## 15-780: Graduate AI Lecture 21. Learning in Games

Geoff Gordon (this lecture) Ziv Bar-Joseph TAs Michael Benisch, Yang Gu

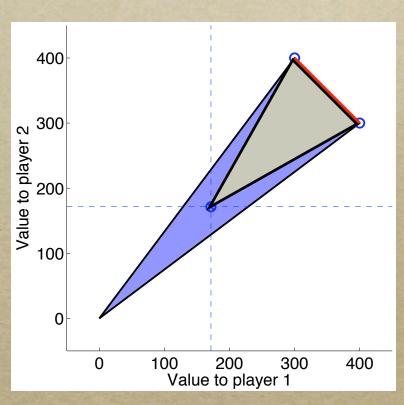
- Matrix games
  - 2 or more players choose action simultaneously
  - Each from a discrete set of choices
  - Payoff to each agent is a function of all agents' choices (write as a collection of matrices)

- Safety value is the best I can guarantee myself with worst-case assumptions about opponent
- Also called maximin
- If we assume more about opponent (e.g., rationality) we might be able to get more reward

- Equilibrium = profile of strategies so that no one agent wants to deviate unilaterally
  - Nash: the one everyone talks about
  - Minimax: only makes sense in zero-sum two-player games, easier to compute
  - o more later...

- Pareto dominance: not all equilibria are created equal
- For any in brown triangle, there is one on red line that's at least as good for both players





## Finding Nash

## Shapley's game

|   | A   | В   | C   |
|---|-----|-----|-----|
| 1 | 0,0 | 1,0 | 0,1 |
| 2 | 0,1 | 0,0 | 1,0 |
| 3 | 1,0 | 0,1 | 0,0 |

## Support enumeration algorithm

|   | A   | B   | C   |
|---|-----|-----|-----|
| 1 | 0,0 | 1,0 | 0,1 |
| 2 | 0,1 | 0,0 | 1,0 |
| 3 | 1,0 | 0,1 | 0,0 |

- Enumerate all support sets for each player
- o Row: 1, 2, 3, 12, 13, 23, 123
- Col: A, B, C, AB, AC, BC, ABC
- $\circ$  7 × 7 = 49 possibilities

### Support enumeration

- o For each pair of supports, solve an LP
- Vars are P(action) for each action in support (one set for each player), and also expected value to each player
- Constraints:
  - All actions in support have value v
  - All not in support have value  $\leq v$
  - ∘ Probabilities in support  $\geq 0$ , sum to 1

### Support enumeration

|   | A   | В   | C   |
|---|-----|-----|-----|
| 1 | 0,0 | 1,0 | 0,1 |
| 2 | 0,1 | 0,0 | 1,0 |
| 3 | 1,0 | 0,1 | 0,0 |

- Checking singleton supports is easy: sumto-1 constraint means p=1 for action in support
- So just check whether actions out of support are worse

## Try 2-strategy supports: 12, AB

|   | A   | B   | C   |
|---|-----|-----|-----|
| 1 | 0,0 | 1,0 | 0,1 |
| 2 | 0,1 | 0,0 | 1,0 |
| 3 | 1,0 | 0,1 | 0,0 |

- Payoff of Row 1: 0 p(A) + 1 p(B) = v
- Payoff of Row 2: 0 p(A) + 0 p(B) = v
- Payoff of Col A: 0 p(1) + 1 p(2) = w
- Payoff of Col B: 0 p(1) + 0 p(2) = w

## Try 2-strategy supports: 12, AB

|   | A   | B   | C   |
|---|-----|-----|-----|
| 1 | 0,0 | 1,0 | 0,1 |
| 2 | 0,1 | 0,0 | 1,0 |
| 3 | 1,0 | 0,1 | 0,0 |

$$\circ \ 0 \ p(A) + 1 \ p(B) = v = 0 \ p(A) + 0 \ p(B)$$

$$\circ \ 0 \ p(1) + 1 \ p(2) = w = 0 \ p(1) + 0 \ p(2)$$

- Row payoff  $\geq row 3: v \geq 1 p(A) + 0 p(B)$
- $Col \ payoff \ge col \ C: w \ge 1 \ p(1) + 0 \ p(2)$

## More supports

- o Other 2-vs-2 are similar
- We also need to try 1-vs-2, 1-vs-3, and 2-vs-3, but in interest of brevity: they don't work either
- So, on the 49th iteration, we reach 123 vs ABC...

#### 123 vs ABC

|   | A   | B   | C   |
|---|-----|-----|-----|
| 1 | 0,0 | 1,0 | 0,1 |
| 2 | 0,1 | 0,0 | 1,0 |
| 3 | 1,0 | 0,1 | 0,0 |

$$\circ$$
 Row 1: 0  $p(A) + 1 p(B) + 0 p(C) = v$ 

$$\circ$$
 Row 2: 0  $p(A) + 0 p(B) + 1 p(C) = v$ 

$$\circ$$
 Row 3: 1  $p(A) + 0 p(B) + 0 p(C) = v$ 

$$\circ$$
 So,  $p(A) = p(B) = p(C) = v = 1/3$ 

#### 123 vs ABC

|   | A   | B   | C   |
|---|-----|-----|-----|
| 1 | 0,0 | 1,0 | 0,1 |
| 2 | 0,1 | 0,0 | 1,0 |
| 3 | 1,0 | 0,1 | 0,0 |

$$\circ$$
 Col A:  $0 p(1) + 0 p(2) + 1 p(3) = w$ 

$$\circ$$
 Col B:  $1 p(1) + 0 p(2) + 0 p(3) = w$ 

$$\circ$$
 Col C:  $0 p(1) + 1 p(2) + 0 p(3) = w$ 

$$\circ$$
 So,  $p(1) = p(2) = p(3) = w = 1/3$ 

## Nash of Shapley

- There are nonnegative probs p(1), p(2), & p(3) for Row that equalize Col's payoffs for ABC
- There are nonnegative probs p(A), p(B), & p(C) for Col that equalize Row's payoffs for 123
- No strategies outside of supports to check
- o So, we've found the (unique) NE

# Correlated equilibrium

## Correlated equilibrium

If there is intelligent life on other planets, in a majority of them, they would have discovered correlated equilibrium before Nash equilibrium.

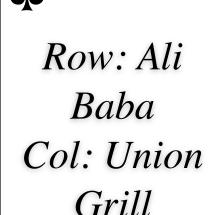
-Roger Myerson

## The game of "Lunch"

|   | A    | U    |
|---|------|------|
| A | 4, 3 | 0, 0 |
| U | 0, 0 | 3, 4 |

#### Moderator

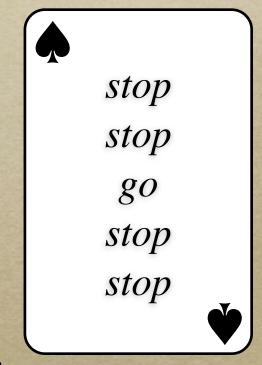
- A moderator has a big deck of cards
- Each card has written on it a recommended action for each player
- Moderator draws a card, whispers actions to corresponding players
  - o actions may be correlated
  - o only find out your own





## Correlated equilibrium

- Since players can have correlated actions, an equilibrium with a moderator is called a correlated equilibrium
- Example: 5-way stoplight
- All NE are CE
- At least as many CE as NE in every game (often strictly more)



#### Realism?

- Moderators are often available
- Sometimes have to be kind of clever
- E.g., can simulate a moderator using cheap talk and some crypto
- Or, can use private function of public randomness (e.g., headline of NY Times, # of sunspots, or even past history of play)

## Finding correlated equilibrium

|   | A | U |
|---|---|---|
| A | a | b |
| U | c | d |

- $P(Row\ is\ recommended\ to\ play\ A) = a + b$
- $P(Col\ recommended\ A\mid Row$  $recommended\ A) = a/(a+b)$
- Rationality: when I'm recommended to play A, I don't want to play U instead

$$4\frac{a}{a+b} + 0\frac{b}{a+b} \ge 0\frac{a}{a+b} + 3\frac{b}{a+b}$$
 if  $a+b > 0$ 

|   | A | U |
|---|---|---|
| A | a | b |
| U | c | d |

|   | A   | U   |
|---|-----|-----|
| A | 4,3 | 0,0 |
| U | 0,0 | 3,4 |

 $Rpayoff(A, A) P(col A \mid row A)$ 

$$4\frac{a}{a+b} + 0\frac{b}{a+b} \ge 0\frac{a}{a+b} + 3\frac{b}{a+b}$$
 if  $a+b > 0$ 

|   | A | U |   | A   | U   |
|---|---|---|---|-----|-----|
| A | a | b | A | 4,3 | 0,0 |
| U | c | d | U | 0,0 | 3,4 |

Rpayoff(A, A) P(col A | row A)

$$4\frac{a}{a+b} + 0\frac{b}{a+b} \ge 0\frac{a}{a+b} + 3\frac{b}{a+b} \qquad \text{if } a+b > 0$$

Rpay(A, U) P(U | A)

|   | A | U |   | A   | U   |
|---|---|---|---|-----|-----|
| A | a | b | A | 4,3 | 0,0 |
| U | c | d | U | 0,0 | 3,4 |

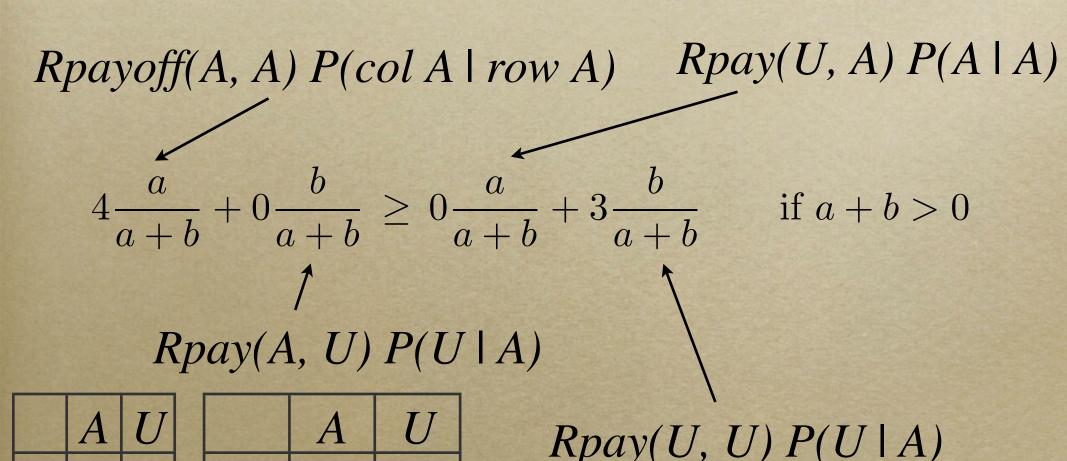
$$Rpayoff(A, A) P(col A \mid row A) \qquad Rpay(U, A) P(A \mid A)$$

$$4\frac{a}{a+b} + 0\frac{b}{a+b} \ge 0\frac{a}{a+b} + 3\frac{b}{a+b} \qquad \text{if } a+b > 0$$

$$Rpay(A, U) P(U \mid A)$$

|   | A | U |
|---|---|---|
| A | a | b |
| U | c | d |

|   | A   | U   |
|---|-----|-----|
| A | 4,3 | 0,0 |
| U | 0,0 | 3,4 |



## Rationality constraint is linear

$$4\frac{a}{a+b} + 0\frac{b}{a+b} \ge 0\frac{a}{a+b} + 3\frac{b}{a+b}$$
 if  $a+b > 0$ 

$$4a + 0b \ge 0a + 3b$$

## All rationality constraints

|   | A | U |
|---|---|---|
| A | a | b |
| U | c | d |

|   | A   | U   |
|---|-----|-----|
| A | 4,3 | 0   |
| U | 0   | 3,4 |

Row recommendation A

$$4a + 0b \ge 0a + 3b$$

Row recommendation U

$$0c + 3d \ge 4c + 0d$$

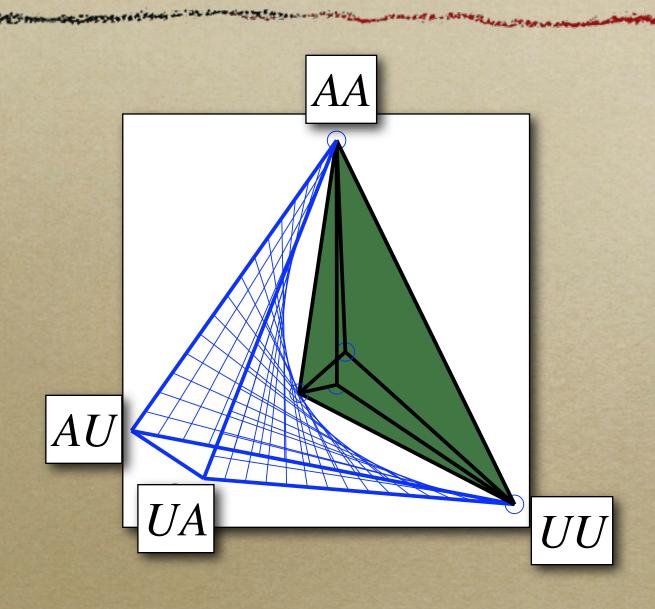
Col recommendation A

$$3a + 0c \ge 0a + 4c$$

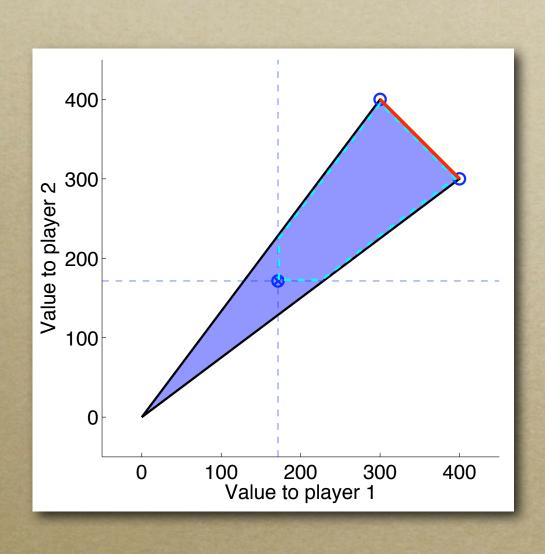
Col recommendation U

$$0b + 4d \ge 3b + 0d$$

## Correlated equilibrium



## Correlated equilibrium payoffs



## Bargaining

## Predicting outcomes

- We've talked about different things we might assume about "rational" agents
- Each assumption leads to different predictions about set of possible outcomes
- E.g., independent utility maximizers should reach a Nash equilibrium
- E.g., adding a moderator increases possible outcomes to set of CE

## Predicting outcomes

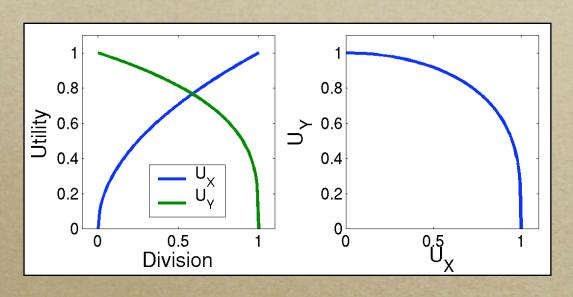
- But so far we can't predict what will actually happen when "rational" agents play a game together
- Most specific prediction so far is Pareto frontier (of either set of Nash or set of CE)
- Next: try adding "cheap talk" to see
   whether we finally get a unique prediction

#### Return of "Lunch"

|   | A    | U    |
|---|------|------|
| A | 4, 3 | 0, 0 |
| U | 0, 0 | 3, 4 |

A = Ali Baba, U = Union Grill

# Rubinstein's game





- Two players split a pie
- Each has concave, increasing utility for a share in [0,1]

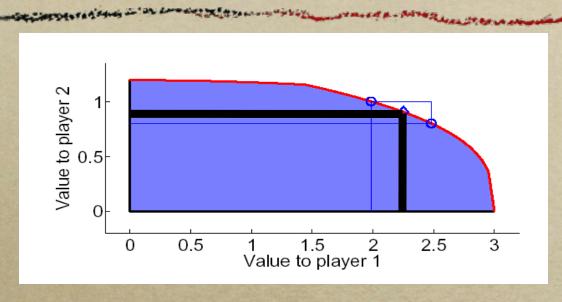
#### Rubinstein's game

- Bargain by alternating offers:
  - Alice offers 60-40
  - o Bob says no, how about 30-70
  - o Alice says no, wants 55-45
  - Bob says OK
- Alice gets  $\gamma^2 U_A(0.55)$ , Bob:  $\gamma^2 U_B(0.45)$
- o In case of disagreement, no pie for anyone

#### Rubinstein's game

- Bargain by alternating offers:
  - o Alice offers 60-40
  - o Bob says no, how about 30-70
  - o Alice says no, wants 55-45
  - Bob says OK
- Alice gets  $\gamma^2 U_A(0.55)$ , Bob:  $\gamma^2 U_B(0.45)$
- o In case of disagreement, no pie for anyone

#### Theorem



- In this model, we can finally predict what "rational" players will do
- Will arrive (near) Nash bargaining point, which maximizes product of extra utilities

 $(U_1 - min_1)(U_2 - min_2)$ 

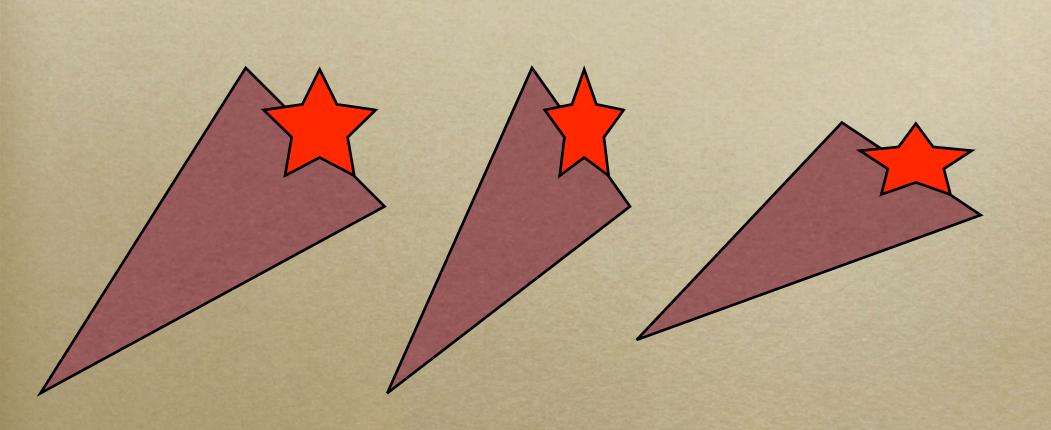
#### Theorem

- NBP is unique outcome that is
  - o optimal (on Pareto frontier)
  - symmetric (utilities are equal if possible outcomes are symmetric)

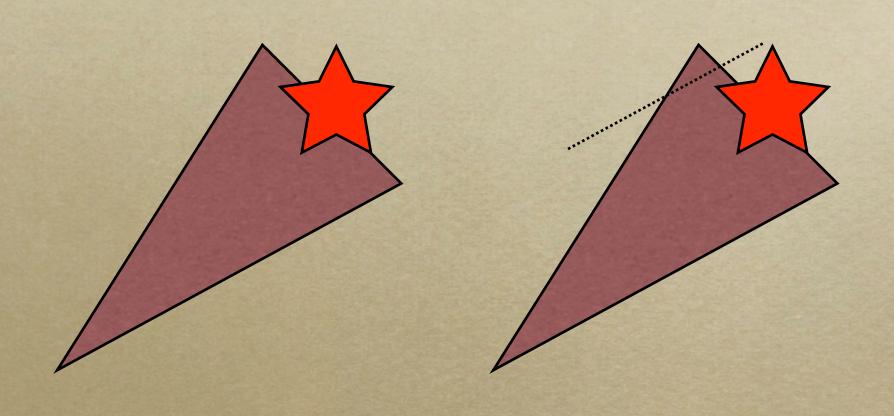


- scale-invariant
- o independent of irrelevant alternatives

#### Scale invariance



# Independence of irrelevant alternatives

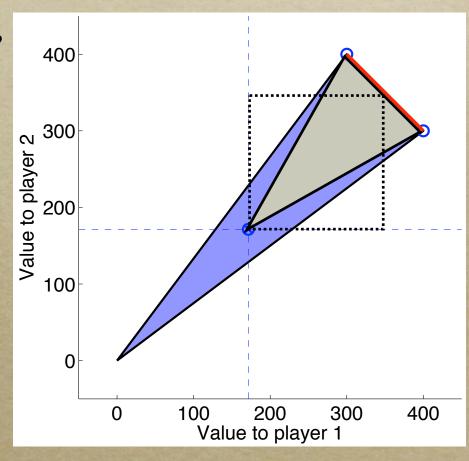


#### Lunch with Rubinstein

- Can we use Rubinstein's game to predict outcome of Lunch?
- Now an offer = "let's play this equilibrium"
- Must at least assume communication
- What else?

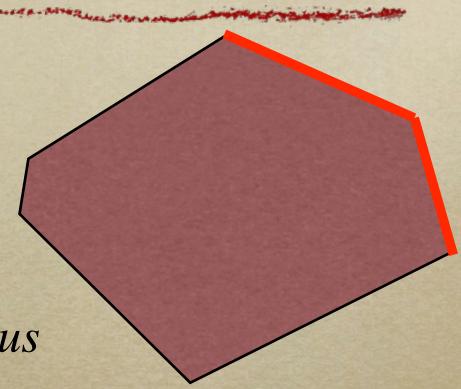
#### Lunch with Rubinstein

- Can we use Rubinstein's game to predict outcome of Lunch?
- Now an offer = "let's play this equilibrium"
- Must at least assume communication
- What else?



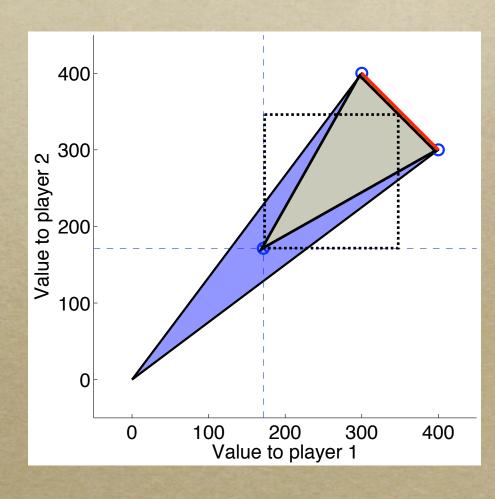
#### What else?

- Rubinstein assumes that players know what will happen if they disagree
- o In pie-splitting it's obvious
- In general, just as hard as agreeing in the first place



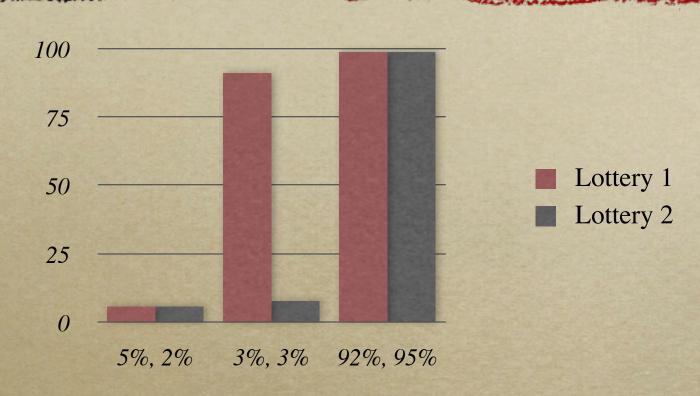
#### Disagreement over Lunch

- In Lunch, one NE is an obvious disagreement point
- But even this isn't
   completely obvious:
   strategy isn't same as
   safety strategy w/
   same payoff



# Another example

# Let's play the lottery

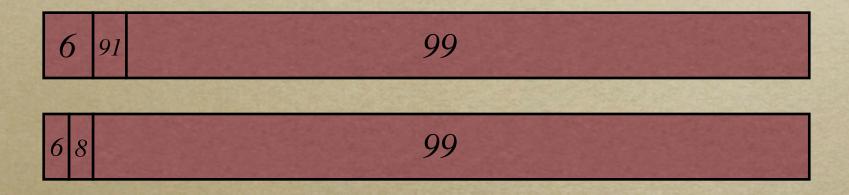


- o (\$6, .05; \$91, .03; \$99, .92)
- o (\$6, .02; \$8, .03; \$99, .95)
- Which would you pick?

# Rationality

- People often pick
  - o (\$6, .05; \$91, .03; \$99, .92)
- o over
  - (\$6, .02; \$8, .03; \$99, .95)
- o But, note stochastic dominance

#### Stochastic dominance



Birnbaum & Navarrete. Testing Descriptive Utility Theories: Violations of Stochastic Dominance and Cumulative Independence

#### Stochastic dominance



Birnbaum & Navarrete. Testing Descriptive Utility Theories: Violations of Stochastic Dominance and Cumulative Independence

# Learning in Games

# Why study learning in games?

- o To predict what humans will do
- o To predict what "rational" agents will do
- o To compute an equilibrium
- To build an agent that plays "well" with minimal assumptions about others
  - o this seems like the most AI-ish goal

# Learning

- Start with beliefs / inductive bias (about other players, Nature, rules of game...)
- During repeated plays of the game
  - or during one long play of a game where we can revisit the same or similar states
- Adjust our own play to improve payoff

# First try

- Run any standard supervised learning algorithm to predict
  - o payoff of each of my actions, or
  - o play of all other players
- Now act to maximize my predicted utility on next turn

- In Rock-Paper-Scissors, suppose I tally opponent's past plays, and find:
  - o 173 Rock, 173 Paper, 174 Scissors
  - (or perhaps, tally opp's plays in situations "like" the current one)

- o 173 Rock, 173 Paper, 174 Scissors
- Learning algorithm tells me Rock has slightly higher predicted payoff
- So I play Rock

Sadly, opponent played Paper.

- o Tally is now 173, 174, 174
- So learning algo tells us to play Scissors or Rock
- Say we break tie and pick Scissors

Sadly, opponent played Rock.

- o Tally is now 174, 174, 174
- So learning algo tells us everything's the same
- Say we break tie and pick Paper

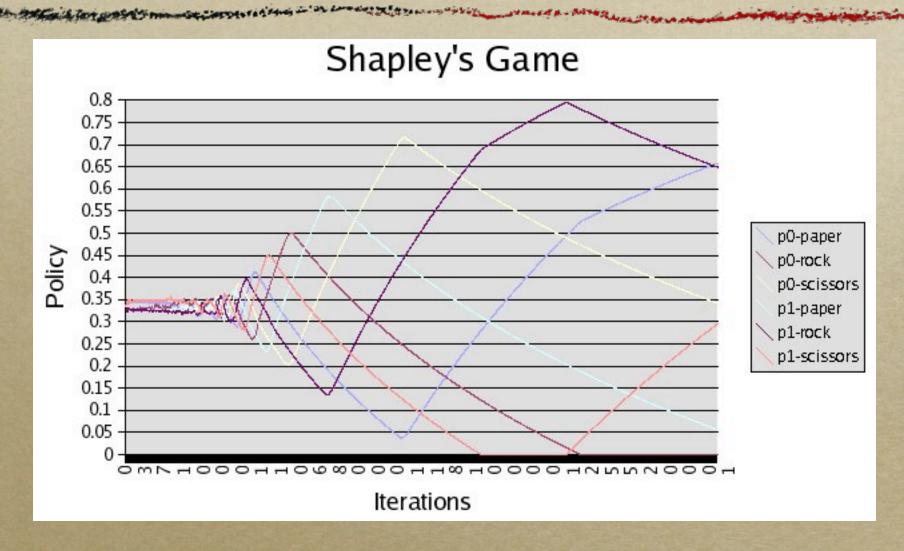
Sadly, opponent played Scissors.

- o Tally is now 174, 174, 175
- And cycle repeats

# Fictitious play

- Algorithm we just ran was called fictitious play
- Could it really do this badly?
- Yes, if opponent knows we're using FP
- Knowing tie-break rule helps but isn't essential

# Fictitious play



• Even in self-play, FP can do badly

#### Second try

- We were kind of short-sighted when we chose to optimize our immediate utility
- What if we formulate a prior, not over single plays, but over (infinite) sequences of play (conditioned on our own strategy)?
- E.g., P(7th opp play is R, 12th is S | my first 11 plays are RRRPRPRSSSR) = 0.013

#### Rational learner

- Now we can look ahead: find best play considering all future effects
- R might garner more predicted reward now, but perhaps S will confuse opponent and let me get more reward later...
- This is called rational learning
- A complete rational learner must also specify tie-break rule

#### Rational learner: discussion

- First problem: maximization over an uncountable set of strategies
- Second problem: our play is still deterministic, so if opponent gets a copy of our code we're still sunk
- What if we have a really big computer and can hide our prior?

#### Theorem

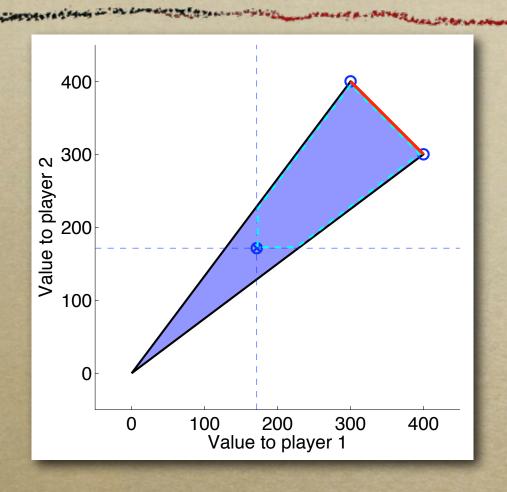
 Any vector of rational learners which (mumble mumble) will, when playing each other in a repeated game, approach the play frequencies and payoffs of some Nash equilibrium arbitrarily closely in the limit

Ehud Kalai and Ehud Lehrer. Rational Learning Leads to Nash Equilibrium. Econometrica, Vol. 61, No. 5, 1993.

#### What does this theorem tell us?

- Problem: "mumble mumble" actually conceals a condition that's difficult to satisfy in practice
  - for example, it was violated when we peeked at prior and optimized response
  - nobody knows whether there's a weaker condition that guarantees anything nice

#### What does this theorem tell us?



 Problem: there are often a lot of Nash equilibria