
Objects

Propositional logic is interesting on its own, but logic gets a lot more useful when we can
use it to talk about properties of objects in real or imaginary worlds. Starting in this
section, we'll show how to include objects to get a new, more general reasoning system
called predicate logic.

An example of the kind of objects we might want to reason about are integers: we define
an object for each integer, along with functions like  and  that combine them. Each
object can have multiple names: e.g., the name  and the name  could refer to the
same object. We then provide inference rules to work with our objects, like the fact that 

 distributes over .

We also provide a way to make true-false statements (propositions) about our objects:
we define predicates that act on objects, like equality and inequality  or . (We
can still have bare propositions like  or , as in propositional logic; we think of
these as predicates that take no arguments.) Once we have constructed propositions by
applying predicates to objects, we can treat them just like any other logical propositions:
we can combine them using , and apply inference rules like modus ponens or
double-negation elimination. For example, if we had facts

we could use -introduction and modus ponens to conclude .

Just like before, we'll use either single characters or strings of characters as names for objects
and predicates. The only change is that now we disallow parentheses inside names, since we
need parentheses for function application and predicate application. We'll use context to
disambiguate whether a name refers to an object or a predicate.

Because of the distinction between objects and truth values, there are two types of
expressions in predicate logic:

terms, which evaluate to objects, and

propositions, which evaluate to true or false.

The innermost quantities in any expression of predicate logic are terms. We can
combine terms to make compound terms like . Eventually we apply predicates
to make propositions like . We can think of applying predicates as moving
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to the outer layer of our expression; in this outer layer we combine truth values using
connectives like  or . This two-layer structure is in contrast to propositional logic,
where every subexpression is a proposition, and there is no division into layers.

Objects and types

Each object can belong to one or more named types like  or . We can declare the
type of any term to be clear:

We'll be informal and skip declarations whenever they are clear from context. We will
assume though that we have a specific type in mind for every term.

A complete logical system typically requires type declarations on at least some terms. Most
systems also give rules for type inference so that they can tell some terms' types without a
declaration.

Based on their types, we can combine objects using a few simple constructions. First,
we can make tuples of objects, and we can index into these tuples. For constructing
tuples we'll use commas like , and for indexing we'll use functions like 

 and . The type of a tuple is a product type: e.g., the type of 
 is .

Second, we can apply functions: e.g., the function  is an object of type ,
so we can apply it to a pair of s to produce another . We can also define new
functions using -abstraction: e.g.,  defines a function of type 

. Recall that -abstraction binds object names: e.g., the name  is
bound in , while the name  is free (not bound). We call an object name a
variable if we bind it or intend to bind it.

Note that we use the same symbol, , for function types and for implication. And, we use the
same symbol, , for product types and for multiplication. We'll also use  for one more purpose
below (substitution). The distinctions should be clear from context.

Finally, we can define and work with disjoint union types like . We build values
of a union type by typecasting:  and  both have the same type.
And we use values of a union type via case statements: if  is of type , and  and 
are functions of type  and , then  is of type . This expression is
equivalent to  if  happens to be of type , and to  if  happens to be of type .

∨ ∧

int char

7 : int ‘q’ : char (3.2 + 4.1) : R

(a, b, Spot, 7)

first(3, 7) second(Mary, Spot)

(7, ‘q’) int × char

+ int × int → int

int int

λ λx, y, z. (x + y) × z

int × int × int → int λ x

λx. x + y y

→

× →

int ∣ char

[int ∣ char] 7 [int ∣ char] ‘q’

x ϕ ∣ ψ f g

ϕ → χ ψ → χ (f ∣ g) x χ

f(x) x ϕ g(x) x ψ



We make the convention that unions are tagged, i.e., we remember which type they are actually
holding. And, we require case statements to be exhaustive, i.e., there has to be exactly one case
for each possible type in the union. With these two conventions, it is never ambiguous how to
interpret a case statement.

Every type can be used as a predicate: e.g.,  is true, while  is false.

We define distinguished types  and ; all objects have type , and no objects
have type . So,  is a synonym for  (it tests whether the empty tuple has type 

), and  is a synonym for .

Substitution

To describe some of our inference rules below, we'll need a syntactic process called
substitution of terms.

Suppose  is a term; for example,  could be the expression . Suppose  is an
expression that contains  as a subexpression; for example,  could be . Let 
be another term — say .

Given the above, we write  for the expression that results by replacing  with 
inside . In our example,  yields . If  appears multiple
times inside , we can replace a single instance of  or several; we just need to say
which we mean. (If not specified, we'll assume we mean all applicable instances.)

Substitution is only applicable to free names. That is, none of the names that appear
free in  or  can be bound at the substitution point (the point where  appears inside of

). For example, if  is , we can substitute  in , but we can't
substitute  (since  is bound at the substitution point in ), and we can't
substitute  (since  would become bound at the substitution point in ). A
free name in  that becomes bound when we substitute into  is said to be captured, so
we can summarize the last rule as "no capturing."

As an example use of substitution, we can define a parameterized family of propositions.
Let  be a propositional formula that contains a free variable . Let  be a term. Then we
write  for . Here we replace all free instances of ; and as usual we disallow
capturing variables in . E.g., if  is , then  is 
(which is true), while  is  (which is false).

Below we'll be able to express this same idea more simply using quantifiers.
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Simplifying terms

As hinted in our definitions above, we have inference rules for simplifying terms. For
product types , we may use:

Product reduction: we can replace the expression  by . Similarly, we can
replace the expression  by . The same is true for  in
longer tuples.

For union types , we may use:

Union reduction: If  has type , we can replace the expression  by . If
 has type , then we can replace by .

For function types , we may use:

Renaming: if  is a term and  is any object name that does not appear in , we can
replace the expression  by . That is, we can rename the bound
variable.

Function reduction: if  has type  and  has type , then we can replace the
expression  by . Here we replace all free occurrences of  in ,
and any free variables in  may not become bound at any of the substitution points.

Note that we might need to rename in order to enable function reduction. E.g., taking an
example from the previous section, we can't function-reduce 
because  is bound in the function expression. But if we first rename to 

, we can function-reduce to .

Renaming is sometimes called -conversion, and function reduction is sometimes called -
reduction.

Example: pairs

As a simple example of how to work with the above inference rules, we can re-
implement pairs (tuples of length 2) using -expressions. This isn't necessarily useful,
since we're considering tuples to be a built-in construct already, but it's good practice.

Define  to be the term . Define  to be the term , and define
 to be the term . And suppose we have a base type  (the type of  and 

above), with some members .
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Then we can interpret  to be the pair with members  and . This
interpretation works because

The first equality is function reduction on . The second is function reduction on the 
 expression. And the last is function reduction on .

Exercise: evaluate .

Example: natural numbers

The above operations for working with tuples, unions, and functions can be thought of
as built into predicate logic. For any significant use of predicate logic, we'll add
problem-specific objects, types, and inference rules. In this section we'll give a
moderate-sized example: a logical system for working with natural numbers.

First we define a type, , and an element of that type, .

Next we define a predicate, , and rules for working with equality:

Equality takes two arguments of type . We'll use the typical infix notation 
instead of , and we'll write  as a shorthand for .

Equality is reflexive: if  is any term, then .

Equality is symmetric: if  and  are terms, then from  we can conclude .

Equality is transitive: for terms , if  and , then .

Our last rule for working with equality will be the most complex; it lets us substitute
equal objects for one another.

Substitution of equals: if  is an expression containing the term , and if  is
another term, then from  and , we can conclude . If  appears
multiple times, we can substitute any number of occurrences. As usual, none of the
free object names in  or  may be bound at any of the substitution points.

For example, from  and , we can conclude .
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Next we define the successor function , which has type , along with rules for
working with successors:

Equality of successors: for terms  and  of type , from  we can conclude 
, and from  we can conclude .

Zero is the smallest natural number: for any term  of type , we can conclude 
.

Finally, we define the rule of mathematical induction. Induction works on a
parameterized family of propositions , called the induction hypothesis.

Induction: suppose we can prove  and  (where  is a fresh
variable). Then we can conclude  for any term  of type .

Here  is called the base case, and  is called the inductive step. A fresh
variable is one that doesn't appear anywhere else in our assumptions or conclusions.
(It's OK if the variable appears bound somewhere that doesn't conflict with its use here,
although it's typically clearest to choose a name that doesn't appear at all.)

Induction is an extremely general and useful principle. We defined it here for the natural
numbers, but we will see it again later in other contexts.

This is not the strongest possible form of induction. We won't go into detail, but the stronger
forms imply that all natural numbers are reachable from  using the successor function . Our
weaker form only says that, if  is true for all reachable , it is true for all .

To demonstrate induction, we can prove that all numbers are either even or odd. Define
even and odd as follows:

Zero and one are even and odd,  and .

 for each term  of type .

 for each term  of type .

Then we can prove all numbers are even or odd by induction. Pick the induction
hypothesis  to be
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follows from the definitions  and .

For the inductive step: from the induction hypothesis , we have , which
implies  using proof by cases. The induction hypothesis also gives us 

. Putting these together with -introduction, we get

which is .

Example: addition is commutative

The above definitions let us prove lots of interesting facts about natural numbers. A
good example is to show that addition is commutative.

Define a function  of type  using the following inference rules:

Zero is the additive identity: for any term  of type , we can conclude .

Relationship of addition to successor: for any terms  of type , we can conclude
.

To make expressions easier to read, we'll use infix notation for . And, we'll use ordinary
numbers as shorthand, like . We'll also often combine pairs of related steps:
instead of separately concluding  and using substitution of equals to replace 

 by  in a larger expression, we will do both in a single line.

We can see that  impements addition: e.g.,

Here we've applied substitution on the shorthand , used the second rule for 
(relationship of  and ) to move the  outward in , and used the
first rule for  (additive identity) together with substitution to get rid of  in the
subexpression .

Given the above definitions, our first step in showing that addition is commutative is to
show . We can do this by induction. We write our induction hypothesis as a
predicate , defined as .
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We first have to prove . This is immediate:  since equality is reflexive.

We then have to prove that :

The first line above is . The second line uses equality of successors. The third and
fourth lines use that  is the additive identity. The last line uses the relationship between
addition and the successor function; this line is our desired conclusion, .

We'll leave the remainder of the proof as an exercise:

Use induction on the predicate , defined as , to show that addition is
commutative.

Quantifiers

So far, when we've needed to talk about properties of many objects, we've used
inference rules like "if  is any term, we can conclude ". This can be inconvenient
since we need a lot of inference rules.

Instead, we can use quantifiers to talk about multiple objects at once. We'll give
inference rules for two quantifiers,  and .

We interpret the formula  as "for all  of type , the proposition  holds."
The introduction rule for  is

Universal introduction: suppose  is a propositional formula that contains a free
variable  of type . And suppose that  is fresh. Then, if we can prove , we can
conclude .

In this new conclusion,  binds the previously-free occurrences of  in . We will
sometimes omit the type  if it is clear from context, and write just . Recall that a
fresh variable is one that doesn't appear free anywhere in our previous assumptions and
conclusions.
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The intuition for the -introduction rule is that, if we can prove that something is true
about an arbitrary object  of type , it must be true for all objects of the same type.

The elimination rule for  is:

Universal elimination: from , for any term  of type , we can conclude 
. As usual, we replace every free occurrence of  in , and any free

variables in  may not be captured.

In order to apply -elimination without capturing free variables, we sometimes need

Renaming: if  is a fresh variable of type , then from  we can conclude 
.

The interpretation of these rules is straightforward: if we know that a property holds for
all objects of type , we can conclude it for any specific object of type .

We interpret the formula  as "there exists at least one object  of type  for
which  holds." The introduction rule for  is

Existential introduction: suppose  is a propositional formula that contains a free
object name  of type . Let  be an object name that doesn't occur free in . Then,
if we can prove , we can conclude .

In this new conclusion,  binds the occurrences of  in . We will sometimes
omit the type  if it is clear from context, and write just .

The interpretation for -introduction is that, if we can prove the property  for some
specific object, then there must exist at least one object that satisfies .

Note that the only difference between -introduction and -introduction is that, in the
latter, the object name  is not required to be fresh: we're free to prove the property 
about some object that is already mentioned in our previous assumptions and
conclusions. Because our previous assumptions and conclusions might tell us
something about , we only know that the property  holds for , and not for arbitrary
objects of the same type.

The elimination rule for  is

Existential elimination: let  be a fresh object name of type . Then from ,
we can conclude .
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The interpretation of this rule is that we can give a name to the object that we know
exists. (The same object may have other names already, but we can always give a new
one.)

Quantifiers and inference rules

Now that we have quantification, we can re-state some of our previous ideas more
succinctly. For example, instead of defining a parameterized family of propositions using
substitution, we can define it and give it a name within our logical system. Before, we
would have started from a propositional formula like

and used substitution on  and  to define a parameterized family that we might call 
. Now, we can directly write in first-order logic:

(Here  is short for .)

Inference rules can become simpler as well: for example, induction becomes

Induction: let  be a predicate. Suppose we can prove  and 
. Then we can conclude .

In this new formulation, we have one version of the inference rule for each predicate
name, instead of one version for each natural number and each member of a
parameterized family of propositions.

Quantifiers and functions

Quantification is a powerful tool. For this reason, it is common to place restrictions on its
use. One of the most important questions is whether we allow quantification over
function types.

If we disallow quantification over functions, that means that we can only quantify over
base types and types built from base types using products and unions. The resulting
system is called first-order predicate logic.

If we allow quantification over functions, we get second-order logic. In this case it's
common also to allow quantification over predicates. (The two are equivalently powerful:
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p ↔ q (p → q) ∧ (q → p)
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a function whose output type is  is equivalent to a predicate.)

But, second-order logics can be tricky: without some care, it's possible to create a logic
that is inconsistent, i.e., where some formula has to be both true and false. One common
way to avoid paradoxes is to remove some of the inference rules that we've defined
above. For example, if we remove double-negation elimination (and its related rules like
the law of the excluded middle), we get the basis for a consistent, constructive, second-
order logic.

To avoid these problems, we will stick to first-order logic. First-order logic is strictly less
expressive, but it is sufficient for most purposes (and will be sufficient for ours).

One place where first-order logic's limitations are inconvenient is in handling induction. In first-
order logic we can't say directly that induction works for all predicates; instead we have to resort
to language like "if  is a predicate name, then the following rule holds." And, in first-order logic
we can't say something like "the valid natural numbers are precisely those that we can reach
from  by applying the successor function repeatedly." Instead we have to use the weaker form of
induction given above. But these limitations are not too harmful, in the sense that induction in
first-order logic is still highly expressive.

Unification

The inference rules that we've given so far are sufficient to define first-order predicate
logic. But there are other useful rules that we can derive from the ones we've given. One
of the most common and useful derived rules is resolution with unification.

Resolution with unification works similarly to the plain resolution rule that we introduced
for propositional logic. Just as before, we start by reducing all of our assumptions to a
conjunction of clauses, and we apply resolution to pairs of clauses to conclude new
clauses.

In first-order logic, though, a clause has a slightly more general form: it looks like

That is, each clause is a disjunction of literals, and each literal is a possibly-negated
proposition, just like before. But now, each proposition is a predicate applied to zero or
more terms. The terms can contain object names like . They can contain function
applications like . And they can contain universally-quantified variables like .

There's no need for existentially-quantified variables; we eliminate them through a process called

{0, 1}

p
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Skolemization, which we won't cover here.

In order to use resolution, we need to find a matching literal: one that appears positively
in one clause and negatively in another. In propositional logic, matching literals were
easy to find: two literals matched if and only if they were textually identical. In first-order
logic, on the other hand, two literals can match even if they look different. They match
when:

Their predicate is the same, and

For each argument position, the term in that position from the first literal unifies
with the corresponding term from the second literal.

Two terms  and  are said to unify if they could potentially refer to the same object. For
example, the terms  and  can unify, since they can refer to the same
object if we substitute .

More generally, there's an algorithm that can determine, for any two terms, what is the
least-restrictive set of substitutions that we have to make so that they are guaranteed to
refer to the same object. (We won't go into this algorithm here; it's enough for us to
know it exists.) Before we perform resolution, we apply the computed substitutions, so
that the positive and negative literals become textually identical.

Once we generalize to resolution with unification, we get the same completeness
property as we had for propositional logic: if  is any first-order formula that follows
from our assumptions, then there is a resolution proof of  by contradiction. That is, if
we add  to our assumptions, there is a resolution proof of .

If our logic includes , we need inference rule of substitution of equals in addition to resolution
and unification.

For more details about data types and functions, like -abstraction and union types, see
the notes from 10-606, starting at 1/19.
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