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Remember conjugate functions

Given f : Rn → R, the function

f∗(y) = max
x∈Rn

yTx− f(x)

is called its conjugate

• Conjugates appear frequently in dual programs, as

−f∗(y) = min
x∈Rn

f(x)− yTx

• If f is closed and convex, then f∗∗ = f . Also,

x ∈ ∂f∗(y) ⇔ y ∈ ∂f(x) ⇔ x ∈ argmin
z∈Rn

f(z)− yT z

and for strictly convex f , ∇f∗(y) = argminz∈Rn(f(z)− yT z)
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Uses of duality

We already discussed two key uses of duality:

• For x primal feasible and u, v dual feasible,

f(x)− g(u, v)

is called the duality gap between x and u, v. Since

f(x)− f(x?) ≤ f(x)− g(u, v)

a zero duality gap implies optimality. Also, the duality gap
can be used as a stopping criterion in algorithms

• Under strong duality, given dual optimal u?, v?, any primal
solution minimizes L(x, u?, v?) over x ∈ Rn (i.e., satisfies
stationarity condition). This can be used to characterize or
compute primal solutions
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Outline

• Examples

• Dual gradient methods

• Dual decomposition

• Augmented Lagrangians

(And many more uses of duality—e.g., dual certificates in recovery
theory, dual simplex algorithm, dual smoothing)
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Lasso and projections onto polyhedra

Recall the lasso problem:

min
x∈Rp

1

2
‖y −Ax‖2 + λ‖x‖1

and its dual problem:

min
u∈Rn

‖y − u‖2 subject to ‖ATu‖∞ ≤ λ

According to stationarity condition (with respect to z, x blocks):

Ax? = y − u?

ATi u
? ∈


{λ} if x?i > 0

{−λ} if x?i < 0

[−λ, λ] if x?i = 0

, i = 1, . . . p

where A1, . . . Ap are columns of A. I.e., |ATi u?| < λ implies x?i = 0
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Directly from dual problem,

min
u∈Rn

‖y − u‖2 subject to ‖ATu‖∞ ≤ λ

we see that
u? = PC(y)

projection of y onto polyhedron

C = {u ∈ Rn : ‖ATu‖∞ ≤ λ}

=

p⋂
i=1

{u : ATi u ≤ λ} ∩ {u : ATi u ≥ −λ}

Therefore the lasso fit is

Ax? = (I − PC)(y)

residual from projecting onto C
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Consider the lasso fit Ax? as a function of y ∈ Rn, for fixed A, λ.
From the dual perspective (and some geometric arguments):

• The lasso fit Ax? is nonexpansive with respect to y, i.e., it is
Lipschitz with constant L = 1:

‖Ax?(y)−Ax?(y′)‖ ≤ ‖y − y′‖ for all y, y′

• Each face of polyhedron C corresponds to a particular active
set S for lasso solutions1

• For almost every y ∈ Rn, if we move y slightly, it will still
project to the same face of C

• Therefore, for almost every y, the active set S of the lasso
solution is locally constant,2 and the lasso fit is a locally affine
projection map

1,2 These statements assume that the lasso solution is unique; analogous
statements exist for the nonunique case
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Safe rules

For the lasso problem, somewhat amazingly, we have a safe rule:3

|ATi y| < λ− ‖Ai‖‖y‖
λmax − λ
λmax

⇒ x?i = 0, all i = 1, . . . p

where λmax = ‖AT y‖∞ (the smallest value of λ such that x? = 0),
i.e., we can eliminate features apriori, without solving the problem.
(Note: this is not an if and only if statement!) Why this rule?
Construction comes from lasso dual:

max
u∈Rn

g(u) subject to ‖ATu‖∞ ≤ λ

where g(u) = (‖y‖2 − ‖y − u‖2)/2. Suppose u0 is a dual feasible
point (e.g., take u0 = y · λ/λmax). Then γ = g(u0) lower bounds
dual optimal value, so dual problem is equivalent to

max
u∈Rn

g(u) subject to ‖ATu‖∞ ≤ λ, g(u) ≥ γ

3L. El Ghaoui et al. (2010), Safe feature elimination in sparse learning. Safe
rules extend to lasso logistic regression and 1-norm SVMs, only g changes
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Now consider computing

mi = max
u∈Rn

|ATi u| subject to g(u) ≥ γ, for i = 1, . . . p

Note that

mi < λ

⇒ |ATi u?| < λ

⇒ x?i = 0

4

Through another dual argument, we can explicitly compute mi,
and

mi < λ ⇔ |ATi y| < λ−
√
‖y‖2 − 2γ · ‖x‖

Substituting γ = g(y ·λ/λmax) then gives safe rule on previous slide

4From L. El Ghaoui et al. (2010), Safe feature elimination in sparse learning
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Beyond pure sparsity

Consider something like a reverse lasso problem (also called 1-norm
analysis):

min
x∈Rp

1

2
‖y − x‖2 + λ‖Dx‖1

where D ∈ Rm×n is a given penalty matrix (analysis operator).
Note this cannot be turned into a lasso problem if rank(D) < m

Basic idea: Dx? is now sparse, and we choose D so that this gives
some type of desired structure in x?. E.g., fused lasso (also called
total variation denoising problems), where D is chosen so that

‖Dx‖1 =
∑

(i,j)∈E

|xi − xj |

for some set of pairs E. In other words, D is incidence matrix for
graph G = ({1, . . . p}, E), with arbitrary edge orientations
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original image noisy version fused lasso solution

Here D is incidence matrix on 2d grid
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For each state, we have log proportion of H1N1 cases in 2009
(from the CDC)

observed data fused lasso solution

Here D is the incidence matrix on the graph formed by joining US
states to their geographic neighbors
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Using similar steps as in lasso dual derivation, here dual problem is:

min
u∈Rm

‖y −DTu‖2 subject to ‖u‖∞ ≤ λ

and primal-dual relationship is

x? = y −DTu?

u? ∈


{λ} if (Dx?)i > 0

{−λ} if (Dx?)i < 0

[−λ, λ] if (Dx?)i = 0

, i = 1, . . .m

Clearly DTu? = PC(y), where now

C = {DTu : ‖u‖∞ ≤ λ}

also a polyhedron, and therefore x? = (I − PC)(y)
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Same arguments as before show that:

• Primal solution x? is Lipschitz continuous as a function of y
(for fixed D,λ) with constant L = 1

• Each face of polyhedron C corresponds to a nonzero pattern
in Dx?

• Almost everywhere in y, primal solution x? admits a locally
constant structure S = supp(Dx?), and therefore is a locally
affine projection map

Dual is also very helpful for algorithmic reasons: it uncomplicates
(disentagles) involvement of linear operator D with 1-norm

Prox function in dual problem now very easy (projection onto
∞-norm ball) so we can use, e.g., generalized gradient descent or
accelerated generalized gradient method on the dual problem
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Dual gradient methods

What if we can’t derive dual (conjugate) in closed form, but want
to utilize dual relationship? Turns out we can still use dual-based
subradient or gradient methods

E.g., consider the problem

min
x∈Rn

f(x) subject to Ax = b

Its dual problem is

max
u∈Rm

−f∗(−ATu)− bTu

where f∗ is conjugate of f . Defining g(u) = f∗(−ATu), note that
∂g(u) = −A∂f∗(−ATu), and recall

x ∈ ∂f∗(−ATu) ⇔ x ∈ argmin
z∈Rn

f(z) + uTAz
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Therefore the dual subgradient method (for minimizing negative
of dual objective) starts with an initial dual guess u(0), and repeats
for k = 1, 2, 3, . . .

x(k) ∈ argmin
x∈Rn

f(x) + (u(k−1))TAx

u(k) = u(k−1) + tk(Ax
(k−1) − b)

where tk are step sizes, chosen in standard ways

Recall that if f is strictly convex, then f∗ is differentiable, and so
we get dual gradient ascent, which repeats for k = 1, 2, 3, . . .

x(k) = argmin
x∈Rn

f(x) + (u(k−1))TAx

u(k) = u(k−1) + tk(Ax
(k−1) − b)

(difference is that x(k) is unique, here)
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In fact, f strongly convex with parameter d ⇒ ∇f∗ Lipschitz with
parameter 1/d

Check: if f strongly convex and x is its minimizer, then

f(y) ≥ f(x) + d

2
‖y − x‖, all y

Hence defining xu = ∇f∗(u), xv = ∇f∗(v),

f(xv)− uTxv ≥ f(xu)− uTxu +
d

2
‖xu − xv‖2

f(xu)− vTxu ≥ f(xv)− vTxv +
d

2
‖xu − xv‖2

Adding these together:

d‖xu − xv‖2 ≤ (u− v)T (xu − xv)

Use Cauchy-Schwartz and rearrange, ‖xu − xv‖ ≤ (1/d) · ‖u− v‖
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Applying what we know about gradient descent: if f is strongly
convex with parameter d, then dual gradient ascent with constant
step size tk ≤ d converges at rate O(1/k). (Note: this is quite a
strong assumption leading to a modest rate!)

Dual generalized gradient ascent and accelerated dual generalized
gradient method carry through in similar manner

Disadvantages of dual methods:

• Can be slow to converge (think of subgradient method)

• Poor convergence properties: even though we may achieve
convergence in dual objective value, convergence of u(k), x(k)

to solutions requires strong assumptions (primal iterates x(k)

can even end up being infeasible in limit)

Advantage: decomposability
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Dual decomposition

Consider

min
x∈Rn

B∑
i=1

fi(xi) subject to Ax = b

Here x = (x1, . . . xB) is division into B blocks of variables, so each
xi ∈ Rni . We can also partition A accordingly

A = [A1, . . . AB], where Ai ∈ Rm×ni

Simple but powerful observation, in calculation of (sub)gradient:

x+ ∈ argmin
x∈Rn

B∑
i=1

fi(xi) + uTAx

⇔ x+i ∈ argmin
xi∈Rni

fi(xi) + uTAixi, for i = 1, . . . B

i.e., minimization decomposes into B separate problems
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Dual decomposition algorithm: repeat for k = 1, 2, 3, . . .

x
(k)
i ∈ argmin

xi∈Rni

fi(xi) + (u(k−1))TAixi, i = 1, . . . B

u(k) = u(k−1) + tk

( B∑
i=1

Aix
(k−1)
i − b

)

Can think of these steps as:

• Broadcast: send u to each of
the B processors, each
optimizes in parallel to find xi

• Gather: collect Aixi from
each processor, update the
global dual variable u

ux1

u x2 u x3
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Example with inequality constraints:

min
x∈Rn

B∑
i=1

fi(xi) subject to

B∑
i=1

Aixi ≤ b

Dual decomposition (projected subgradient method) repeats for
k = 1, 2, 3, . . .

x
(k)
i ∈ argmin

xi∈Rni

fi(xi) + (u(k−1))TAixi, i = 1, . . . B

v(k) = u(k−1) + tk

( B∑
i=1

Aix
(k−1)
i − b

)
u(k) = (v(k))+

where (·)+ is componentwise thresholding, (u+)i = max{0, ui}
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Price coordination interpretation (from Vandenberghe’s lecture
notes):

• Have B units in a system, each unit chooses its own decision
variable xi (how to allocate its goods)

• Constraints are limits on shared resources (rows of A), each
component of dual variable uj is price of resource j

• Dual update:

u+j = (uj − tsj)+, j = 1, . . .m

where s = b−
∑B

i=1Aixi are slacks

I Increase price uj if resource j is over-utilized, sj < 0

I Decrease price uj if resource j is under-utilized, sj > 0

I Never let prices get negative
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Augmented Lagrangian

Convergence of dual methods can be greatly improved by utilizing
augmented Lagrangian. Start by transforming primal

min
x∈Rn

f(x) +
ρ

2
‖Ax− b‖2

subject to Ax = b

Clearly extra term (ρ/2) · ‖Ax− b‖2 does not change problem

Assuming, e.g., A has full column rank, primal objective is strongly
convex (parameter ρ · σ2min(A)), so dual objective is differentiable
and we can use dual gradient ascent: repeat for k = 1, 2, 3, . . .

x(k) = argmin
x∈Rn

f(x) + (u(k−1))TAx+
ρ

2
‖Ax− b‖2

u(k) = u(k−1) + ρ(Ax(k−1) − b)
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Note step size choice tk = ρ, for all k, in dual gradient ascent.
Why? Since x(k) minimizes f(x) + (u(k−1))TAx+ ρ

2‖Ax− b‖
2

over x ∈ Rn,

0 ∈ ∂f(x(k)) +AT
(
u(k−1) + ρ(Ax(k) − b)

)
= ∂f(x(k)) +AT y(k)

This is exactly the stationarity condition for the original primal
problem; can show under mild conditions that Ax(k)− b approaches
zero (primal iterates approach feasibility), hence in the limit KKT
conditions are satisfied and x(k), u(k) approach optimality

Advantage: much better convergence properties

Disadvantage: not decomposable (separability comprimised by
augmented Lagrangian)

ADMM (Alternating Direction Method of Multipliers): tries for
best of both worlds
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