
15-780: Graduate AI
Lecture 1. Intro & Search

Geoff Gordon (this lecture)
Ziv Bar-Joseph

TAs Michael Benisch, Yang Gu

Admin

www.cs.cmu.edu/~ggordon/780/

Website highlights

Book: Russell and Norvig. Artificial
Intelligence: A Modern Approach, 2nd ed.
Grading
Final project
Office hours

Intro

What is AI?

Easy part: A
Hard part: I

Anything we don’t know how to make a
computer do yet
Corollary: once we do it, it isn’t AI
anymore :-)

Definition by examples

Deep Blue
TD-Gammon
Samuels’s checkers player
Mathematica

from http://www.math.wpi.edu/IQP/BVCalcHist/calc5.html

More examples

Grand Challenge road race

More examples

ITA software (http://beta.itasoftware.com)

More examples

Robocup

More examples

Marble-maze game

More examples

Air hockey

More examples

Valerie and Tank, the
Roboceptionists

More examples

Poker playing

http://www.cs.cmu.edu/~ggordon/poker/

More examples

Airline crew scheduling
Diagnosing F-18 engine faults

More examples

Riding a bicycle, learning to walk, playing
pool, …
AAAI competitions: rescue, standing in
line, …

More examples

The IMP
Robot exploring a building
Robot team exploration w/ markets

More examples

McCallum’s driving simulator
Kanfer-Ackerman air-traffic control task

More examples

Keeping track of other agents moving
Searching for wandering grad students
Getting rid of phone trees using POMDPs

Common threads

Search and optimization
Set the problem up well (so that we can
apply a standard algorithm)

Managing uncertainty
The more different types of uncertainty,
the harder the problem (and the slower
the solution)

Sources of uncertainty

Classic AI: no uncertainty, pure search
Mathematica
deterministic planning

This is the topic of Part I of the course

Opponents cause uncertainty

In chess, must guess what opponent will
do; cannot directly control him/her
Alternating moves: game trees (Part I)
Simultaneous or hidden moves: game
theory (Part III; computationally harder,
especially if a sequence of moves)

Outcome uncertainty

In backgammon, we don’t know ahead of
time what the dice will show
When driving a robot down a corridor,
wheel slippage will cause unexpected
deviations from commanded course
MDPs (Part II) or alternating-move
stochastic games (Part I)

Sensor uncertainty

Image of a handwritten digit → 0, 1, …, 9
Measurements of length, width of petals of
an iris → one of three species
Interpreting a camera image of a corridor
For a given set of measurements, multiple
answers may be possible
More on learning problems in Part II

Combining sensor and outcome
uncertainty

Build a robotic mouse
Lives in a cage with levers, lights, etc.
Pressing levers in the right sequence
dispenses a snack of robotic cheese
Move around, experiment w/ levers to turn
on lights, get robo-cheese
This is a POMDP (more in Part II)

Other agents cause uncertainty

In many AI problems, there are other
agents who aren’t (necessarily) opponents

Ignore them & pretend part of Nature
Assume they’re opponents (pessimistic)
Learn to cope with what they do
Try to cooperate (paradoxically, this is
the hardest case)

Part III

Search

How to build a robotic
grad student

Grad students need to:
take classes
do research
get free food from the CS lounge

Available classes

Grad AI: progress for graduation 4, time 4
Wine tasting: progress 1, time 2
Nonlinear Frobnitz Dynamics: progress 5,
time 11

Research

Student may work on research:
lots (L, time 9)
a moderate amount (M, time 4)
some (S, time 3)

Food

Pizza: 500 calories/slice
Donuts: 300 cal/each
Mountain Dew: 200 cal/each, $1/each

Notation

ClassGAI, ClassWT, ClassNFD (boolean)
R ε {S,M,L}
NumPizza, NumDonut, NumDew (int ≥ 0)

Constraints

Must take courses w/ ttl progress ≥ 5
Must eat 1000 ≤ calories ≤ 1500
Must spend ≤ $2

Total time ≤ 10

Solution by enumeration

Find feasible solutions for subproblem of
setting ClassGAI, ClassWT, ClassNFD

Can we do better?

What about partial state ClassNFD=T
(other vars unspecified)

Search graph

Node: ***, **F, **T, *F*, *FF, *FT, …

Alternate search graph

Nodes: FFF, FFT, FTF, FTT, …

Search graph

Node: solution or partial solution
Neighbor generating function
Solution test = yes, no, maybe

Nodes can be anything

List of variable settings
Mathematical formula
A set of flights that go from PIT to LAX
A graph

When a node is a graph

Not to be confused with search graph
E.g., a (partial) matching, a (partial)
spanning tree, or a (partial) path

Search graph for shortest path

Isomorphism

For path planning, if we prune non-
shortest paths, the search graph is
isomorphic to the original graph
Node X in original graph = shortest path
from start to X

Generic search

S = { some set of nodes } M = ∅

While (S ≠ ∅)

x ← some element of S, S ← S \ x
optional: M = M ∪ {x}

if (solution(x) = Y) return x
if (solution(x) = N) continue
S = S ∪ (neighbors(x) \ M)

Choices

Where to start?
Which element of S to visit next?
How much effort do we spend to avoid
previously visited nodes?

Just don’t return to parent
Keep nodes in path from start to X
Keep all nodes

Data structures: M

Need insert, membership test
hash table (expense of equality test?)
avoid M altogether using node ordering

only insert neighbors y > x into S
or just modify neighbors(x)

Data structures

For S: need insert, pop
LIFO (stack)
FIFO (queue)
priority queue (choice of priority)

Stack: DFS

DFS discussion

Advantages
low memory if search graph is shallow

Disadvantages
fails to terminate if graph has infinite
depth
May not find shallowest solution

Queue: BFS

BFS discussion

Advantages
low memory if graph is narrow (rare)
always finds shallowest solution

Disadvantages
common case: memory grows
exponentially with search depth

DFID

Run a DFS but limit search depth to k
If we fail to find a solution, increase k and
try again

DFID discussion

Combines advantages of BFS and DFS
Always low memory
Finds shallowest (or nearly shallowest)
solution
Also works for A* (described below)

Heuristic
Search

DFS looking stupid

start

goal

DFS looking stupid

start

goal

DFS looking stupid

start

goal

DFS looking stupid

start

goal

…skipping a few steps

start

goal

DFS looking stupid

start

goal

DFS looking stupid

start

goal

DFS looking stupid

start

goal

Heuristic search

Implement open set S with a priority queue
Ops: insert, update_priority, pop

Pop always gives node w/ best priority
Priority function = place to give the
search algorithm additional info
E.g., priority(x, y) = |gx-x| + |gy-y|

Heuristic search looking smart

start

goal

Heuristic search looking smart

start

goal

Heuristic search looking smart

start

goal

Heuristic search looking smart

start

goal

Heuristic search looking smart

start

goal

Heuristic search looking smart

start

goal

Heuristic search looking smart

start

goal

Heuristic search looking smart

start

goal

Question

What is optimal heuristic?

Question

When could heuristic search look dumb?
Can we find conditions we can satisfy that
guarantee that it won’t look dumb?

A* Search

A* search

Set priority to be: f(node) =
(Effort so far) + (admissible heuristic)
 = g(node) + h(node)

Effort so far = # nodes expanded on direct
path from start to node
Admissible heuristic: underestimates
distance to closest solution

A* details

What if we revisit a node already on the
queue?
Can we terminate when we generate a
goal node instead of when we expand it?

Admissible heuristic

Do admissible heuristics exist in practical
examples?
Yes: e.g.,

(5 - total_progress) / 5
Crow-flies distance in path planning

A* for robotic grad student

Node costs

Path costs

More complicated A* example

Optimal Solution End-effector Trajectory Probability of Obstacle Appearing Probability of Obstacle Appearing

So
lu

tio
n

C
os

t

St
at

e
Ex

pa
ns

io
ns

Figure 10: Environment used in our second experiment, along with the optimal solution and the end-effector trajectory (without
any dynamic obstacles). Also shown are the solution cost of the path traversed and the number of states expanded by each of
the three algorithms compared.

other words, by adding a fixed value to the key of each new
state placed on the queue, the old states are given a rela-
tive advantage in their queue placement. When a state is
popped off the queue whose key value is not in line with
the current bias term, it is placed back on the queue with an
updated key value. The intuition is that only a small num-
ber of the states previously on the queue may ever make
it to the top, so it can be much more efficient to only re-
order the ones that do. We can use the same idea when ε
decreases (from εo to εn, say) to increase the bias term by
(εo − εn) · maxs∈OPEN h(sstart, s). The key value of each
state becomes
key(s) = [min(g(s), rhs(s)) + ε · h(sstart, s) + bias,

min(g(s), rhs(s))].
By using the maximum heuristic value present in the queue
to update the bias term, we are guaranteeing that each state
already on the queue will be at least as elevated on the queue
as it should be relative to the new states being added. It is
future work to implement this approach but it appears to be
a promising modification.

Finally, it may be possible to reduce the effect of un-
derconsistent states in our repair of previous solution paths.
With the current version of AD*, underconsistent states need
to be placed on the queue with a key value that uses an un-
inflated heuristic value. This is because they could reside on
the old solution path and their true effect on the start state
may be much more than the inflated heuristic would suggest.
This means, however, that the underconsistent states quickly
rise to the top of the queue and are processed before many
overconsistent states. At times, these underconsistent states
may not have any effect on the value of the start state (for
instance when they do not reside upon the current solution
path). We are currently looking into ways of reducing the
number of underconsistent states examined, using ideas very
recently developed (Ferguson & Stentz 2005). This could
prove very useful in the current framework, where much of
the processing is done on underconsistent states that may not
turn out to have any bearing on the solution.

Conclusions
We have presented Anytime Dynamic A*, a heuristic-based,
anytime replanning algorithm able to efficiently generate so-

lutions to complex, dynamic path planning problems. The
algorithm works by continually decreasing a suboptimal-
ity bound on its solution, reusing previous search efforts as
much as possible. When changes in the environment are
encountered, it is able to repair its previous solution incre-
mentally. Our experiments and application of the algorithm
to two real-world robotic systems have shown it to be a valu-
able addition to the family of heuristic-based path planning
algorithms, and a useful tool in practise.

Acknowledgments
The authors would like to thank Sven Koenig for fruitful
discussions. This work was partially sponsored by DARPA’s
MARS program. Dave Ferguson is supported in part by an
NSF Graduate Research Fellowship.

References
Barbehenn, M., and Hutchinson, S. 1995. Efficient search
and hierarchical motion planning by dynamically maintain-
ing single-source shortest path trees. IEEE Transactions on
Robotics and Automation 11(2):198–214.
Barto, A.; Bradtke, S.; and Singh, S. 1995. Learning to
Act Using Real-Time Dynamic Programming. Artificial
Intelligence 72:81–138.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1-2):5–33.
Chakrabarti, P.; Ghosh, S.; and DeSarkar, S. 1988. Ad-
missibility of AO* when heuristics overestimate. Artificial
Intelligence 34:97–113.
Dean, T., and Boddy, M. 1988. An analysis of time-
dependent planning. In Proceedings of the National Con-
ference on Artificial Intelligence (AAAI).
Edelkamp, S. 2001. Planning with pattern databases. In
Proceedings of the European Conference on Planning.
Ersson, T., and Hu, X. 2001. Path planning and navigation
of mobile robots in unknown environments. In Proceedings
of the IEEE International Conference on Intelligent Robots
and Systems (IROS).
Ferguson, D., and Stentz, A. 2005. The Delayed D* Algo-
rithm for Efficient Path Replanning. In Proceedings of the

A* guarantees

Write g* for depth of shallowest solution
(optimality) A* finds a solution of depth g*
(efficiency) A* expands no nodes that have
f(node) > g*

A* proof

Will do a simple case: heuristic satisfies
“triangle inequality”
For all neighboring pairs (x, y)

h(x) ≤ h(y) + c(x, y)

A* proof

Both optimality and efficiency follow from:
Lemma. For any two nodes x and y which
have f(x) < f(y), A* expands x before y
To see why optimality and efficiency
follow, note goals have f(x) = g(x)

h(x) must be 0

Proof of lemma

Suppose f(y) > f(x) but we expand y first
Consider shortest path from start to x

Proof cont’d

Proof cont’d

So, all nodes w on path to x have
f(w) ≤ f(x) < f(y)

At least one such w is always on queue
while x has not been expanded (possibly
we have w = x)
So if x has not yet been expanded, we must
pick w before we expand y — QED

A* extensions

Suboptimal: use non-admissible heuristic,
lose guarantees but maybe increase speed
Anytime: start with suboptimal solution,
gradually improve it
Dynamic: fast replan if map changes

Anytime, dynamic planning

Figure 7: The ATRV robotic platform. Also shown are two images of the robot moving from the left side to the right side of an
initially-unknown outdoor environment using AD* for updating and improving its solution path.

Solving this initial 4D search in large environments can be
computationally costly, and an optimal solution may be in-
feasible if the initial processing time of the robot is limited.

Once the robot starts moving, it is highly unlikely that it
will be able to replan an optimal path if it discovers changes
in the environment. But if the environment is only partially-
known or is dynamic, either of which is common in the ur-
ban areas we are interested in traversing, changes will cer-
tainly be discovered. As a result, the robot needs to be able
to quickly generate suboptimal solutions when new infor-
mation is gathered, then improve these solutions as much as
possible given its processing constraints.

We have used AD* to provide this capability for two
robotic platforms currently used for outdoor navigation. To
direct the 4D search in each case, we use a fast 2D (x, y)
planner to provide the heuristic values. Figure 7 shows our
first system, an ATRV vehicle equipped with two laser range
finders for mapping and an inertial measurement unit for po-
sition estimation. Also shown in Figure 7 are two images
taken of the map and path generated by the robot as it tra-
versed from one side of an initially-unknown environment to
the other. The 4D state space for this problem has roughly 20
million states, however AD* was able to provide fast, safe
trajectories in real-time.

We have also implemented AD* on a Segway Robotic
Mobility Platform, shown in Figure 8. Using AD*, it has
successfully navigated back and forth across a substantial
part of the Stanford campus.

Experimental Results
To evaluate the performance of AD*, we compared it to
ARA* and D* Lite (with an inflation factor of ε = 20) on
a simulated 3 degree of freedom (DOF) robotic arm manip-
ulating an end-effector through a dynamic environment (see
Figures 9 and 10). In this set of experiments, the base of
the arm is fixed, and the task is to move into a particular
goal configuration while navigating the end-effector around
fixed and dynamic obstacles. We used a manufacturing-like
scenario for testing, where the links of the arm exist in an
obstacle-free plane, but the end-effector projects down into a
cluttered space (such as a conveyor belt moving goods down
a production line).

In each experiment, we started with a known map of the

Figure 8: The Segbot robotic platform.

end-effector environment. As the arm traversed each step of
its trajectory, however, there was some probability Po that
an obstacle would appear in its path, forcing the planner to
repair its previous solution.

We have included results from two different initial envi-
ronments and several different values of Po, ranging from
Po = 0.04 to Po = 0.2. In these experiments, the agent
was given a fixed amount of time for deliberation, T d = 1.0
seconds, at each step along its path. The cost of moving each
link was nonuniform: the link closest to the end-effector had
a movement cost of 1, the middle link had a cost of 4, and
the lower link had a cost of 9. The heuristic used by all al-
gorithms was the maximum of two quantities; the first was
the cost of a 2D path from the current end-effector position
to its position at the state in question, accounting for all the
currently known obstacles on the way; the second was the
maximum angular difference between the joint angles at the
current configuration and the joint angles at the state in ques-
tion. This heuristic is admissible and consistent.

In each experiment, we compared the cost of the path tra-
versed by ARA* with ε0 = 20 and D* Lite with ε = 20 to

http://www.cs.cmu.edu/~ggordon/likhachev-etal.anytime-dstar.pdf

Sample exercise

In graph on next page, to find a path from
s to g, what is the expansion order for

DFS, BFS
Heuristic search using h = Manhattan
A* using f = g + h

Assume we can detect when we reach a
node via two different paths, and avoid
duplicating it on the queue

Graph for exercise

Andrew Moore, www.cs.cmu.edu/~awm, awm@cs.cmu.edu

Page 21

Exercise Part (1)

In the following maze the successors of a cell include any cell directly to the
east, south, west or north of the current cell except that no transition may
pass through the central barrier. For example successors(m) = { d , n , g }.

The search problem is to find a path from s to g. We are going to examine the
order in which cells are expanded by various search algorithms. For example,
one possible expansion order that breadth first search might use is:

s h f k p c q a r b t d g

There are other possible orders depending on which of two equal-distance-
from-start states happen to be expanded first. For example s f h p k c q r a t b
g is another possible answer.

Assume you run depth-first-search until it expands the goal node. Assume
that you always try to expand East first, then South, then West, then North.
Assume your version of depth first search avoids loops: it never expands a
state on the current path. What is the order of state expansion?

s
g

a b

c d e

kf h m n

p q r t

Page 22

Exercise Part 2

Next, you decide to use a Manhattan Distance Metric heuristic function

h(state) = shortest number of steps from state to g if there were no barriers

So, for example, h(k) = 2, h(s) = 4, h(g) = 0.

Assume you now use best-first greedy search using heuristic h (a version that
never re-explores the same state twice). Again, give all the states expanded, in
the order they are expanded, until the algorithm expands the goal node.

Finally, assume you use A* search with heuristic h, and run it until it termi-
nates using the conventional A* termination rule. Again, give all the states
expanded, in the order they are expanded. (Note that depending on the
method that A* uses to break ties, more than one correct answer is possible).

s
g

a b

c d e

kf h m n

p q r t

Page 23

Another Example Question

Consider the use of the A* algorithm on a search graph with cycles, and
assume that this graph does not have negative-length edges. Suppose you are
explaining this algorithm to Pat, who is not familiar with AI. After your elabo-
rated explanation of how A* handles cycles, Pat is convinced that A* does a lot
of unnecessary work to guarantee that it works properly (i.e. finds the optimal
solution) in graphs containing cycles. Pat suggests the following modification
to improve the efficiency of the algorithm:

Since the graph has cycles, you may detect new cycles from time to
time when expanding a node. For example, if you expand nodes A, B,
and C shown on figure (a) below, then after expanding C and noticing
that A is also a successor of C, you will detect the cycle A-B-C-A.
Every time you notice a cycle, you may remove the last edge of this
cycle from the search graph. For example, after expanding C, you can
remove the edge C-A. (see the figure (b) below). Then, if A* visits node
C again in the process of further search, it will not need to traverse
this useless edge the second time.

Does this modified version of A* always find the optimal path to a solution?
Why or why not?

Start

A

C

B

. . .

. . .

. . .

Start

A

C

B

. . .

. . .

. . .

(a) Detecting a Cycle (b) Removing the detected cycle

Nodes are connected in 4 cardinal directions, except
across dark line

credit: Andrew
 M

oore

