
Factoring with conditionals

Earlier we saw that we can write a conditional distribution as the ratio of a joint and a
marginal:

A useful rearrangement of the above is

That is, we can write a joint distribution as a product of a marginal and a conditional. (By
symmetry it works the other way too: .)

Since a conditional distribution is just like any other distribution, the same identity works
inside a conditional:

So, we can use this identity repeatedly to break up a large joint distribution into a
product of factors: e.g.,

Bayes' rule

From the identity above, we know

Rearranging, we have

This is Bayes' rule.

Bayes' rule is really useful since it tells us how to incorporate new evidence about an
uncertain variable. For example, suppose there are two coins in a bag: one fair one, and
one that's biased so that the probability of heads is . We draw one coin at random
from the bag and start flipping it.

P (X ∣ Y ) =
P (Y )

P (X, Y )

P (X, Y ) = P (X ∣ Y )P (Y )

P (X, Y ) = P (Y ∣ X)P (X)

P (X, Y ∣ Z) = P (X ∣ Y , Z)P (Y ∣ Z)

P (X, Y , Z) = P (X, Y ∣ Z)P (Z) = P (X ∣ Y , Z)P (Y ∣ Z)P (Z)

P (X ∣ Y )P (Y ) = P (X, Y ) = P (Y ∣ X)P (X)

P (Y ∣ X) =
P (X)

P (X ∣ Y )P (Y )

0.7



Initially we are equally likely to have drawn the fair coin or the biased one: .
Now suppose we flip our coin and see heads. Intuitively, this outcome is more likely if
we're holding the biased coin, so  should decrease.

Bayes' rule tells us that

In words, we start from our prior probability table :

fair

fair

We multiply it by the evidence 

 fair

fair

This gets us

fair

fair

We then divide by the marginal probability of our observation . We can either
calculate  directly, or use a shortcut: , so 
is the sum of the entries in the table above. Either way we get , so our final
answer becomes:

fair 

fair 

This is called the posterior probability of  (given the evidence of seeing ).

If we flip the coin again, we can repeat the exercise: our posterior after the first flip
becomes our prior before the second flip, and we use Bayes' rule again to get our
posterior after the second flip. This process — repeatedly updating a distribution over
some variable using new evidence — is often called tracking or filtering.

P (fair) = 0.5

P (fair)

P (fair ∣ flip = H) = P (flip = H ∣ fair)P (fair)/P (flip = H)

P (fair)

0.5

¬ 0.5

P (flip = H ∣ fair)

H ∣ 0.5

H ∣ ¬ 0.7

H∧ 0.5 ⋅ 0.5 = 0.25

H ∧ ¬ 0.5 ⋅ 0.7 = 0.35

P (H)

P (H) P (H) = P (H ∧ fair) + P (H ∧ ¬fair) P (H)

P (H) = 0.6

∣ H 0.25/0.6 = 5/12

¬ ∣ H 0.35/0.6 = 7/12

fair H



As this example shows, the words "prior" and "posterior" don't refer to a single distribution.
Instead they mean the distribution before and after we incorporate some piece of evidence. If we
incorporate several pieces of evidence, we have to know which one we're talking about in order
to know which distribution is the prior and which is the posterior. This ambiguity is a common
source of confusion, so it's best to specify precisely if there's any chance of misinterpretation.

Exercise: suppose we see heads again. What is our posterior ?

Factoring a probability distribution

When we use probability spaces in practice, one of the most important tasks is to
describe complicated relationships among many different possible events and random
variables. A good way to organize these relationships is to factor our probability
distribution: we write

where  stands for a list of all the random variables or events that we might want to
reason about, and each factor  encodes some understandable part of our overall
model. This factorization means that the probability of  taking a given value  is

There are lots of possible kinds of factors we might want to include. We can't cover
them all, but the rest of this set of notes will look at a few useful kinds, and how to work
with them.

In all of our examples, the factors  will be simpler probability distributions. As we'll
see, this is nice for interpretability. But there do exist factored distributions where the
factors can't be interpreted this way.

Independence

The simplest kind of relationship is none at all: suppose we can split our random
variables into two or more subsets that don't influence one another. Then these subsets
are called independent of one another.

We can represent independence by writing our overall probability as a product of two or
more factors, where the factors have disjoint sets of arguments. Like this:

P (fair ∣ H, H)

P (X) = F (X)F (X) … F (X)1 2 n

X

F (X)k

X x

P (X = x) = F (x)F (x) … F (x)1 2 n

F (X)k



For example, if we flip a coin twice, it makes sense to assume that the two flips are
independent: getting heads on one flip doesn't influence our chance of getting heads on
the other. The above formula could represent our joint distribution, if we take  to
represent the first flip and  to represent the second.

If we write  for a value that  might take, and  for a value that  might take, the
above factorization stands for a table in which

For example, if our first coin has probability  of showing heads, while our second coin
has probability , we get the following table:

H H

H T

T H

T T

We can see that this table encodes independence by calculating: suppose we observe
that . Then we can use the rule for conditional probabilities to find 

. To do so, we cross out the rows in the table that are inconsistent with
our observation; in this case, we cross out the first and second rows, and keep the third
and fourth. Then we renormalize the remaining rows: the two remaining entries are 

 and their sum is , so the result is

H

T

The distribution of the second coin is still a 60% probability of heads, unchanged from
before we made our observation of the first coin. This property — the distribution of one
random variable is unchanged when we make observations about the other — is what
defines independence.

P (X , X ) =1 2 P (X )P (X )1 2

X1

X2

x1 X1 x2 X2

P (X =1 x , X =1 2 x ) =2 P (X =1 x )P (X =1 2 x )2

0.7

0.6

X1 X2 p

0.7 ⋅ 0.6 = 0.42

0.7 ⋅ 0.4 = 0.28

0.3 ⋅ 0.6 = 0.18

0.3 ⋅ 0.4 = 0.12

X =1 T

P (X ∣2 X =1 T )

0.18, 0.12 0.3

X2 p

0.18/0.3 = 0.6

0.12/0.3 = 0.4



Exercise: give a joint distribution for two real variables  such that their correlation
is zero, but they are not independent.

Conditional independence

Sometimes our random variables aren't independent to start out, but they become
independent after we observe something. This is called conditional independence.
Under conditional independence, our distribution isn't a product of independent factors
to start, but it becomes a product of independent factors after we make an observation.

A good example is a clustered distribution:

In this distribution, the  and  coordinates are not independent: if  is big, then we're
more likely to be in the second cluster, meaning that  is more likely to be big as well.
But once we know which cluster we're in,  and  are independent.

If the conditional distribution is independent, that means that it factors into the product
of the probability of  and the probability of :

where  are the coordinates of a sample and  is the indicator of which cluster the
sample is in. So, the joint is

X, Y

X Y X

Y

X Y

X Y

P (X, Y ∣ Z) = P (X ∣ Z)P (Y ∣ Z)

X, Y Z



We can test that this formula gives us conditional independence by conditioning on an
observation — say , i.e., the point is in the first cluster. The rule for conditional
probabilities gives us

Since we've fixed a value for ,  depends only on , and 
depends only on . So, our conditional distribution is a product of two independent
factors, as claimed.

Samples

One of the most common uses of independence or conditional independence is when
we repeat an experiment many times to collect a sample. In this situation it makes sense
to assume that each run of the experiment is independent from all of the other runs. If
our sample is , that means our overall distribution factors as

In a sample like this, we might have an unknown parameter vector  that influences
the distribution of our samples — e.g.,  might contain the mean and variance of a
sample . If we think of  as fixed but unknown, we could emphasize the dependence
on  by writing

On the other hand, we might want to think of  itself as a random variable. In this case
we would say that the samples  are conditionally independent given :

These are two alternate views of the world: either the parameters take some fixed but
unknown value, or the parameters are themselves random. Both views are reasonable;
they often lead to similar conclusions about , but they can also be subtly different.

Group at a time

P (X, Y , Z) = P (Z)P (X, Y ∣ Z) = P (Z)P (X ∣ Z)P (Y ∣ Z)

Z = 1

P (X, Y ∣ Z = 1) = P (X, Y , Z = 1)/P (Z = 1)

= P (Z = 1)P (X ∣ Z = 1)P (Y ∣ Z = 1)/P (Z = 1)

= P (X ∣ Z = 1)P (Y ∣ Z = 1)

Z P (X ∣ Z = 1) X P (Y ∣ Z = 1)

Y

X , X , … , X1 2 T

P (X , X , … , X ) =1 2 T P (X )P (X ) … P (X )1 2 T

θ ∈ Rd

θ

Xt θ

θ

P (X , X , … , X ) =θ 1 2 T P (X )P (X ) … P (X )θ 1 θ 2 θ T

θ

Xt θ

P (X , X , … , X , θ) =1 2 T P (θ)P (X ∣1 θ)P (X ∣2 θ) … P (X ∣T θ)

θ



In general, we might have a complicated pattern of dependence, where each of our
random variables depends on some of the others. A good way to organize our
factorization in this case is to sort our random variables in some order, and imagine that
we pick their values one or a few at a time according to our order. Each group that we
pick at the same time leads to a factor in our probability distribution.

For example, we might have three random variables: whether it's raining today, whether
our sprinkler is turned on, and whether the grass is wet. We could pick them in the order

, and write

Each factor is the conditional probability distribution of one variable or group of
variables, given all of the preceding ones.

Sometimes we don't need every single one of the preceding variables to predict our
current one. For example, if our sprinkler is attached to a timer, then the probability that
it's turned on when we look at it doesn't depend on whether it's raining. In that case
we'd omit  as a conditioning variable for , and write

The variables that we include when predicting  are called its parents; so here,  and
 have no parents, while the parents of  are  and .

Often there's one distinguished order for our variables that makes the most sense. For
example, in a medical study we pick a treatment first, and observe its outcome later; or
in our example above, the weather happens first, and helps determine whether the grass
becomes wet later. Other times there's no one order that's better than the others; in this
case we can pick any convenient order.

In either case, the order is our own modeling decision: we're free to use the "wrong"
order, and the only cost will be to the interpretability and accuracy of our model. The
decision of what parents to use for any given variable is ours as well: if we pick a good
set of parents we might get a more accurate model, but the more parents we pick, the
more complicated our factorization will become.

The only restriction is that there always has to be an ordering where each variable's
parents come before it — if not, we would have a loop, where  determines  and 
determines . If we tried to write a factorization this way, the result would typically not
be a valid probability distribution.

rain, sprinkler, wet

P (rain, sprinkler, wet) = P (rain) P (sprinkler ∣ rain) P (wet ∣ rain, sprinkler)

rain sprinkler

P (rain, sprinkler, wet) = P (rain) P (sprinkler) P (wet ∣ rain, sprinkler)

Xi rain

sprinkler wet rain sprinkler

A B B

A




