
Information theory

A secret message

There are two spies, Alice and Bob. Every morning, Alice finds out a new secret fact:
she observes through her telescope, and discovers whether the Prime Minister gets
out of bed on the left side or the right side.

Immediately, she takes a walk in the park. She sits on a particular park bench, and
arranges the rocks next to it just so: the bigger rock to the left if today was a left-side
day, or the bigger rock to the right if today was a right-side day.

A few minutes after she leaves, Bob walks by and quietly observes the rocks. He
learns Alice's message, and informs his superiors.

Channel

Alice and Bob have arranged a communication channel: on each time step (i.e., once
per day at the assigned time) they can communicate one of two symbols
(arrangements of rocks). This is a pretty slow and expensive channel: its rate is one
bit per day.

In fact, Alice has plenty of other secret information she wants to send: what the Prime
Minister had for breakfast, whether the Parliament is about to declare war, and so
forth. So, we can set up a faster channel: Alice and Bob could arrange several
meeting spots per day, or agree on a larger number of possible symbols for each
meeting. If they agree on 8 different arrangements of the rocks, they can send three
bits at a time instead of one. If they then meet twice per day, the rate becomes 6

bits/day.

Efficiency

But let's suppose we've hit the limits of our channel's rate. We're still pretty slow and
expensive, so we want to use the channel as efficiently as possible.

Let's say that Alice and Bob each have a copy of a code book: it lists possible
high-level meanings that Alice could want to send, and gives a code word (a
sequence of symbols or bits) for each of them. Maybe some of the code words
correspond to possible breakfast items, and others correspond to possible war plans.
How fast can Alice send what she knows?

For simplicity let's suppose that symbols and bits are the same: each symbol is or ,
instead of having to deal with drawing different arrangements of rocks and flowers.

For example, we could have the following code book:

meaning code word

pancakes

shredded wheat

bagels

caviar

With this code book, every breakfast item takes two bits to send. In general, if we
have different breakfast items, the code words will each have length bits.
This turns out to be optimal in the worst case: if we are unlucky, we might have to
send our longest code word every day, so we want all code words to have as close as
possible to equal length.

What if we know ahead of time that some code words are more frequent than others?
The minister might have pancakes most mornings, and caviar only rarely. Intuitively,
we'd like to send a shorter message for pancakes, at the cost of perhaps having to
send a longer one for caviar. If code word has bits, and if the probability of code
word is , then the expected message length is

N

0 1

00

10

01

11

N ⌈log N⌉2

i bi

i pi

p b +1 1 p b +2 2 … + p bN N

For example, suppose we update our code book and annotate the probabilities:

meaning code word probability

pancakes

shredded wheat

bagels

caviar

Then the average number of bits in our message is

This is better! Instead of bits per code word, we spend on average only
bits/word. (We'll see below that this code is optimal for this distribution over
breakfasts.)

On the other hand, suppose the probability distribution were uniform. The original
code book (where all code words are two bits long) would cost us 2 bits per
breakfast, both on average and in the worst case. But the revised code book would
cost us

bits per breakfast. There's a cost to choosing the wrong code book.

If we have different symbols instead of just 0 and 1, it makes sense to report costs using the
log base instead of the log base 2. For example, if we use the numerals as our
symbols, we have . In this case we report how many decimal digits (or dits) we used,
instead of how many bits. It's even possible to report costs with a non-integer base. The only
common one is , the base of the natural logarithm; the units in this case are called nats.

Entropy

Different distributions and different code books lead to different expected bit costs.
What is the optimal cost for a given distribution? It turns out that the best code book
uses approximately bits to send a code word of probability . (In fact we can
hit this value exactly for long sequences of code words, though we may have to be
slightly cleverer than a fixed code book.) So, the expected cost is

0 2
1

10 4
1

110 8
1

111 8
1

1 ⋅ +
2

1
2 ⋅ +

4

1
3 ⋅ +

8

1
3 ⋅ =

8

1

4

7

log 4 =2 2 1.75

(1 + 2 + 3 + 3)/4 = 2.25

s

s 0 … 9

s = 10

e

− log p2 i pi

This quantity is called , the entropy of the probability distribution .

Joint, conditional, and marginal entropy

If we have several random variables, we can ask for the entropy of their joint
distribution, or of various conditional or marginal distributions. These are called joint,
conditional, or marginal entropies.

For example, suppose that the Prime Minister is more likely to want shredded wheat
after getting out of bed on the left side. Call the joint distribution :

pancakes left

shredded wheat left

pancakes right

shredded wheat right

The marginal distribution of breakfast is

pancakes

shredded wheat

On the other hand, if we find out that left, then we have a new conditional
distribution over which we will call :

pancakes

shredded wheat

Exercise: compute the joint entropy, the marginal entropy of , and the conditional

− p log p bits
i=1

∑
N

i 2 i

H(p) p

p (X, Y)XY

X Y pXY

2
1

6
1

6
1

6
1

X pX

3
2

3
1

Y =

X p (X) =left P (X ∣ Y = left)

X pleft

4
3

4
1

X

entropy given left.

Mismatch

So far we've assumed that Alice and Bob both know the distribution of code words.
What if Bob only knows an old version of the probability distribution? The possible
code words are the same, but the probabilities have changed: the current
probabilities (known only to Alice) are for code word , while the old probabilities
(known to both Alice and Bob) are .

In order for Alice and Bob to communicate, they have to use a code based on the old
probabilities , since these are the only probabilities that they both know. So, we'll
assign a code word of length bits to meaning , in contrast to the optimal
scheme which would use bits. That means that we will pay a small amount
extra: a penalty of

This amount is called the relative entropy of with respect to , or the KL divergence
from to . It is written

Note that the KL divergence is always nonnegative, and strictly positive if : we
pay a penalty if we use the wrong distribution to design our codebook.

Relative entropy example

We already did most of the work above to calculate some relative entropies: we gave
the optimal codebooks for the two distributions

and looked at the performance of each codebook under each distribution. We found
that the codebook for the uniform distribution always takes 2 bits per code word:

Y =

pi i

qi

qi

log q2 i i

log p2 i

− p log q −[
i=1

∑
N

i 2 i] − p log p bits[
i=1

∑
N

i 2 i]
q p

p q

D(p ∥ q) = p log [p /q]
i=1

∑
N

i 2 i i

p = q

p = (, , ,) q =4
1

4
1

4
1

4
1 (, , ,)2

1
4
1

8
1

8
1

p

−p log p =
i=1

∑
4

i 2 i −q log p =
i=1

∑
4

i 2 i 2 bits

And we found that the codebook for does better if the true distribution is , and
worse if it's instead:

From the above, we can calculate relative entropies: e.g.,

Exercise: calculate .

The first example uses the two calculations where the true distribution is , so it
measures the difference between the two codebooks under : i.e., the penalty when
we use the codebook for under the wrong distribution. The second example uses
the two calculations where the true distribution is , so it measures the penalty when
we use the codebook for under the wrong distribution.

Information gain

The KL divergence can also help measure the amount of information we gain from
finding out something new. If Bob thought that the distribution of code words was ,
but learns that it is instead, he gains bits of information: in his old state
of knowledge Alice would have had to pay a penalty of bits to send him a message,
but now she no longer has to pay this penalty.

More generally, if an observation (like some training data) causes us to update our
belief about something (like a model's parameters) from a prior distribution to a
posterior distribution , we say that is the information gain from this
observation. If we see a lot of highly relevant data, we'll have many bits of information
gain; if we see little data or if the data isn't very relevant, we won't have much
information gain.

For example, in the joint distribution above (for different breakfasts and different
sides of bed), we can calculate the information gain from finding out left: it is

or about 0.024 bits. (Recall: , .)

On the other hand, if we find out right, our new distribution is , and

q q

p

−q log q =
i=1

∑
4

i 2 i 1.75 bits −p log q =
i=1

∑
4

i 2 i 2.25 bits

D(p ∥ q) = 2.25 − 2 = 0.25 bits

D(q ∥ p)

p

p

q

q

p

q

p b = D(p ∥ q)

b

q

p D(p ∥ q)

pXY

Y =

D(p ∥ p) =left X (log −4
3

2 4
3 log) +2 3

2 (log −4
1

2 4
1 log)2 3

1

p = (,)3
2

3
1 p =left (,)4

3
4
1

Y = p =right (,)2
1

2
1

our information gain is , or about 0.85 bits.

Exercise: show how to calculate .

What if we don't know yet? How much should Alice be willing to sacrifice to obtain
her secret observation of side-of-bed? Since the marginal distribution of side of bed
is , we expect to gain:

or about 0.044 bits.

Mutual information

This quantity — the expected information gain about from finding out — is also
called the mutual information between and , written .

It's not obvious from the definition or the derivations above, but is symmetric:

In addition to showing is symmetric, this derivation also shows something
else particularly interesting: is the KL divergence between the joint
distribution and the product of marginals . The joint and product
of marginals are the same if and only if and are independent. So, the mutual
information measures how far and are from being independent of one another.

Useful identities

D(p ∥ p)right X

D(p ∥ p)right X

Y

(,)3
2

3
1

D(p ∥ p) +3
2

left D(p ∥ p)3
1

right

X Y

X Y I(X, Y)

I(X, Y) = E [D(P (Y ∣X X) ∥ P (Y))]

I(X, Y)

I(X, Y) = E [D(P (Y ∣X X) ∥ P (Y))]

= E [P (Y =X ∑y y ∣ X)(ln P (Y = y ∣ X) − ln P (Y = y))] = E [ln P (Y ∣X,Y X) − ln P (Y)]

= E [ln P (X, Y) −X,Y ln(P (X)P (Y))] = D(P (X, Y) ∥ P (X)P (Y))

I(X, Y)

I(X, Y)

P (X, Y) P (X)P (Y)

X Y

X Y

This diagram illustrates some useful relationships among information-related
quantities. For all of these identities, assume that we have two random variables
and , with domains and .

The entropy of the joint distribution is bounded by the entropy of the uniform
distribution on .

The individual entropies of and are bounded by the joint entropy.

The sum of the individual (marginal) entropies is at least the joint entropy.

The excess is the mutual information .

We can split the marginal entropy into the mutual information and
the conditional entropy ; similarly for .

We can split the joint entropy into .

It's a good exercise to try to derive some of these relationships.

Information in ML

Measures of information turn out to be pretty useful in machine learning. For
example, if we are learning how to transform our raw low-level inputs into a new
lower-dimensional representation (an unsupervised learning problem), we could ask
the low-d representation to be highly informative about the input data. Or, if we're
planning to use the learned representation later on in some supervised classification
problems, we could ask that it be highly informative about the class labels.

X

Y X Y

X × Y

X Y

H(X) + H(Y) − H(X, Y) I(X, Y)

H(X) I(X, Y)

H(X ∣ Y) H(Y)

H(X, Y) H(X ∣ Y) + I(X, Y) + H(Y ∣ X)

Maxent

A general and popular learning principle based on information is called maximum
entropy or maxent. This principle says that, if we're trying to learn a probability
distribution,

[Maxent]: We should pick the distribution that has the highest possible entropy
(contains the least possible information), subject to the constraint that it agrees
with our existing knowledge.

To implement maxent, we have to decide exactly what agreement constraints to
impose; different choices will lead to different learning methods. Typically we pick
constraints based on a combination of our prior knowledge and any data that we've
observed.

We can interpret the maxent principle as saying that we shouldn't draw any
conclusions unless they are supported by the data: if we draw an unnecessary
conclusion, it will reduce the entropy of our distribution.

For example, suppose we observe a bunch of integers , all in the range
of to . Suppose that their observed mean is and their observed
variance is . We might ask, what distribution generated this
data? To answer this question, maxent tells us to find the maximum entropy
distribution over that agrees with some constraints. Based on the above
observations, we can constrain the distribution's mean and variance to match the
observed values of 17 and 121. Here's the result:

Above, each dot is one possible random sample: the x position is an integer between
-40 and 40, and the y position is proportional to the probability of that integer being
sampled.

This plot should look familiar — more on that below.

It's a good exercise to calculate this distribution yourself: write for the probability

x , x , … , x1 2 N

−40 40 x =
N
1 ∑i=1

N
i 17

(x −
N
1 ∑i=1

N
i 17) =2 121

{−40, … , 40}

p−40

that is , for the probability that is , and so forth. We want to
maximize the entropy , subject to the constraints that

the distribution sums to 1:

the mean is correct:

the variance is correct:

To do this maximization, we can use three Lagrange multipliers for the three
constraints, and then set the derivative with respect to each to zero. The resulting
equations will not have an analytic solution, but we can easily solve them numerically.

A more general version of maxent is minimum relative entropy: we specify a base
distribution, which is the answer that we will conclude in the absence of data. We
then require:

[Minimum relative entropy]: We should pick a distribution that is as close as
possible to the base distribution (has the smallest possible relative entropy),
subject to the constraint that it agrees with our existing knowledge.

If our base distribution is uniform, then minimum relative entropy coincides with
maxent.

Maxent and MLE/MAP

You might notice that the above plot looks a lot like a Gaussian distribution, except
that it's restricted to the integers. In fact, if we had done the same exercise with
continuous observations, we would have gotten exactly a Gaussian distribution as our
answer. This is not an accident: maxent and MLE are exactly equivalent for many
common families of distributions. (In fact the equivalence holds for all exponential
families of distributions, which includes all the textbook examples like Gaussian, Beta,
Poisson, etc., though that's beyond our scope.)

If we had used minimum relative entropy instead, we would have gotten MAP
inference (under the same assumptions). The base distribution for minimum relative
entropy plays the role of the prior for MAP.

Minimum description length

The maximum entropy principle and MLE/MAP are related to another principle called
minimum description length. MDL connects back to our original view of entropy in

xi −40 p−39 xi −39

p ln p∑x=−40
40

x x

p =∑x=−40
40

x 1

xp =∑x=−40
40

x 17

(x −∑x=−40
40 17) p =2

x 121

px

terms of cost of communication. It says:

[Minimum description length]: We should pick the hypothesis that minimizes the
combined communication cost (description length) of the hypothesis and data.

Since the communcation cost is a measure of information content, which in turn
corresponds to the probability that we assign to each outcome, MDL says that we
should pick a hypothesis that

has high prior probability (so that the hypothesis itself is cheap to communicate)

gives the data high likelihood (so that the dataset is cheap to communicate given
that we've sent they hypothesis)

These criteria make a lot of sense when we compare with previous principles like
MAP. But, they bring to the forefront something that might not have been obvious
before: every compression algorithm is a learning algorithm. So, for your next ML
problem, try gzip as a model!

