
Random variables

A random variable is a function that takes atomic events as inputs. For example, if we
roll three dice, the total number of spots is a random variable: our universe is the set of
3-tuples of numbers in 1:6, and the total number of spots is a function that maps each
of these  tuples to an integer in 3:18. E.g., it maps  to .

We can have random variables of any type: integer, real, boolean, complex, etc. The type
of a random variable is the type of the function's output: e.g., a boolean random variable
is a function in .

Events are the simplest random variables: we can think of an event as a function that
returns  or  if the event happens, and  or  otherwise. Some more examples:

If our atomic events are people, such as survey participants who might walk by our
corner, then the height of the next person is a random variable. So are  and
eye color.

If our atomic events are complex numbers, then the real part of the next complex
number is a random variable.

If our atomic events are cards that we draw from a deck, then the number of pips on
the next card is a random variable; so are the suit and whether the card is a face
card.

If our atomic events are pairs of people (say, the next two participants in our
survey), then we can make a random variable by testing whether they have the
same birthday, or by squaring the difference between the lengths of their left
thumbs.

Random variables and events

An important use of random variables is to define new events. For example, we could
make an event for whether the next survey participant's height is greater than 150cm, or
whether the next five cards I draw form a straight flush.

Sometimes we go so far as to forget about the underlying probability space, and talk
only about random variables. For example, we might talk about probabilities related to
height or eye color without mentioning that the underlying atomic events are survey
participants. It's important to remember that there still is an underlying probability
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space, and that all of our statements about probabilities implicitly refer to this space.

Functions of a random variable

If  is a random variable and  is a function, then  is a random variable too. This is
just composition of functions: remember that  is a function of the underlying atomic
event , so  = .

For example, we could ask for the square of the number of spots on our die. Here our
underlying events are the different possible die rolls:  where  is the set {⚀, ⚁, ⚂, ⚃,
⚄, ⚅}. The function  reads off the number of spots: e.g., ⚂ . And the function 
squares it, so ⚂ .

This works for multiple random variables too: if  and  are random variables and  is a
two-argument function, then  is also a random variable. We can define a new
function  to represent this random variable:  means 

.

Often we won't give a separate name to a function of a random variable: we just write
something like . The value of this expression is a random variable, since it
depends on which atomic event happens: we can write it as .

Joint distribution

It is common to define several different random variables for the same probability space:
e.g., the height, eye color, and undergrad major of each survey participant.

We can describe this situation with a table. The rows correspond to atomic events.
There is one column for the probability of the event, and optionally one column for its
name. Then there is one column for each random variable, listing its value under each
atomic event. Here's an example with two random variables:

eye color height

0.01 blue 150cm

0.03 brown 155cm

0.02 green 152cm
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... ... ...

Even if nobody tells us what probability space is being used to define the random
variables, we can still construct an appropriate one. To do so, we take our atomic events
to be all possible joint settings of the random variables: e.g., we might get something
like

height = 150cm AND eye color = blue AND major = CS

When we fill in the probability of each of these joint outcomes, the resulting probability
space is called the joint distribution of our random variables.

Probability tables

The above table is one way to represent a joint distribution. Often, though, we reshape
the table to give a different presentation of the same information. Given the table above,
we can reshape it to look like this:

brown blue green ...

... ... ... ... ...

150cm 0.02 0.01 0.005 ...

151cm 0.025 0.012 0.006 ...

152cm 0.01 0.03 0.02 ...

... ... ... ... ...

In this new version, rows correspond to values of one random variable (height). Columns
correspond to values of the other random variable (eye color). Each entry of the table
tells us the probability of the corresponding atomic event. For example, 3% of our
people have height 152cm and blue eyes.

We call each of these variants a probability table, even though the formatting is
different. It's clear that the second table contains the same information as the first: each
row of the first table corresponds to one cell of the second. But the second table can be
useful because it shows relationships among atomic events.

In the above example there are only two random variables, so we get a two-dimensional



table: one random variable on the rows, and the other on the columns. If there are three
random variables we get a three-dimensional table, with rows, columns, and layers. If we
have four random variables, we have to add a fourth dimension, and so on. As we get to
higher and higher dimensional tables, it becomes more difficult to write them on a
printed page, but we can still usefully store them as tensors in a computer.

Importantly, a probability table is more than just a matrix or tensor: the labels on the
rows, columns, etc., are meaningful as well. So for example, it doesn't matter whether
we put the values of random variable  on rows and the values of random variable  on
columns or vice versa; we'll still consider it the same table. And when we manipulate two
probability tables, we will match their dimensions based on whether they correspond to
the same random variable.

Probability tables give us the probabilities for atomic events. To get the probability of a
compound event, we can use the sum rule: we add up the appropriate table entries. For
example, to get the probability that height is 151cm, we can sum across the 151cm row
of the above table.

Marginal distribution

Given a joint distribution over several random variables (like height, eye color, and major
in the example above), we can ask for the distribution over just some subset of the
variables (say just height and eye color). The smaller distribution is a marginal of the
larger one, and forming it is called marginalizing.

We can compute the marginal probability table using the sum rule: we just sum out each
dimension that we want to drop. For example, given the following table (where we've
simplified by pretending there are just two heights and just three eye colors)

brown blue green

short 0.1 0.2 0.1

tall 0.1 0.3 0.2

we can marginalize out height to get a distribution over just eye color:

brown blue green

0.2 0.5 0.3

X Y



Each entry above is the sum of one column of the joint table; e.g., the middle entry is

We can interpret marginalization as deciding to ignore irrelevant information: we have a
distribution over many random variables, but for our current purpose we only want to
consider some subset of them.

Conditional distribution

Given a joint distribution, we can also ask what happens if we fix the values of some of
the variables. This is called conditioning on or observing these values, and the result is a
conditional distribution.

For example, in the table above, we could ask, suppose that we know that the person is
tall; then what is the distribution over eye color? We write this as , and
say "probability of eye color given tall."

To find the answer, we throw away all parts of the joint table that don't match our
observations. Then we renormalize: divide by the sum of the remaining entries so that
the table sums to 1. Here's the result:

brown blue green

For example,

If we look back at the definition of marginalization above, we can see that the
denominator is the same as , the marginal probability of our observation. So we
can also write

Notation for conditional distributions

If we write , showing specific values for all the variables,

P (blue) = P (blue ∧ short) + P (blue ∧ tall) = 0.2 + 0.3 = 0.5

P (eye color ∣ tall)
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P (blue ∣ tall) = =
P (brown ∧ tall) + P (blue ∧ tall) + P (green ∧ tall)

P (blue ∧ tall)
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P (blue ∣ tall) = =
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P (X = T , Y = F ∣ Z = 3, W = 1)



this expression evaluates to a single number: the probability that  is true and  is
false, given that  is 3 and  is 1. If the ordering of the variables is clear, we can omit
the variable names, and just write the values: . Each expression like 
represents an event, which happens exactly when a particular random variable takes a
particular value.

On the other hand, if we omit a specific value for some variable, we mean a table where
we look at all possible specific values. For example,  represents a
table showing all possible values of  and , and listing the probabilities of the
corresponding events. This particular table represents a conditional probability
distribution: it will sum to 1 over  and .

Another example table might be , showing the probability that 
 is true and  is false for all possible observations . This table is not a

distribution: it generally won't sum to 1.

Another example that's not a distribution is . The general
rule is that, if we sum over everything on the left of the conditioning bar, we get 1. Any
other sum can be arbitrary: if we sum over only some of the variables on the left of the
bar, or if we sum over anything on the right of the bar, we won't typically get 1.

Example: a distribution over 3 Boolean variables

To make a table for a joint distribution, we first list out all possible combinations of
values for our random variables. If we have  variables which each take  values, we'll
have  combinations. For example:

A B C

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

X Y

Z W

P (T , F ∣ 3, 1) X = T

P (X, Y ∣ Z = 3, W = 1)

X Y

X Y

P (X = T , Y = F ∣ Z, W )

X Y Z, W

P (X, Y = F ∣ Z = 3, W = 1)

m k
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1 1 1

Here we've listed the tuples of values as  rows; we could also have used our
alternative format and made a  tensor.

Then we fill out the table by listing the probability of each combination of values. If the
probabilities are as given in the following picture

then our table becomes

A B C

0 0 0 0.30

0 0 1 0.05

0 1 0 0.10

0 1 1 0.05

1 0 0 0.05

1 0 1 0.10

1 1 0 0.25

1 1 1 0.10

Note that the  column sums to 1.

If we want to figure out a marginal probability like , we can sum all of the
corresponding entries of the table. In this case we add rows 5 and 6 to get 

.

If we want to get a conditional probability distribution, we cross out all of the rows that
don't match our observations, then renormalize. For example, to condition on , we
cross out all rows with , then divide by :

A B C unnormalized 

0 0 0 0.30
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2 × 2 × 2

P

P

P (A = 1, B = 0)

P (A = 1, B = 0) = 0.15

B = 1

B = 0 0.10 + 0.05 + 0.25 + 0.10 = 0.5

P P



0 0 1 0.05

0 1 0 0.10 0.20

0 1 1 0.05 0.10

1 0 0 0.05

1 0 1 0.10

1 1 0 0.25 0.50

1 1 1 0.10 0.20

Exercise: Given the above table, what is ?

Exercise: Given the above table, what is ?

Exercise: Suppose we have three random variables: 
. Build a joint probability table according to the rule 

. That is, solve for the normalizing factor  using the rule
that probabilities must sum to 1. What is the probability that ? What is the
probability that  given ?

P (A = 1)

P (A = 1 ∣ B = 0)

X ∈ {1, 2}, Y ∈ {1, 2, 3}, Z ∈ {1, 2}

P (X, Y , Z) = η(X + Y + Z) η

Z = 2

Y ≥ 2 X = 1


