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Recap

Matrix games
2 or more players choose action 
simultaneously
Each from a discrete set of choices
Payoff to each agent is a function of all 
agents’ choices (write as a collection of 
matrices)



Recap

Safety value is the best I can guarantee 
myself with worst-case assumptions about 
opponent
Also called maximin
If we assume more about opponent (e.g., 
rationality) we might be able to get more 
reward



Recap

Equilibrium = profile of strategies so that 
no one agent wants to deviate unilaterally

Nash: the one everyone talks about
Minimax: only makes sense in zero-sum 
two-player games, easier to compute
more later…



Recap

Pareto dominance: not all 
equilibria are created equal
For any in brown triangle, 
there is one on red line that’s 
at least as good for both 
players
Red line = Pareto dominant
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Finding Nash



Shapley’s game

A B C

1 0,0 1,0 0,1

2 0,1 0,0 1,0

3 1,0 0,1 0,0



Support enumeration algorithm

Enumerate all support sets for each player
Row: 1, 2, 3, 12, 13, 23, 123
Col: A, B, C, AB, AC, BC, ABC
7 × 7 = 49 possibilities

A B C
1 0,0 1,0 0,1
2 0,1 0,0 1,0
3 1,0 0,1 0,0



Support enumeration

For each pair of supports, solve an LP
Vars are P(action) for each action in 
support (one set for each player), and also 
expected value to each player
Constraints:

All actions in support have value v
All not in support have value ≤ v
Probabilities in support ≥ 0, sum to 1



Support enumeration

Checking singleton supports is easy: sum-
to-1 constraint means p=1 for action in 
support
So just check whether actions out of 
support are worse

A B C
1 0,0 1,0 0,1
2 0,1 0,0 1,0
3 1,0 0,1 0,0



Try 2-strategy supports: 12, AB

Payoff of Row 1: 0 p(A) + 1 p(B) = v
Payoff of Row 2: 0 p(A) + 0 p(B) = v
Payoff of Col A: 0 p(1) + 1 p(2) = w
Payoff of Col B: 0 p(1) + 0 p(2) = w

A B C
1 0,0 1,0 0,1
2 0,1 0,0 1,0
3 1,0 0,1 0,0



Try 2-strategy supports: 12, AB

0 p(A) + 1 p(B) = v = 0 p(A) + 0 p(B)
0 p(1) + 1 p(2) = w = 0 p(1) + 0 p(2)
Row payoff ≥ row 3: v ≥ 1 p(A) + 0 p(B)
Col payoff ≥ col C: w ≥ 1 p(1) + 0 p(2)

A B C
1 0,0 1,0 0,1
2 0,1 0,0 1,0
3 1,0 0,1 0,0



More supports

Other 2-vs-2 are similar
We also need to try 1-vs-2, 1-vs-3, and 2-
vs-3, but in interest of brevity: they don’t 
work either
So, on the 49th iteration, we reach 123 vs 
ABC…



123 vs ABC

Row 1: 0 p(A) + 1 p(B) + 0 p(C) = v
Row 2: 0 p(A) + 0 p(B) + 1 p(C) = v
Row 3: 1 p(A) + 0 p(B) + 0 p(C) = v
So, p(A) = p(B) = p(C) = v = 1/3

A B C
1 0,0 1,0 0,1
2 0,1 0,0 1,0
3 1,0 0,1 0,0



123 vs ABC

Col A: 0 p(1) + 0 p(2) + 1 p(3) = w
Col B: 1 p(1) + 0 p(2) + 0 p(3) = w
Col C: 0 p(1) + 1 p(2) + 0 p(3) = w
So, p(1) = p(2) = p(3) = w = 1/3

A B C
1 0,0 1,0 0,1
2 0,1 0,0 1,0
3 1,0 0,1 0,0



Nash of Shapley

There are nonnegative probs p(1), p(2), & 
p(3) for Row that equalize Col’s payoffs 
for ABC
There are nonnegative probs p(A), p(B), & 
p(C) for Col that equalize Row’s payoffs 
for 123
No strategies outside of supports to check
So, we’ve found the (unique) NE



Correlated 
equilibrium



Correlated equilibrium

If there is intelligent life on other planets, 
in a majority of them, they would have 
discovered correlated equilibrium before 
Nash equilibrium.

—Roger Myerson



The game of “Lunch”

A U

A 4, 3 0, 0

U 0, 0 3, 4



Moderator

A moderator has a big deck of cards
Each card has written on it a 
recommended action for each player
Moderator draws a card, whispers 
actions to corresponding players

actions may be correlated
only find out your own

Row: Ali 
Baba

Col: Union 
Grill

♠

♠



Correlated equilibrium

Since players can have correlated 
actions, an equilibrium with a 
moderator is called a correlated 
equilibrium
Example: 5-way stoplight
All NE are CE
At least as many CE as NE in every 
game (often strictly more)

stop
stop
go

stop
stop

♠

♠



Realism?

Moderators are often available
Sometimes have to be kind of clever
E.g., can simulate a moderator using 
cheap talk and some crypto
Or, can use private function of public 
randomness (e.g., headline of NY Times, # 
of sunspots, or even past history of play)



Finding correlated equilibrium

P(Row is recommended to play A) = a + b
P(Col recommended A | Row 
recommended A) = a / (a + b)
Rationality: when I’m recommended to 
play A, I don’t want to play U instead

A U
A a b
U c d



Rationality constraint
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Figure 21.1 Equilibria in the Battle of the Sexes. The corners of the outlined
simplex correspond to the four pure strategy profiles OO, OF, FO, and FF; the
curved surface is the set of distributions where the row and column players pick
independently; the convex shaded polyhedron is the set of correlated equilibria.
The Nash equilibria are the points where the curved surface intersects the shaded
polyhedron.

and FF:

O F

O a b

F c d

Suppose that the row player receives the recommendation O. Then it knows that
the column player will play O and F with probabilities a/(a + b) and b/(a + b). (The
denominator is nonzero since the row player has received the recommendation O.)
The definition of correlated equilibrium states that in this situation the row player’s
payoff for playing O must be at least as large as its payoff for playing F.

In other words, in a correlated equilibrium we must have

4
a

a + b
+ 0

b

a + b
≥ 0

a

a + b
+ 3

b

a + b
if a + b > 0

Multiplying through by a + b yields the linear inequality

4a + 0b ≥ 0a + 3b (21.2)

(We have discarded the qualification a+b > 0 since inequality 21.2 is always true in
this case.) On the other hand, by examining the case where the row player receives

A U
A a b
U c d

A U
A 4,3 0,0
U 0,0 3,4
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Rationality constraint is linear
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All rationality constraints
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the recommendation F, we can show that

0c + 3d ≥ 4c + 0d . (21.3)

Similarly, the column player’s two possible recommendations tell us that

3a + 0c ≥ 0a + 4c (21.4)

and

0b + 4d ≥ 3b + 0d . (21.5)

Intersecting the four constraints (21.2–21.5), together with the simplex constraints

a + b + c + d = 1

and

a, b, c, d ≥ 0

yields the set of correlated equilibria. The set of correlated equilibria is shown as
the six-sided shaded polyhedron in figure 21.1. (Figure 21.1 is adapted from (Nau
et al., 2004).)

For a game with multiple players and multiple strategies we will have more
variables and constraints: one nonnegative variable per strategy profile, one equality
constraint which ensures that the variables represent a probability distribution, and
one inequality constraint for each ordered pair of distinct strategies of each player.
(A typical example of the last type of constraint is “given that the moderator
tells player i to play strategy j, player i doesn’t want to play k instead.”) All
of these constraints together describe a convex polyhedron. The number of faces
of this polyhedron is no larger than the number of inequality and nonnegativity
constraints given above, but the number of vertices can be much larger.

The Nash equilibria for Battle of the Sexes are a subset of the correlated
equilibria. The large tetrahedron in figure 21.1 represents the set of probability
distributions over strategy profiles. In most of these probability distributions the
players’ action choices are correlated. If we constrain the players to pick their
actions independently, we are restricting the allowable distributions. The set of
distributions which factor into independent row and column strategy choices is
shown as a hyperbola in figure 21.1. The constraints which define an equilibrium
remain the same, so the Nash equilibria are the three places where the hyperbola
intersects the six-sided polyhedron.

21.3 Learning in One-Step Games

In normal-form games we have assumed that the description of the game is common
knowledge: everyone knows all of the rules of the game and the motivations of the
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Suppose that the row player receives the recommendation O. Then it knows that
the column player will play O and F with probabilities a/(a + b) and b/(a + b). (The
denominator is nonzero since the row player has received the recommendation O.)
The definition of correlated equilibrium states that in this situation the row player’s
payoff for playing O must be at least as large as its payoff for playing F.

In other words, in a correlated equilibrium we must have
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Multiplying through by a + b yields the linear inequality

4a + 0b ≥ 0a + 3b (21.2)

(We have discarded the qualification a+b > 0 since inequality 21.2 is always true in
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Row recommendation A

Row recommendation U

Col recommendation A

Col recommendation U

A U
A a b
U c d

A U
A 4,3 0
U 0 3,4



Correlated equilibrium
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Correlated equilibrium payoffs

0 100 200 300 400

0

100

200

300

400

Value to player 1

V
a

lu
e

 t
o

 p
la

y
e

r 
2

Figure 1: Illustration of feasible values, safety values, equilibria, Pareto domi-
nance, and the Folk Theorem for RBoS.

problem facing two people who go out to an event every weekend, either the
opera (O) or football (F ). One person prefers opera, the other prefers football,
but they both prefer to go together: the one-step reward function is

O F
O 3, 4 0, 0
F 0, 0 4, 3

Player p wants to maximize her expected total discounted future value Vp; we
discount rewards t steps in the future by γt = 0.99t. Figure 1 displays the
expected value vector (E(V1), E(V2)) for a variety of situations.

The shaded triangle in Figure 1, blue where color is available, is the set
of feasible expected-value vectors. Each of the points in this triangle is the
expected-value vector of some joint policy (not necessarily an equilibrium).

The single-round Battle of the Sexes game has three Nash equilibria. Re-
peatedly playing any one of these equilibria yields an equilibrium of RBoS, and
the resulting expected-value vectors are marked with circles in Figure 1. Some
learning algorithms guarantee convergence of average payoffs to one of these
points in self-play. For example, one such algorithm is gradient descent in the
space of an agent’s mixed strategies, since RBoS is a 2× 2 repeated game [15].

Other algorithms, such as the no-regret learners mentioned above, guarantee
that they will achieve at least the safety value of the game. The safety values
for the two players are shown as horizontal and vertical thin dashed lines. So,
two such algorithms playing against each other will arrive at a value vector
somewhere inside the dashed pentagon (cyan where color is available).

The Folk Theorem tells us that RBoS has a Nash equilibrium for every point

4



Bargaining



Predicting outcomes

We’ve talked about different things we 
might assume about “rational” agents
Each assumption leads to different 
predictions about set of possible outcomes
E.g., independent utility maximizers 
should reach a Nash equilibrium
E.g., adding a moderator increases 
possible outcomes to set of CE



Predicting outcomes

But so far we can’t predict what will 
actually happen when “rational” agents 
play a game together
Most specific prediction so far is Pareto 
frontier (of either set of Nash or set of CE)
Next: try adding “cheap talk” to see 
whether we finally get a unique prediction



Return of “Lunch”

A U

A 4, 3 0, 0

U 0, 0 3, 4

A = Ali Baba, U = Union Grill



Rubinstein’s game

Two players split a pie
Each has concave, increasing utility for a 
share in [0,1]



Rubinstein’s game

Bargain by alternating offers:
Alice offers 60-40
Bob says no, how about 30-70
Alice says no, wants 55-45
Bob says OK

Alice gets γ2UA(0.55), Bob: γ2UB(0.45)
In case of disagreement, no pie for anyone



Rubinstein’s game

Bargain by alternating offers:
Alice offers 60-40
Bob says no, how about 30-70
Alice says no, wants 55-45
Bob says OK

Alice gets γ2UA(0.55), Bob: γ2UB(0.45)
In case of disagreement, no pie for anyone



Theorem

In this model, we can finally predict what 
“rational” players will do
Will arrive (near) Nash bargaining point, 
which maximizes product of extra utilities

 (U1 - min1) (U2 - min2)



Theorem

NBP is unique outcome that is
optimal (on Pareto frontier)
symmetric (utilities are equal if 
possible outcomes are symmetric)
scale-invariant
independent of irrelevant alternatives



Scale invariance



Independence of irrelevant alternatives



Lunch with Rubinstein

Can we use Rubinstein’s 
game to predict outcome 
of Lunch?
Now an offer = “let’s 
play this equilibrium”
Must at least assume 
communication
What else?



Lunch with Rubinstein

Can we use Rubinstein’s 
game to predict outcome 
of Lunch?
Now an offer = “let’s 
play this equilibrium”
Must at least assume 
communication
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What else?

Rubinstein assumes that 
players know what will 
happen if they disagree
In pie-splitting it’s obvious
In general, just as hard as 
agreeing in the first place



Disagreement over Lunch

In Lunch, one NE is an 
obvious disagreement 
point
But even this isn’t 
completely obvious: 
strategy isn’t same as 
safety strategy w/ 
same payoff 0 100 200 300 400
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Another 
example



Let’s play the lottery

($6, .05; $91, .03; $99, .92) 
($6, .02; $8, .03; $99, .95)
Which would you pick?
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Rationality

People often pick 
($6, .05; $91, .03; $99, .92) 

over 
($6, .02; $8, .03; $99, .95)

But, note stochastic dominance



Stochastic dominance

Birnbaum & Navarrete. Testing Descriptive 
Utility Theories: Violations of Stochastic 

Dominance and Cumulative Independence
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Learning in 
Games



Why study learning in games?

To predict what humans will do
To predict what “rational” agents will do
To compute an equilibrium
To build an agent that plays “well” with 
minimal assumptions about others

this seems like the most AI-ish goal



Learning

Start with beliefs / inductive bias (about 
other players, Nature, rules of game…)
During repeated plays of the game

or during one long play of a game 
where we can revisit the same or 
similar states

Adjust our own play to improve payoff



First try

Run any standard supervised learning 
algorithm to predict

payoff of each of my actions, or
play of all other players

Now act to maximize my predicted utility 
on next turn



For example

In Rock-Paper-Scissors, suppose I tally 
opponent’s past plays, and find:

173 Rock, 173 Paper, 174 Scissors
(or perhaps, tally opp’s plays in 
situations “like” the current one)



For example

173 Rock, 173 Paper, 174 Scissors
Learning algorithm tells me Rock has 
slightly higher predicted payoff
So I play Rock



For example

Sadly, opponent played Paper.



For example

Tally is now 173, 174, 174
So learning algo tells us to play Scissors 
or Rock
Say we break tie and pick Scissors



For example

Sadly, opponent played Rock.



For example

Tally is now 174, 174, 174
So learning algo tells us everything’s the 
same
Say we break tie and pick Paper



For example

Sadly, opponent played Scissors.



For example

Tally is now 174, 174, 175
And cycle repeats



Fictitious play

Algorithm we just ran was called fictitious 
play
Could it really do this badly?
Yes, if opponent knows we’re using FP
Knowing tie-break rule helps but isn’t 
essential



Fictitious play

Even in self-play, FP can do badly



Second try

We were kind of short-sighted when we 
chose to optimize our immediate utility
What if we formulate a prior, not over 
single plays, but over (infinite) sequences 
of play (conditioned on our own strategy)?
E.g., P(7th opp play is R, 12th is S | my 
first 11 plays are RRRPRPRSSSR) = 0.013



Rational learner

Now we can look ahead: find best play 
considering all future effects
R might garner more predicted reward 
now, but perhaps S will confuse opponent 
and let me get more reward later…
This is called rational learning
A complete rational learner must also 
specify tie-break rule



Rational learner: discussion

First problem: maximization over an 
uncountable set of strategies
Second problem: our play is still 
deterministic, so if opponent gets a copy of 
our code we’re still sunk
What if we have a really big computer and 
can hide our prior?



Theorem

Any vector of rational learners which 
(mumble mumble) will, when playing each 
other in a repeated game, approach the 
play frequencies and payoffs of some Nash 
equilibrium arbitrarily closely in the limit

Ehud Kalai and Ehud Lehrer. Rational Learning Leads to 
Nash Equilibrium. Econometrica, Vol. 61, No. 5, 1993.



What does this theorem tell us?

Problem: “mumble mumble” actually 
conceals a condition that’s difficult to 
satisfy in practice

for example, it was violated when we 
peeked at prior and optimized response
nobody knows whether there’s a weaker 
condition that guarantees anything nice



What does this theorem tell us?

Problem: there are often a lot of Nash 
equilibria

0 100 200 300 400

0

100

200

300

400

Value to player 1

V
a
lu

e
 t
o
 p

la
y
e
r 

2

Figure 1: Illustration of feasible values, safety values, equilibria, Pareto domi-
nance, and the Folk Theorem for RBoS.

problem facing two people who go out to an event every weekend, either the
opera (O) or football (F ). One person prefers opera, the other prefers football,
but they both prefer to go together: the one-step reward function is

O F
O 3, 4 0, 0
F 0, 0 4, 3

Player p wants to maximize her expected total discounted future value Vp; we
discount rewards t steps in the future by γt = 0.99t. Figure 1 displays the
expected value vector (E(V1), E(V2)) for a variety of situations.

The shaded triangle in Figure 1, blue where color is available, is the set
of feasible expected-value vectors. Each of the points in this triangle is the
expected-value vector of some joint policy (not necessarily an equilibrium).

The single-round Battle of the Sexes game has three Nash equilibria. Re-
peatedly playing any one of these equilibria yields an equilibrium of RBoS, and
the resulting expected-value vectors are marked with circles in Figure 1. Some
learning algorithms guarantee convergence of average payoffs to one of these
points in self-play. For example, one such algorithm is gradient descent in the
space of an agent’s mixed strategies, since RBoS is a 2× 2 repeated game [15].

Other algorithms, such as the no-regret learners mentioned above, guarantee
that they will achieve at least the safety value of the game. The safety values
for the two players are shown as horizontal and vertical thin dashed lines. So,
two such algorithms playing against each other will arrive at a value vector
somewhere inside the dashed pentagon (cyan where color is available).

The Folk Theorem tells us that RBoS has a Nash equilibrium for every point
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