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Recap
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o Matrix games

o 2 or more players choose action
simultaneously

o Each from a discrete set of choices

o Payoff to each agent is a function of all
agents’ choices (write as a collection of
matrices)



Recap
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o Safety value is the best I can guarantee
myself with worst-case assumptions about
opponent

o Also called maximin

o If we assume more about opponent (e.g.,
rationality) we might be able to get more
reward
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o Equilibrium = profile of strategies so that
no one agent wants to deviate unilaterally

o Nash: the one everyone talks about

o Minimax: only makes sense in zero-sum
two-player games, easier to compute

o more later...



Recap
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o Pareto dominance: not all ol
equilibria are created equal

3001

o For any in brown triangle, %figoo
there is one on red line that’s = _
at least as good for both ] \
players o w0 o a0 400

Value to player 1

o Red line = Pareto dominant
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Finding Nash
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Shapley S game
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Support enumeration algorithm
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o Enumerate all support sets for each player

b ) o 12 )3, 23,123
o Col: A, B, C, AB, AC, BC, ABC
o / x 7 =49 possibilities



Support enumeration
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o For each pair of supports, solve an LP

o Vars are P(action) for each action in
support (one set for each player), and also
expected value to each player

o Constraints:
o All actions in support have value v
o All not in support have value <v

o Probabilities in support = 0, sum to 1



Support enumeration

PIPTNETETRE b s L Tt g S o B DA A A 4ty 2N LR I e b

:n.‘_._-ul-

atic Lo bande " PISEGP
=

A

B

C

1

0,0

1,0

0,1

2

0,1

0,0

1,0

3

1,0

0,1

0,0

o Checking singleton supports is easy: sum-

to-1 constraint means p=1 for action in

support

o So just check whether actions out of

SUpport are worse



Try 2- strategy supports 12, AB
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o Payoff of Row 1: 0p(A) + 1 p(B) =v
o Payoff of Row 2: 0p(A) + Op(B) =v
o Payoffof ColA:Op(l)+ 1 p(2) =w
o Payoffof ColB: 0p(l) +0p(2) =w



Try 2- strategy supports 12, AB
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o O0p(A) +1p(B)=v =0p(A)+0p(B)
o Op(1) +1p(2)=w=0p(1)+0p(2)

o Row payoff=row 3:v =1 p(A) + 0 p(B)
o Col payoff=colC:w=1p(l)+ 0p(2)



More supports
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o Other 2-vs-2 are similar

o We also need to try 1-vs-2, 1-vs-3, and 2-
vs-3, but in interest of brevity: they don'’t
work either

o So, on the 49th iteration, we reach 123 vs
ABC...



123 vs ABC
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o Rowl1:0p(A)+ 1p(B)+0p(C)=v
o Row2:0p(A) + Op(B)+ I p(C) =v
o Row3:1p(A)+0p(B)+0p(C)=v
o So, p(A) =p(B) =p(C) =v=1/3



123 vs ABC
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o ColA:O0p(l)+0p2)+ 1p(3)=w
o ColB:1p(l)+0p2)+0p(3)=w
o ColC:0p(l)+ 1p(2)+0p(3)=w
o So, p(l) =p2) =p(3)=w=1/3



Nash of Shapley
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o There are nonnegative probs p(1), p(2), &
p(3) for Row that equalize Col’s payoffs
for ABC

o There are nonnegative probs p(A), p(B), &
p(C) for Col that equalize Row’s payoffs
for 123

o No strategies outside of supports to check

o So, we've found the (unique) NE
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Correlated
equilibrium



Correlated equilibrium

PO RA Pn , Trt A Prrmnr G AT DAY BN Sty S I SR R s e SV stk P e el ol

If there is intelligent life on other planets,
in a majority of them, they would have
discovered correlated equilibrium before
Nash equilibrium.

—Roger Myerson



The game of “Lunch”

bt A B L Lok PIRFSSRRPRRIE TR W R
A U
A (4,300




Moderator
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o A moderator has a big deck of cards

o FEach card has written on it a
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recommended action for each player

o Moderator draws a card, whispers
actions to corresponding players

o actions may be correlated

o only find out your own

4 N

[

Row: Ali
Baba

Col: Union
Grill

\_ v)




Correlated equilibrium
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o Since players can have correlated

actions, an equilibrium with a & A
moderator is called a correlated stop
equilibrium stop
| . g0
o Example: 5-way stoplight stop
o All NE are CE stop v

o At least as many CE as NE in every
game (often strictly more)



Realism?
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o Moderators are often available
o Sometimes have to be kind of clever

o E.g., can simulate a moderator using
cheap talk and some crypto

o Or, can use private function of public
randomness (e.g., headline of NY Times, #
of sunspots, or even past history of play)



Finding correlated equilibrium
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o P(Row is recommended to play A) =a + b

o P(Col recommended A | Row
recommended A) =a/(a + b)

o Rationality: when I’'m recommended to
play A, I don’t want to play U instead
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Rationality constraint
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Rpayoff(A, A) P(col Alrow A)

Rationality constraint

e
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Rationality constraint
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Rationality constraint
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Rationality constraint
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Rationality constraint 1s linear
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4a + 0b > 0a + 3b



All rationality constraints

AlU A|lU
Alalb A 4,3 0
Ulc|d U| 0 |3,4

Row recommendation A 4a + 0b > O0a + 3b
Row recommendation U  Oc + 3d > 4c 4 0d
Col recommendation A 3a + 0c > 0a + 4c
Col recommendation U 0b + 4d > 3b + 0d



Correlated equilibrium
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Bargaining




Predicting outcomes
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o We've talked about different things we
might assume about “rational” agents

o Each assumption leads to different
predictions about set of possible outcomes

o E.g., independent utility maximizers
should reach a Nash equilibrium

o E.g., adding a moderator increases
possible outcomes to set of CE



Predicting outcomes

PO RA Pn , Trt A Prrmnr G AT DAY BN Sty S I SR R s e SV stk P e el ol

o But so far we can’t predict what will
actually happen when “rational” agents
play a game together

o Most specific prediction so far is Pareto
frontier (of either set of Nash or set of CE)

o Next: try adding “cheap talk” to see
whether we finally get a unique prediction



Return of “Lunch”
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A U
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A = Ali Baba, U = Union Grill



Rubinstein’s game
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o Two players split a pie

o Each has concave, increasing utility for a
share in [0,1]



Rubinstein’s game
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o Bargain by alternating offers:
o Alice offers 60-40
o Bob says no, how about 30-70
o Alice says no, wants 55-45
o Bob says OK
o Alice gets y°Ux(0.55), Bob: y?Up(0.45)

o In case of disagreement, no pie for anyone



Rubinstein’s game
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o Bargain by alternating offers:
o Alice offers 60-40
o Bob says no, how about 30-70
o Alice says no, wants 55-45
o Bob says OK
o Alice gets@ Ua(0.55), Bob: y2Up(0.45)

o In case of disagreement, no pie for anyone



Theorem
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o In this model, we can finally predict what
“rational” players will do

o Will arrive (near) Nash bargaining point,
which maximizes product of extra utilities

(Ui - ming) (Uz - miny)



Theorem
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o NBP is unique outcome that is

o optimal (on Pareto frontier)

o symmetric (utilities are equal if
possible outcomes are symmetric) ,

o scale-invariant

o independent of irrelevant alternatives



Scale invariance




Independence of irrelevant alternatives
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[_.unch with Rubinstein
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o Can we use Rubinstein’s
game to predict outcome

of Lunch?

o Now an offer = “let’s
play this equilibrium”

o Must at least assume
communication

o What else?



[_.unch with Rubinstein
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o Can we use Rubinstein’s
game to predict outcome 4

of Lunch?
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o Now an offer = “let’s =
o 200/

play this equilibrium” s
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1001

o Must at least assume
communication
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(@) What else ? Value to player 1



What else?
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o Rubinstein assumes that
players know what will
happen if they disagree

o In pie-splitting it’s obvious

o In general, just as hard as
agreeing in the first place



Disagreement over Lunch
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o In Lunch, one NE is an

obvious disagreement 400)

point 300l
o But even this isn't S 200

completely obvious: 5

1007

strategy isn't same as

safety strategy w/ 0
same p ay Oﬁ ° 10\(3alue ’t%)oglayercioo 400
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Another
example



Let’s play the lottery

PISTNETETRE b, s L, Tt g A o B DA W A 4ty 2N L I i e L PRSP N T
100
:
75 RN . 1
E
50 — — Lottery 1
F Lottery 2
%) e, i 3
0 ) ) E

5%,2%  3%,3% 92%, 95%

o ($6, .05, $91, .03, $99, .92)
o ($6, .02, $8, .03, $99, .95)
o Which would you pick?



Rationality
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o People often pick

o (86, .05; $91, .03; $99, .92)
o over

o ($6, .02, $8, .03, $99, .95)

o But, note stochastic dominance



Stochastic
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dominance
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Birnbaum & Navarrete. Testing Descriptive
Utility Theories: Violations of Stochastic
Dominance and Cumulative Independence



Stochastic
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Birnbaum & Navarrete. Testing Descriptive
Utility Theories: Violations of Stochastic
Dominance and Cumulative Independence
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Learmng in
Games



Why study learmng n gamesV
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o To predict what humans will do
o 1o predict what “rational” agents will do
o To compute an equilibrium

o 1o build an agent that plays “well” with
minimal assumptions about others

o this seems like the most Al-ish goal



Learning
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o Start with beliefs / inductive bias (about
other players, Nature, rules of game...)

o During repeated plays of the game

o or during one long play of a game
where we can revisit the same or
similar states

o Adjust our own play to improve payoff



First try
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o Run any standard supervised learning
algorithm to predict

o payoff of each of my actions, or
o play of all other players

o Now act to maximize my predicted utility
on next turn



For example
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o In Rock-Paper-Scissors, suppose I tally
opponent’s past plays, and find.:

o 173 Rock, 173 Paper, 174 Scissors

o (or perhaps, tally opp’s plays in
situations “like” the current one)



For example
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o 173 Rock, 173 Paper, 174 Scissors

o Learning algorithm tells me Rock has
slightly higher predicted payoff

o So I play Rock



For example
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o Sadly, opponent played Paper.



For example
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o Tally is now 173, 174, 174

o So learning algo tells us to play Scissors
or Rock

o Say we break tie and pick Scissors



For example
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o Sadly, opponent played Rock.



For example
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o Tally is now 174, 174, 174

o So learning algo tells us everything'’s the
same

o Say we break tie and pick Paper



For example
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o Sadly, opponent played Scissors.



For example
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o Tally is now 174, 174, 175
o And cycle repeats



Fictitious play
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o Algorithm we just ran was called fictitious
play
o Could it really do this badly?

o Yes, if opponent knows we’re using F'P

o Knowing tie-break rule helps but isn'’t
essential
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Policy

o Even in self-play, FP can do badly

Fictitious play

Shapley's Game
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lterations

pd-paper
. pO-rock
pO-=Cissors
pl-paper
™. pl-rock
pl-sCissors




Second try
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o We were kind of short-sighted when we
chose to optimize our immediate utility

o What if we formulate a prior, not over
single plays, but over (infinite) sequences
of play (conditioned on our own strategy)?

o E.g., P(7th opp play is R, 12th is S | my
first 11 plays are RRRPRPRSSSR) = 0.013



Rational learner
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o Now we can look ahead: find best play
considering all future effects

o R might garner more predicted reward
now, but perhaps S will confuse opponent
and let me get more reward later...

o This is called rational learning

o A complete rational learner must also
specify tie-break rule



Rational learner: discussion
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o First problem: maximization over an
uncountable set of strategies

o Second problem: our play is still

deterministic, so if opponent gets a copy of
our code we’re still sunk

o What if we have a really big computer and
can hide our prior?



Theorem
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o Any vector of rational learners which
(mumble mumble) will, when playing each
other in a repeated game, approach the
play frequencies and payoffs of some Nash
equilibrium arbitrarily closely in the limit

Ehud Kalai and Ehud Lehrer. Rational Learning Leads to
Nash Equilibrium. Econometrica, Vol. 61, No. 5, 1993.



What does this theorem tell us?
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o Problem: “mumble mumble” actually
conceals a condition that’s difficult to
satisfy in practice

o for example, it was violated when we
peeked at prior and optimized response

o nobody knows whether there’s a weaker
condition that guarantees anything nice
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