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Remember subgradient method

We want to solve

min f(z),

for f convex, not necessarily differentiable
Subgradient method: choose initial z(?) € R", repeat:
) = k=) _ ty - g(kfl), k=1,2,3,...

(k—=1)

where g is a subgradient of f at z(k=1)

If f is Lipschitz on a bounded set containing its minimizer, then
subgradient method has convergence rate O(1/vk)

Downside: can be very slow!



Outline

Today:

Generalized gradient descent

e Convergence analysis

ISTA, matrix completion

Special cases



Decomposable functions
Suppose

f(@) = g(x) + h(z)

e g is convex, differentiable

e h is convex, not necessarily differentiable

If f were differentiable, gradient descent update:
T =2 —tVf(x)

Recall motivation: minimize quadratic approximation to f around
z, replace V2f(x) by %I,

v+ = argmin f(@) + V() (= — ) + o |le

fi(2)



In our case f is not differentiable, but f = g + h, g differentiable
Why don't we make quadratic approximation to g, leave h alone?
l.e., update

xt

= argmin g;(2) + h(z)
1
= argmiin g(z) + Vo(2)7 (2~ 2) + |}z 2] + h(2)

= argmin %tHz —(z— th(x))H2 + h(z)

%Hz —(z —tVg(x))||>  be close to gradient update for g

h(z) also make h small



Generalized gradient descent

Define ]
prox,(z) = argmin — ||z — z||*> + ()

Generalized gradient descent: choose initialize z(?), repeat:

2™ = prox,, (@Y — Vg V)), k=1,2,3,...

To make update step look familiar, can write it as
2 = k=1 g . Gy, (x(k—l))
where Gy is the generalized gradient,

x — prox,(xz — tVg(x))
t

Gi(x) =



What good did this do?

You have a right to be suspicious ... looks like we just swapped
one minimization problem for another

Point is that prox function prox,(-) is can be computed analytically
for a lot of important functions h. Note:

e prox, doesn't depend on g at all

e g can be very complicated as long as we can compute its
gradient

Convergence analysis: will be in terms of # of iterations of the
algorithm

Each iteration evaluates prox,(-) once, and this can be cheap or
expensive, depending on A



ISTA

Consider lasso criterion

1
fla)=5ly - Az[? + Allz|x
—— N
g9(x) h(x)

Prox function is now

1
prox, (x) = argmin —[lx — 22 + Allz|
2eRn 2t

= Sx(7)
where Sy () is the soft-thresholding operator,

xi— A it x> A
[S)\(.%)]z: 0 if —/\szg/\
T+ A if <=



Recall Vg(z) = —AT(y — Ax). Hence generalized gradient update

step is:
ot = Sy(z +tAT (y — Ax))

Resulting algorithm called ISTA (lIterative Soft-Thresholding
Algorithm). Very simple algorithm to compute a lasso solution
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Convergence analysis

We have f(z) = g(z) + h(z), and assume
e g is convex, differentiable, Vg is Lipschitz continuous with
constant L > 0
e h is convex, prox,(x) = argmin,{||z — z||?/(2t) + h(z)} can
be evaluated

Theorem: Generalized gradient descent with fixed step size t <
1/L satisfies

0y _ pamy < 120 =22
Fa) = fa) <

l.e., generalized gradient descent has convergence rate O(1/k)

Same as gradient descent! But remember, this counts # of
iterations, not # of operations
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Proof

Similar to proof for gradient descent, but with generalized gradient
G} replacing gradient V f. Main steps:

e Vg Lipschitz with constant L =
T L 2
fy) < g(2) +Vg(@)" (y —2) + S lly —2|" + h(y) all z,y
e Plugging in y = 27 = 2 — tGy(x),
+ T Lt 2
F@™) < g(2) =tVg(z)" Gel2) + o |Ge(2)[I” + hlz — tG(2))
e By definition of prox,
1
x —tG¢(x) = argmin 2—t||z — (z —tVg(x))|]? + h(2)

z€R™
= Vyg(z) —Gz)+v=0, vedh(zx—1tGx))
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e Using Gi(z) — Vg(x) € Oh(z — tG¢(z)), and convexity of g,

f@) < f(2) + Gela)! (w — 2) — (1 - %)tHGt(I)II2 all 2

o Lettingt < 1/L and z = z*,
f@h) < f(@*) + Gu(a) (z* — ) — %lth(u’U)H2

* ]' * *
= flz )+E(H$—x I =l — 2*[|?)

Proof proceeds just as with gradient descent. O
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Backtracking line search

Same as with gradient descent, just replace V f with generalized
gradient Gy. l.e.,

e Fix0< <1
e Then at each iteration, start with ¢ = 1, and while

Fla—1Gi()) > F(x) — G,

update t = 5t

Theorem: Generalized gradient descent with backtracking line

search satisfies 0
0 * (|2
(k)y * <H$ — ||
Fa) = fat) < F5

where tpin = min{1, 5/L}
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Matrix completion

Given matrix A, m x n, only observe entries A;;, (4, 7) € Q

Want to fill in missing entries (e.g., JIEIN ), so we solve:
. 1 2
min = Y (A — X))+ AIX]
XeRmxn 2 &
(i.5)€Q

Here || X ||+ is the nuclear norm of X,

IX[ =) 0i(X)
i=1

where r = rank(X) and o1 (X), ..

.o (X) are its singular values
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Define Pq, projection operator onto observed set:

e 115

Criterion is

F(X) = 5 I1Pa(A) ~ Pa(X)[[} + AX]).

9(X) h(X)

Two things for generalized gradient descent:
e Gradient: Vg(X) = —(Pa(A) — Pa(X))

e Prox function:

prox;(X) = argmin *HX Z|F+ A 2|
ZeRmxn
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Claim: prox,(X) = S):(X), where the matrix soft-thresholding
operator Sy (X) is defined by

Sy(X) =Ux\vT

where X = UX V7T is a singular value decomposition, and Xy is
diagonal with
(Z)\)“ = max{Eii - )\, 0}

Why? Note prox,(X) = Z, where Z satisfies
0€eZ—-X+Xt-0||Z]«

Fact: if Z =UXV7, then

NZ|s ={UVI4+W - W e R™" |W| < L,UTW =0,WV =0}

Now plug in Z = S):(X) and check that we can get 0
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Hence generalized gradient update step is:
XF = S\(X +t(Po(A) — Pa(X)))
Note that Vg(X) is Lipschitz continuous with L = 1, so we can
choose fixed step size t = 1. Update step is now:
XT = S\(Pa(A) + Py (X))
where Pg projects onto unobserved set, Po(X) + Pg(X) = X

This is the soft-impute algorithm!, simple and effective method
for matrix completion

!Mazumder et al. (2011), Spectral regularization algorithms for learning
large incomplete matrices
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Why “generalized” ?

Special cases of generalized gradient descent, on f = g + h:
e h = (0 — gradient descent
e h = Ic — projected gradient descent

e g = 0 — proximal minimization algorithm

Therefore these algorithms all have O(1/k) convergence rate
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Projected gradient descent

Given closed, convex set C € R",

min g(z) < min g(x)+ Ic(x)

zeC
0 C
where Ic(r) = { v ; o is the indicator function of C
00 T

Hence

1
prox,(x) = argmin ﬂHx —2|I* + Ic(2)
4

= argmin ||z — z||?
zeC

l.e., prox,(z) = Pc(z), projection operator onto C
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Therefore generalized gradient update step is:
2" = Po(z —tVg(z))

i.e., perform usual gradient update and then project back onto C.
Called projected gradient descent
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What sets C are easy to project onto? Lots, e.g.,
o Affine images C = {Az +b: 2z € R"}
e Solution set of linear system C' = {z € R" : Ax = b}
e Nonnegative orthant C = {z € R" : 2 > 0} = R}
e Norm balls C' = {x € R" : ||z||, <1}, for p=1,2,00

e Some simple polyhedra and simple cones

Warning: it is easy to write down seemingly simple set C, and P¢
can turn out to be very hard!

E.g., it is generally hard to project onto solution set of arbitrary
linear inequalities, i.e, arbitrary polyhedron C' = {z € R" : Az < b}
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Proximal minimization algorithm

Consider for h convex (not necessarily differentiable),
min h(z)

Generalized gradient update step is just a prox update:

1
T = argmin —||z — z||> + h(2)
z 2t

Called proximal minimization algorithm

Faster than subgradient method, but not implementable unless we
know prox in closed form
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What happens if we can’t evaluate prox?

Theory for generalized gradient, with f = g + h, assumes that prox
function can be evaluated, i.e., assumes the minimization

1
prox,(z) = argmin — ||z — z||*> + h(z)
zeRn 2L

can be done exactly

Generally speaking, all bets are off if we just treat this as another
minimization problem, and obtain an approximate solution. And
practical convergence can be very slow if we use an approximation
to the prox

But there are exceptions (both in theory and in practice), e.g.,
partial proximation minimization?

?Bertsekas and Tseng (1994), Partial proximal minimization algorithms for
convex programming
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Almost cutting edge

We're almost at the cutting edge for first order methods, but not
quite ... still require too many iterations

Acceleration: use more than just z(*~1) to compute z(*) (e.g.,
use x(k_Q)), sometimes called momentum terms or memory terms

There are many different flavors of acceleration (at least three,
mostly due to Nesterov)

Accelerated generalized gradient descent achieves optimal rate
O(1/k?) among first order methods for minimizing f = g + h!
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