Optimization for well-behaved problems

For statistical learning problems, "well-behaved" means:

- signal to noise ratio is decently high
- correlations between predictor variables are under control
- number of predictors p can be larger than number of observations n, but not absurdly so

For well-behaved learning problems, people have observed that gradient or generalized gradient descent can converge extremely quickly (much more so than predicted by O(1/k) rate)

Largely unexplained by theory, topic of current research. E.g., very recent work⁴ shows that for some well-behaved problems, w.h.p.:

$$||x^{(k)} - x^*||^2 \le c^k ||x^{(0)} - x^*||^2 + o(||x^* - x^{\mathsf{true}}||^2)$$

⁴Agarwal et al. (2012), Fast global convergence of gradient methods for high-dimensional statistical recovery

Administrivia

- HW2 out as of this past Tuesday—due 10/9
- Scribing
 - ▶ Scribes I-6 ready soon; handling errata
 - missing days: 11/6, 12/4, and 12/6
- Projects:
 - you should expect to be contacted by TA mentor in next weeks
 - project milestone: 10/30

Matrix differential calculus

10-725 Optimization Geoff Gordon Ryan Tibshirani

Matrix calculus pain

- Take derivatives of fns involving matrices:
 - write as huge multiple summations w/ lots of terms
 - take derivative as usual, introducing more terms
 - \blacktriangleright case statements for i = j vs. $i \neq j$
 - try to recognize that output is equivalent to some human-readable form
 - hope for no indexing errors...
- Is there a better way?

Differentials

- Assume f sufficiently "nice"
- Taylor: f(y) = f(x) + f'(x) (y-x) + r(y-x)
 - with $r(y-x) / |y-x| \rightarrow 0$ as $y \rightarrow x$
- Notation:

Definition

- Write
 - dx = y x

 $\bullet df = f(y) - f(x)$

- Suppose
 - ▶ df =
 - with
 - and
- Then:

Matrix differentials

- For matrix X or matrix-valued function F(X):
 - → dX =
 - ▶ dF =
 - where
 - and
- Examples:

Working with differentials

• Linearity:

$$b d(f(x) + g(x)) =$$

$$\rightarrow$$
 d(k f(x)) =

Common linear operators:

- reshape(A, [m n k ...])
- \blacktriangleright vec(A) = A(:) = reshape(A, [], I)
- tr(A) =
- ▶ A^T

Reshape

```
>> reshape(1:24, [2 3 4])
ans(:,:,1) =
ans(:,:,2) =
             11
        10
              12
ans(:,:,3) =
   13 15
            17
   14 16
              18
ans(:,:,4) =
   19
     21
             23
   20 22
              24
```

Working with differentials

- Chain rule: L(x) = f(g(x))
 - want:
 - have:

Working with differentials

- Product rule: L(x) = c(f(x), g(x))
 - where c is bilinear = linear in each argument (with other argument fixed)
 - e.g., L(x) = f(x)g(x): f, g scalars, vectors, or matrices

Lots of products

- Cross product: d(a × b) =
- Hadamard product $A \circ B = A .* B$
 - **▶** (A B)_{ij} =
 - ▶ d(A B) =
- Kronecker product $d(A \otimes B) =$
- Frobenius product A:B =
- Khatri-Rao product: d(A*B) =

Kronecker product

```
>> kron(A, B)
ans =
                           10
                                 10
                           10
                                 10
                           12
                                 12
                                 12
                           12
>> kron(B, A)
ans =
               10
                                 10
         8 12
                                 12
            10
                                 10
               12
                                 12
```

Hadamard product

- a, b vectors
 - **▶** a b =
 - diag(a) diag(b) =
 - tr(diag(a) diag(b)) =
 - tr(diag(b)) =

Some examples

L = (Y-XW)^T(Y-XW): differential wrt W
 L = (Y-XW)^T(Y-XW)

Some examples

■ L =

dL =

- L =
 - ▶ dL =

Trace

- $tr(A) = \sum A_{ii}$
 - d tr(f(x)) =
 - tr(x) =
 - tr(X^T) =
- Frobenius product:
 - ▶ A:B =

Trace rotation

- tr(AB) =
- tr(ABC) =
 - size(A):
 - size(B):
 - size(C):

More

- Identities: for a matrix X,
 - \rightarrow d(X-1) =
 - d(det X) =
 - ▶ d(ln |det X|) =
 - **)** ...

Example: linear regression

- Training examples:
- Input feature vectors:
- Target vectors:
- Weight matrix:
- min_W L =
 - > as matrix:

Linear regression

•
$$L = ||Y - WX||_F^2 =$$

• dL =

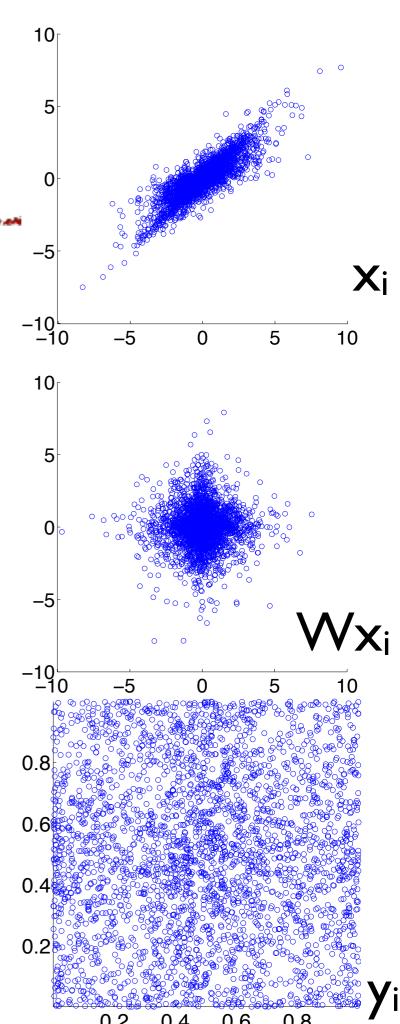
Identification theorems

- Sometimes useful to go back and forth between differential & ordinary notations
 - not always possible: e.g., $d(X^TX) =$
- Six common cases (ID thms):

ID for df(x)	scalar x	vector X	matrix X
scalar f	df = a dx	$df = \boldsymbol{a}^{T} d\mathbf{x}$	$df = tr(A^T dX)$
vector f	$d\mathbf{f} = \mathbf{a} dx$	$d\mathbf{f} = A d\mathbf{x}$	
matrix F	dF = A dx		

Ex: Infomax ICA

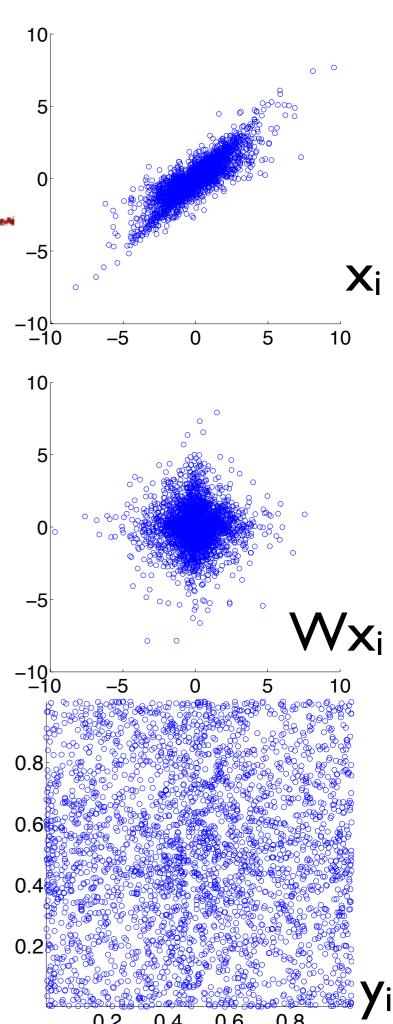
- Training examples $x_i \in \mathbb{R}^d$, i = 1:n
- Transformation $y_i = g(Wx_i)$
 - $\mathbf{W} \in \mathbb{R}^{d \times d}$
 - \rightarrow g(z) =
- Want:



Ex: Infomax ICA

- $y_i = g(Wx_i)$
 - ▶ dy_i =

- Method: $\max_{W} \sum_{i} -ln(P(y_i))$
 - where $P(y_i) =$



Gradient

•
$$L = \sum_{i} ln |det J_i|$$
 $y_i = g(Wx_i)$ $dy_i = J_i dx_i$

Gradient

```
J_i = diag(u_i) \, W \quad dJ_i = diag(u_i) \, dW + diag(v_i) \, diag(dW \, x_i) \, W dL =
```

Natural gradient

- Matrix W, gradient $dL = G:dW = tr(G^TdW)$
- step S = arg max_S L(S) = tr(G^TS) $||SW^{-1}||_F^2/2$ • scalar case: L = gs - s² / 2w²
- L =
- dL =

ICA natural gradient

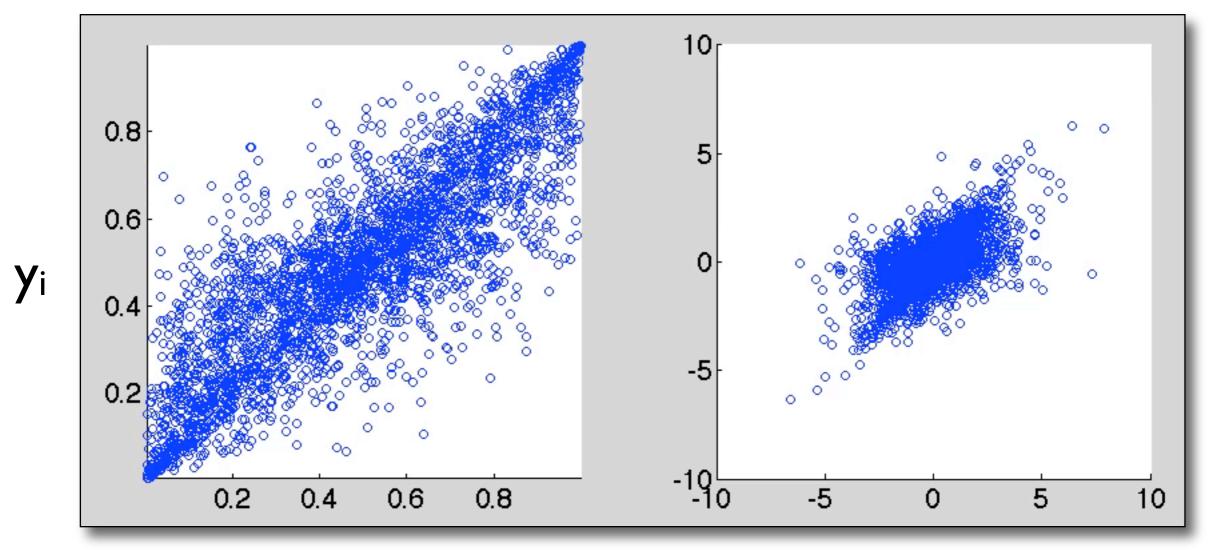
•
$$[W^{-T} + C]W^{T}W =$$

$$W_{X_i}$$

start with $W_0 = I$

ICA natural gradient

• $[W^{-T} + C]W^{T}W =$

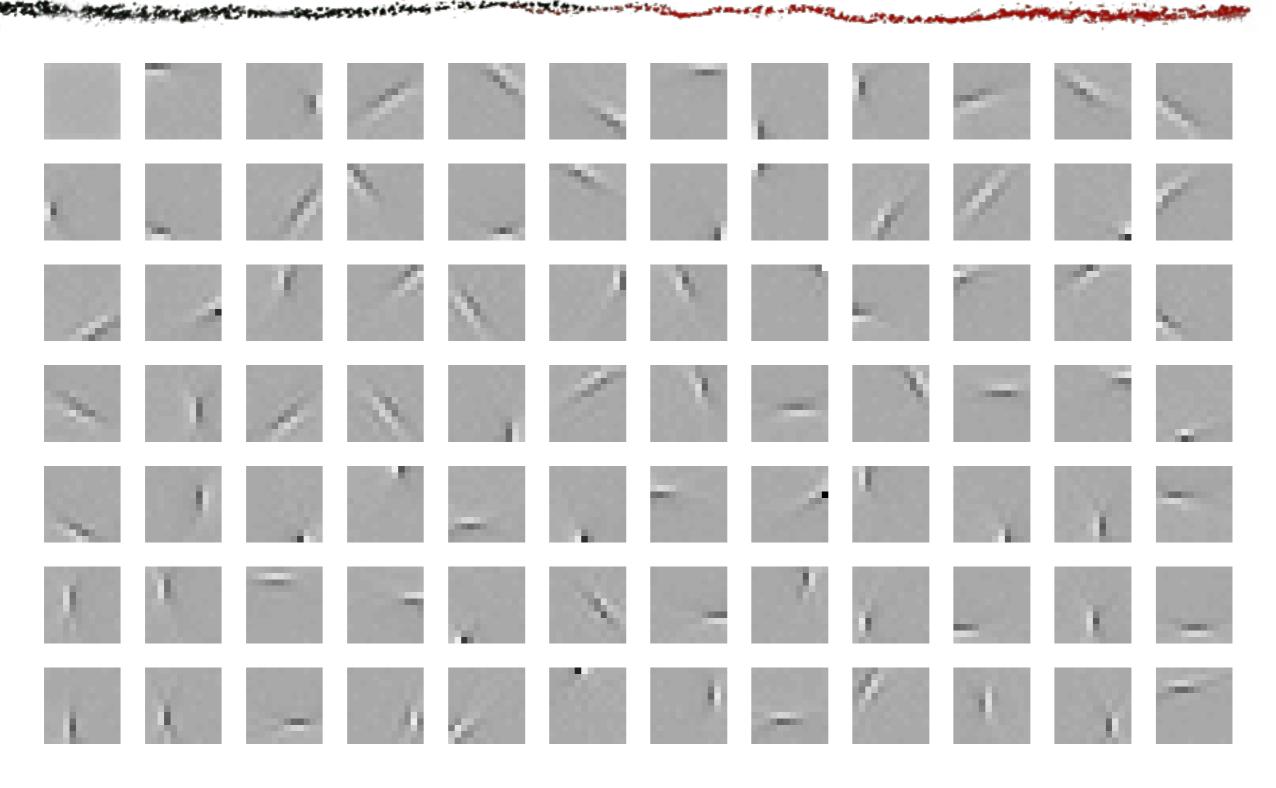


start with $W_0 = I$

ICA on natural image patches



ICA on natural image patches



More info

- Minka's cheat sheet:
 - http://research.microsoft.com/en-us/um/people/minka/ papers/matrix/
- Magnus & Neudecker. Matrix Differential Calculus.
 Wiley, 1999. 2nd ed.
 - http://www.amazon.com/Differential-Calculus-Applications-Statistics-Econometrics/dp/047198633X
- Bell & Sejnowski. An information-maximization approach to blind separation and blind deconvolution. Neural Computation, v7, 1995.