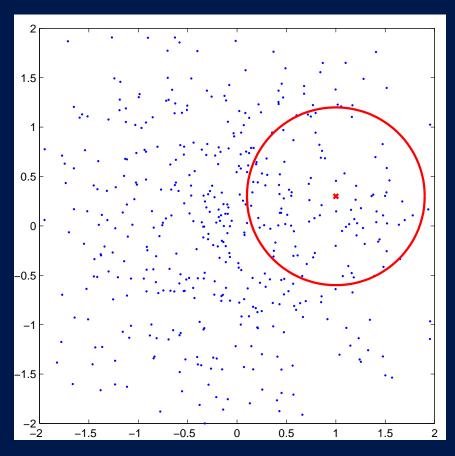


Parallel IS is biased

 $E(\bar{w}) = \lambda$, but $E(1/\bar{w}) \neq 1/\lambda$ in general

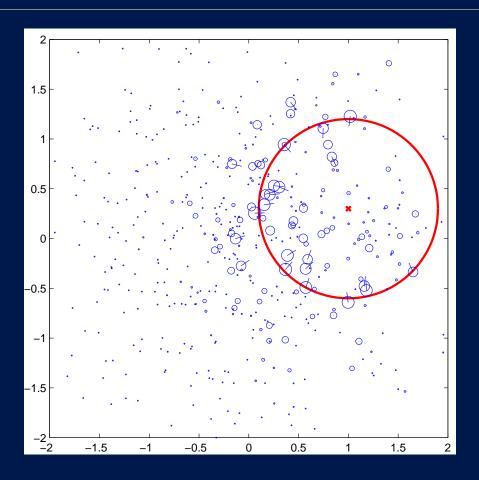
Bias ightarrow 0 as $n
ightarrow \infty$, since variance of $\bar{w}
ightarrow$ 0

Parallel IS example



$$Q: (x,y) \sim N(1,1)$$
 $\theta \sim U(-\pi,\pi)$ $f(x,y,\theta) = Q(x,y,\theta)P(o = 0.8 \mid x,y,\theta)/Z$

Parallel IS example



Posterior $E(x, y, \theta) = (0.496, 0.350, 0.084)$

Back to *n* dimensions

Picking a good sampling distribution becomes hard in high-d

Major contribution to integral can be hidden in small areas

Danger of missing these areas \Rightarrow need to search for areas of large f(x)

Naively, searching could bias our choice of \boldsymbol{x} in strange ways, making it hard to design an unbiased estimator

Markov chain Monte-Carlo

Design a Markov chain M whose moves tend to increase f(x) if it is small

This chain encodes a search strategy: start at an arbitrary x, run chain for a while to find an x with reasonably high f(x)

For x found by an arbitrary search algorithm, don't know what importance weight we should use to correct for search bias

For x found by M after sufficiently many moves, can use stationary distribution of M, $P_M(x)$, as importance weight

Picking P_M

MCMC works well if $f(x)/P_M(x)$ has low variance

 $f(x) \gg P_M(x)$ means there's a region of comparatively large f(x) that we don't sample enough

 $f(x) \ll P_M(x)$ means we waste samples in regions where $f(x) \approx 0$

So, e.g., if f(x) = g(x)P(x), could ask for $P_M = P$

Metropolis-Hastings

Way of getting chain M with desired P_M

Basic strategy: start from arbitrary x

Repeatedly tweak x a little to get x'

If
$$P_M(x') \ge P_M(x)\alpha$$
, move to x'

If
$$P_M(x') \ll P_M(x)\alpha$$
, stay at x

In intermediate cases, randomize

Proposal distributions

MH has one parameter: how do we tweak x to get x'

Encoded in one-step proposal distribution $Q(x' \mid x)$

Good proposals explore quickly but remain in regions of high $P_M(x)$

Optimal proposal: $P(x' \mid x) = P_M(x')$ for all x

Metropolis-Hastings algorithm

MH transition probability $T_M(x' \mid x)$ is defined as follows:

Sample $x' \sim Q(x' \mid x)$

Compute
$$p = \frac{P_M(x')}{P_M(x)} \frac{Q(x|x')}{Q(x'|x)} = \frac{P_M(x')}{P_M(x)} \alpha$$

With probability p, set $x \leftarrow x'$

Repeat

Stop after, say, t steps (possibly $\ll t$ distinct samples)

Metropolis-Hastings notes

Only need P_M up to constant factor—nice for problems where normalizing constant is hard

Efficiency determined by

- how fast $Q(x' \mid x)$ moves us around
- ullet how high acceptance probability p is

Tension between fast Q and high p

Metropolis-Hastings proof

Given $P_M(x)$ and $T_M(x' \mid x)$

Want to show P_M is stationary distribution for T_M

Based on "detailed balance" condition

$$P_M(x)T_M(x'\mid x) = P_M(x')T_M(x\mid x') \qquad \forall x, x'$$

Detailed balance implies

$$\int P_M(x)T_M(x'\mid x)dx = \int P_M(x')T_M(x\mid x')dx$$
$$= P_M(x')\int T_M(x\mid x')dx$$
$$= P_M(x')$$

So, if we can show detailed balance we are done

Proving detailed balance

Want to show $P_M(x)T_M(x'\mid x)=P_M(x')T_M(x\mid x')$ for $x\neq x'$

$$P_M(x)T_M(x' \mid x) = P_M(x)Q(x' \mid x) \max\left(1, \frac{P_M(x')}{P_M(x)} \frac{Q(x \mid x')}{Q(x' \mid x)}\right)$$

$$P_M(x')T_M(x \mid x') = P_M(x')Q(x \mid x') \max\left(1, \frac{P_M(x)}{P_M(x')} \frac{Q(x' \mid x)}{Q(x \mid x')}\right)$$

Exactly one of the two max statements chooses 1

Wlog, suppose it's the first

Detailed balance

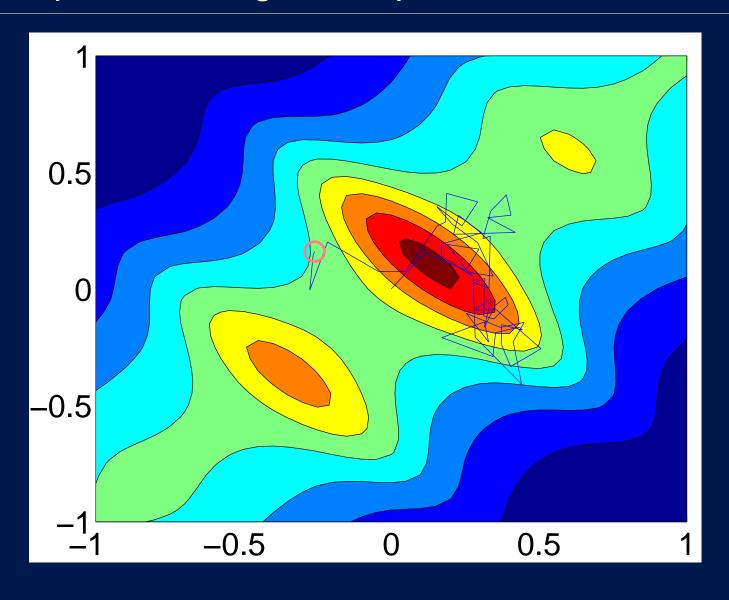
$$P_{M}(x)T_{M}(x' \mid x) = P_{M}(x)Q(x' \mid x)$$

$$P_{M}(x')T_{M}(x \mid x') = P_{M}(x')Q(x \mid x')\frac{P_{M}(x)}{P_{M}(x')}\frac{Q(x' \mid x)}{Q(x \mid x')}$$

$$= P_{M}(x)Q(x' \mid x)$$

So, P_M is stationary distribution of Metropolis-Hastings sampler

Metropolis-Hastings example



MH example accuracy

True $E(x^2) \approx 0.28$

 $\sigma = 0.25$ in proposal leads to acceptance rate 55–60%

After 1000 samples minus burn-in of 100:

```
final estimate 0.282361
final estimate 0.271167
final estimate 0.322270
final estimate 0.306541
final estimate 0.308716
```

Structure in f(x)

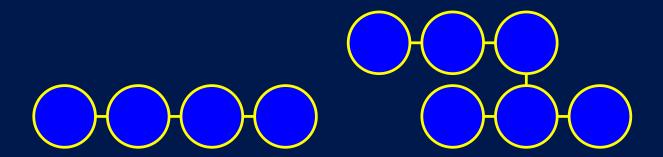
Suppose $\overline{f(x) = g(x)P(x)}$ as above

And suppose P(x) can be factored, e.g.,

$$P(x) = \frac{1}{Z}\phi_{12}(x_1, x_2)\phi_{13}(x_1, x_3)\phi_{245}(x_2, x_4, x_5)\dots$$

Then we can take advantage of structure to sample from P efficiently and compute $E_P(g(x))$

Linear or tree structure



$$P(x) = \frac{1}{Z}\phi_{12}(x_1, x_2)\phi_{23}(x_2, x_3)\phi_{34}(x_3, x_4)$$

Pick a node as root arbitrarily

Sample a value for root

Sample children conditional on parents

Repeat until we have sampled all of x

Sequential importance sampling

Assume a chain graph $x_1 \dots x_T$ (tree would be fine too)

Want to estimate $E(x_T)$

Can evaluate but not sample from $P(x_1)$, $P(x_{t+1} \mid x_t)$

Sequential importance sampling

Suppose we have proposals $Q(x_1)$, $Q(x_{t+1} \mid x_t)$

Sample $x_1 \sim Q(x_1)$, compute weight $w_1 = P(x_1)/Q(x_1)$

Sample $x_2 \sim Q(x_2 \mid x_1)$, weight $w_2 = w_1 \cdot P(x_2 \mid x_1)/Q(x_2 \mid x_1)$

 \dots continue until last variable x_T

Weight w_T at final step is P(x)/Q(x)

Problems with SIS

 w_T often has really high variance

We often only know $P(x_{t+1} \mid x_t)$ up to a constant factor

For example, in an HMM after conditioning on observation y_{t+1} ,

$$P(x_{t+1} \mid x_t, y_{t+1}) = \frac{1}{Z} P(x_{t+1} \mid x_t) P(y_{t+1} \mid x_{t+1})$$

Parallel SIS

Apply parallel IS trick to SIS:

- ullet Generate n SIS samples x^i with weights w^i
- Normalize w^i so $\sum_i w^i = n$

Gets rid of problem of having to know normalized Ps

Introduces a bias which \rightarrow 0 as $n \rightarrow \infty$

Still not practical (variance of w^i)

Sequential importance resampling

SIR = particle filter, sample = particle

Run SIS, keep weights normalized to sum to n

Monitor variance of weights

If too few particles get most of the weight, resample to fix it

Resampling reduces variance of final estimate, but increases bias due to normalization

Resampling

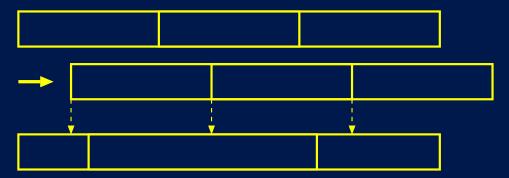
After normalization, suppose a particle has weight 0 < w < 1Set its weight to 1 w/ probability w, or to 0 w/ probability 1 - wE(weight) is still w, but can throw particle away if weight is 0

Resampling

A particle with weight $w \geq 1$ will get $\lfloor w \rfloor$ copies for sure, plus one with probability $w - \lfloor w \rfloor$

Total number of particles is $\approx n$

Can make it exactly n:

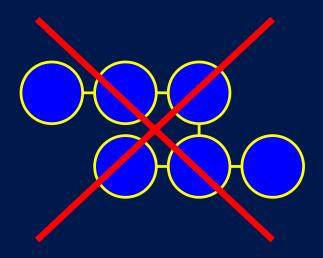


High-weight particles are replicated at expense of low-weight ones

SIR example

[DC factored filter movie]

Gibbs sampler



Recall

$$P(x) = \frac{1}{Z}\phi_{12}(x_1, x_2)\phi_{13}(x_1, x_3)\phi_{245}(x_2, x_4, x_5)\dots$$

What if we don't have a nice tree structure?

Gibbs sampler

MH algorithm for sampling from P(x)

Proposal distribution: pick an i at random, resample x_i from its conditional distribution holding $x_{\neg i}$ fixed

That is, Q(x, x') = 0 if x and x' differ in more than one component

If x and x' differ in component i,

$$Q(x' \mid x) = \frac{1}{n} P(x_i' \mid x_{\neg i})$$

Gibbs acceptance probability

MH acceptance probability is

$$p = \frac{P(x')}{P(x)} \frac{Q(x \mid x')}{Q(x' \mid x)}$$

For Gibbs, suppose we are resampling x_1 which participates in $\phi_7(x_1, x_4)$ and $\phi_9(x_1, x_3, x_6)$

$$\frac{P(x')}{P(x)} = \frac{\phi_7(x'_1, x_4)\phi_9(x'_1, x_3, x_6)}{\phi_7(x_1, x_4)\phi_9(x_1, x_3, x_6)}$$

First factor is easy

Gibbs acceptance probability

Second factor:

$$\frac{Q(x \mid x')}{Q(x' \mid x)} = \frac{P(x_1 \mid x'_{\neg 1})}{P(x'_1 \mid x_{\neg 1})}$$

 $P(x_1' \mid x_{\neg 1})$ is simple too:

$$P(x_1' \mid x_{\neg 1}) = \frac{1}{Z} \phi_7(x_1', x_4) \phi_9(x_1', x_3, x_6)$$

So

$$\frac{Q(x \mid x')}{Q(x' \mid x)} = \frac{\phi_7(x_1, x_4)\phi_9(x_1, x_3, x_6)}{\phi_7(x'_1, x_4)\phi_9(x'_1, x_3, x_6)}$$

Better yet

$$\frac{P(x')}{P(x)} = \frac{\phi_7(x'_1, x_4)\phi_9(x'_1, x_3, x_6)}{\phi_7(x_1, x_4)\phi_9(x_1, x_3, x_6)}$$
$$\frac{Q(x \mid x')}{Q(x' \mid x)} = \frac{\phi_7(x_1, x_4)\phi_9(x_1, x_3, x_6)}{\phi_7(x'_1, x_4)\phi_9(x'_1, x_3, x_6)}$$

The two factors cancel!

So p = 1: always accept

Gibbs in practice

Simple to implement

Often works well

Common failure mode: knowing $x_{\neg i}$ "locks down" x_i

Results in slow mixing, since it takes a lot of low-probability moves to get from x to a very different x^\prime

Locking down

E.g., handwriting recognition: "antidisestablishmen?arianism"

Even if we do propose and accept "antidisestablishmen arianism", likely to go right back

E.g., image segmentation: if all my neighboring pixels in an 11×11 region are background, I'm highly likely to be background as well

E.g., HMMs: knowing x_{t-1} and x_{t+1} often gives a good idea of x_t

Sometimes conditional on values of other variables: ai? \mapsto {aid, ail, aim, air} but th? \mapsto the (and maybe thy or tho)

Worked example

[switch to Matlab]

Related topics

Reversible-jump MCMC

for when we don't know the dimension of x

Rao-Blackwellization

- hybrid between Monte-Carlo and exact
- treat some variables exactly, sample over rest

Swendsen-Wang

modification to Gibbs that mixes faster in locked-down distributions

Data-driven proposals: EKPF, UPF