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Duality in linear programs

Suppose we want to find lower bound on the optimal value in our
convex problem, B < mingecc f(z)

E.g., consider the following simple LP
min x +y

I7y
subject to z 4+y > 2

z,y >0
What's a lower bound? Easy, take B = 2

But didn't we get “lucky”?



Try again:

min
z7y
subject to

More generally:

min
x?y
subject to

T+ 3y

T+y=>2
z,y >0

pr+qy

rz+y>2
z,y >0

Tt+y=>2
+ 2y >0
= x+3y>2

Lower bound B = 2

a+b=p
at+c=4q
a,b,c>0

Lower bound B = 2a, for any
a, b, ¢ satisfying above



What's the best we can do? Maximize our lower bound over all
possible a, b, c:

rél’iyn T+ qY Ig&i( 2a
subject to z +y > 2 subject to a+b=1p
z,y >0 a+c=gq
a,b,c>0
Called primal LP Called dual LP

Note: number of dual variables is number of primal constraints



Try another one:

min px + qy
:B,y

subject to z > 0
y<1
3z +y =2

Primal LP

max 2c—b
a,b,c

subject to a+3c=p
—b+c=q
a,b>0

Dual LP

Note: in the dual problem, ¢ is unconstrained



General form LP

Givence R", Ac R™"™ beR™ G R, heR"

min ¢’z
r€eR™
subject to Ax =b
Gxr<h
Primal LP

max —bvTu—n"y
ueR™ veR”™
subject to —ATu — GTv =¢
v>0
Dual LP

Explanation: for any u and v > 0, and « primal feasible,

ul'(Az —b) + 0T (Gz —h) <0, e,

(—ATu — GTU)T;U > by —hTo

So if c = —ATu — GTv, we get a bound on primal optimal value



Max flow and min cut

Soviet railway network (from Schrijver (2002), On the history of
transportation and maximum flow problems)



Given graph G = (V, E), define flow f;;,
(i,j) € E to satisfy:

o fZJ > 01 (Zm]) €E

o fij <ciy, (i,j) € E

* Z fik = Z frjr k€ V\{s,t}

(i,k)EE (k,j)eEE

Max flow problem: find flow that maximizes total value of flow
from s to t. l.e., as an LP:

subject to fi; >0, fij < ¢ forall (i,j) € E

Z fik = Z frj forall ke V\ {s,t}

(i,k)eE (k,g)eE



Derive the dual, in steps:

e Note that

Z ( — ajj fij + bij (fij — Cij))

(i,9)€eE

+ ) :Ek< o fu— Y, fk;j)SO

keV\{s,t} (i,k)eE (k.J)eE

for any a;j,b;; >0, (i,j) € E, and xy, k € V' \ {s,t}
e Rearrange as

> Mi(a,ba)fi; < > by

(i,J)€E (i,J)€E

where M;;(a,b, z) collects terms multiplying f;;



e Want to make LHS in previous inequality equal to primal
Mg; = bs; — asj + want this =1
objective, i.e., ¢ M;; = by — ajz — x; want this = 0
Mij = bij —a;; +x; —x; want this =0
e We've shown that
primal optimal value < Z bijcij,
(i,4)eE

subject to a, b, x satisfying constraints. Hence dual problem is
(minimize over a, b,z to get best upper bound):

Z bijcij

(i.g)eE
subject to bj; +x; —x; >0 forall (i,j) € E
bZO, 1‘521, xy =10

min
beRIBl zeRIVI
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Suppose that at the solution, it just so happened
x; € {0,1} forall ieV
Cal A={i:x; =1} and B ={i: x; = 0}, note that s € A and
t € B. Then the constraints
bij >a; —x; for (i,5) € E, b>0
imply that b;; =1 if i € A and j € B, and 0 otherwise. Moreover,
the objective Z(ij)EE bijci; is the capacity of cut defined by A, B

l.e., we've argued that the dual is
the LP relaxation of the min cut

problem:
Z bijcij

IHI1in \4
E Vv
beRIE|l zeR (i)eE
subject to b;; > x; —

bij, Ti, L5 € {O, 1}

for all 4,7
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Therefore, from what we know so far:

value of max flow <
optimal value for LP relaxed min cut <

capacity of min cut

Famous result, called max flow min cut theorem: value of max
flow through a network is exactly the capacity of the min cut

Hence in the above, we get all equalities. In particular, we get that
the primal LP and dual LP have exactly the same optimal values, a

phenomenon called strong duality

How often does this happen? More on this later
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(From F. Estrada et al. (2004), “Spectral embedding and min cut
for image segmentation”)
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Another perspective on LP duality

min ¢’z max -
z€ER™ uER™ vER™
subject to Az =b subject to —ATu — GTv =¢
Gr<h v>0
Primal LP Dual LP

Explanation # 2: for any u and v > 0, and x primal feasible
e >cle+ul (Az — b) + 0T (Gx — h) == L(z,u,v)

So if C denotes primal feasible set, f* primal optimal value, then
for any u and v > 0,

*>minL > min L =
f* 2 min L(z,u,v) 2 min L(z, 4, v) := g(u, v)



In other words, g(u,v) is a lower bound on f* for any u and v > 0
Note that

—00 otherwise

Ty —nTy ife=—-ATu—GTo
g(u,v) =

Now we can maximize g(u,v) over u and v > 0 to get the tightest
bound, and this gives exactly the dual LP as before

This last perspective is actually completely general and applies to
arbitrary optimization problems (even nonconvex ones)
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Outline

Rest of today:
e Lagrange dual function
e Langrange dual problem
e Examples

e Weak and strong duality
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Lagrangian

Consider general minimization problem

min f(z)

TER™
subject to h;(x) <0, i=1,...m
li(x) =0, j=1,...r

Need not be convex, but of course we will pay special attention to
convex case

We define the Lagrangian as

L(z,u,v) ) + Zuz i ‘l'zvjfj(x)
j=1

New variables u € R™, v € R", with u > 0 (implicitly, we define
L(xz,u,v) = —oo for u < 0)
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Important property: for any u > 0 and v,
f(z) > L(z,u,v) at each feasible

Why? For feasible z,

Lz, u,v) +Zuz hi(z) + 3 v 45(@) < f(@)
= ~——
<0 =0

5

a4 ] e Solid line is f

3’\\ 1 e Dashed line is h, hence

2 \V,M///iiwﬂ:; ] feasible set ~ [—0.46, 0.46]

1 e Each dotted line shows

ot ] L(z,u,v) for different
_al | choices of uw > 0 and v
27 0F o 05 . (From B & V page 217)
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Lagrange dual function

Let C denote primal feasible set, f* denote primal optimal value.
Minimizing L(z,u,v) over all x € R™ gives a lower bound:

f* > min L(x,u,v) > min L(z,u,v) := g(u,v)
zeC T€R™

We call g(u,v) the Lagrange dual function, and it gives a lower
bound on f* for any u > 0 and v, called dual feasible u, v

1.6

s~
e Dashed horizontal lineis f* | \
e Dual variable \ is (our u) e \\
e Solid line shows g(\) 12 \\
(From B & V page 217) H
10 0.2 0.4 0.6 0.8 1
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Quadratic program

Consider quadratic program (QP, step up from LP!)

17 T
;relﬁgr}l 5% Qr+c
subject to Ar =b, >0

where @ > 0. Lagrangian:
1
L(z,u,v) = §$TQCL‘ + e —ulz 4+ ol (Az —b)
Lagrange dual function:

1
g(u,v) = m]kn L(x,u,v) = —i(c—u—I—ATv)TQ_l(c—u+ATU)—bTU
zeR™

For any u > 0 and any v, this is lower a bound on primal optimal
value f*
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Same problem

1
5161]%711 3% Tz + 'z

subject to Az =b, >0

but now @ > 0. Lagrangian:
1
L(z,u,v) = §xTQm + e —ulz 4+ ol (Az —b)
Lagrange dual function:

—3(c—u+ ATv)TQT(c —u+ ATv) — bTw
g(u,v) = if c—u+ ATy L null(Q)
—00 otherwise
where QT denotes generalized inverse of Q. For any u > 0, v, and
c—u+ ATv L null(Q), g(u,v) is a nontrivial lower bound on f*
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Quadratic program in 2D

We choose f(x) to be quadratic in 2 variables, subject to z > 0.
Dual function g(u) is also quadratic in 2 variables, also subject to
u>0

Dual function g(u)
provides a bound on
f* for every u > 0

primal

6/4

,,,,,,,,,,,,,,,,,,,,, Largest bound this
gives us: turns out
to be exactly f* ..
coincidence?

SRR
ASMNNNNNNNN =
.
NN I I hmmina
\\‘\‘\ ANAANNNN
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More on this later
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Lagrange dual problem
Given primal problem

min f(z)
subject to h;(x) <0, ¢

0,
li(x) =0, j

1,...m
1,...7

Our constructed dual function g(u,v) satisfies f* > g(u,v) for all
u > 0 and v. Hence best lower bound is given by maximizing

g(u,v) over all dual feasible u, v, yielding Lagrange dual problem:

ueRI}}l%(eRr 9(u,v)

subject to u > 0
Key property, called weak duality: if dual optimal value ¢*, then
fr=y

Note that this always holds (even if primal problem is nonconvex)
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Another key property: the dual problem is a convex optimization
problem (as written, it is a concave maximization problem)

Again, this is always true (even when primal problem is not convex)

By definition:

zeR™

g(u,v) = min {f(a:) + Zuzhz(x) + Zvjﬁj(a:)}
i=1 j=1

= — max { — f(z) - ;uz‘hi(ﬂf) - ;Uﬂj(%)}

pointwise maximum of convex functions in (u,v)

l.e., g is concave in (u,v), and u > 0 is a convex constraint, hence
dual problem is a concave maximization problem
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Nonconvex quartic minimization

Define f(x) = 2* — 5022 4+ 100z (nonconvex), minimize subject to
constraint x > —4.5

Primal Dual

3000 5000
1 1 1
-1080
1

f

-1120

-1160

-1000 O 1000
1

T T T T T T T T T T T
-10 -5 0 5 10 0 20 40 60 80 100

X \

Dual function g can be derived explicitly (via closed-form equation
for roots of a cubic equation). Form of g is quite complicated, and
would be hard to tell whether or not g is concave ... but it must be!
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Strong duality

Recall that we always have f* > g* (weak duality). On the other
hand, in some problems we have observed that actually

f* — g*
which is called strong duality

Slater’s condition: if the primal is a convex problem (i.e., f and
hi,...hy, are convex, {1,...¥¢, are affine), and there exists at least
one strictly feasible z € R™, meaning

hi(z) <0,...hpn(x) <0 and li(x)=0,...4.(x) =0
then strong duality holds

This is a pretty weak condition. (And it can be further refined:
need strict inequalities only over functions h; that are not affine)
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Back to where we started

For linear programs:
e Easy to check that the dual of the dual LP is the primal LP

e Refined version of Slater’s condition: strong duality holds for
an LP if it is feasible

e Apply same logic to its dual LP: strong duality holds if it is
feasible

e Hence strong duality holds for LPs, except when both primal
and dual are infeasible

In other words, we pretty much always have strong duality for LPs
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Mixed strategies for matrix games

Setup: two players, | , and a payout matrix P

R Game: if G chooses i and
- | Pl PQ Pn R chooses j, then G must
- 2 L pay R amount Pj; (don't
G 2 P21 P22 e P2n .
feel bad for G—this can be
m | Poi Pma ... Pon positive or negative)

They use mixed strategies, i.e., each will first specify a probability
distribution, and then

x: P(Gchoosesi)=uxz;, i=1,...m

y: P(Rchooses j)=y;, j=1,...n
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The expected payout then, from G to R, is

m

S O> wmyPy=a"Py

i=1 j=1

Now suppose that, because G is older and wiser, he will allow R to
know his strategy x ahead of time. In this case, R will definitely
choose y to maximize 27 Py, which results in G paying off

max {zT Py: y >0, 17y =1} = max (PTz),
1=

1,.n

G's best strategy is then to choose his distribution x according to

min  max (PTz),
zeR™ i=1,..n

subject to >0, 17z =1
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In an alternate universe, if R were somehow older and wiser than
G, then he might allow G to know his strategy y beforehand

By the same logic, R's best strategy is to choose his distribution y
according to

ma min (Py);
yER}Ti j:l,‘..m( y)]
subject to y >0, 1Ty =1

Call G's expected payout in first scenario f7, and expected payout
in second scenario f3. Because it is clearly advantageous to know
the other player's strategy, fi > f3

We can show using strong duality that fj" = f3 ... which may
come as a surprise!
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Recast first problem as an LP

min t
zeR™ teR

subject to = >0, 1Tz =1
PTy <t
Lagrangian and Lagrange dual function
L(z,u,v,9) =t —ulz +v(l — 1T2) + yT (P12 — 1)

v ifl-1Ty=0,Py—u—-v=0
g(u,v,y) = .
—oo otherwise

Hence dual problem is

max v
u€R™, tcR

subject to y >0, 17y =1
Py>wv

This is exactly the second problem, and we have strong LP duality

31



References

e S. Boyd and L. Vandenberghe (2004), Convex Optimization,

Cambridge University Press, Chapter 5

e R. T. Rockafellar (1970), Convex Analysis, Princeton
University Press, Chapters 28-30

32



