Computational Foundations for ML 10-607

Geoff Gordon

Notes and reminders

- Change in my office hours
- Review period on W
- Lab 4 on F

Information inequalities *for joint P(X, Y)*

Х

Hold-out set (aka validation set)

- Ο
- Х

- Х

Х

Water and the second for support of the second seco

Hold-out set (aka validation set)

remove hold-out group, fit on rest

Х

Х

Ο

 \bigcirc

Х

Х

 \bigcirc

Ο

When the state of the state of

Ο

Hold-out set (aka validation set)

remove hold-out group, fit on rest

Х

Х

 \bigcirc

Hold-out set (aka validation set)

remove hold-out group, fit on rest

Hold-out set (aka validation set)

add back in hold-out group, compute error

Hold-out set (aka validation set)

add back in hold-out group, compute error

San and the second for support of the second states and the second

Hold-out set (aka validation set)

add back in hold-out group, compute error

San and the second for support of the second states and the second

Hold-out set (aka validation set)

estimated error rate: 1/3 add back in hold-out group, compute error

Hold-out error is unbiased

and the state of the second of the state of the second of

• We didn't optimize on hold-out set, so our error estimate is unbiased (E(holdout error) = true error)

▶ so, overfitting detector: holdout error ≫ training set error

- Variance may be high
 - especially if we can only afford a small hold-out set
- We only trained our classifier on some of our data
 - might not reflect amount of overfitting if we used all data

Suppose we detect overfitting

- Hold-out error is much bigger than training error
- What now?
- Tempting to use hold-out set to make some choices (reduce overfitting, improve hold-out performance) which kernel to use? how many iterations of SGD?
- - ▶ we'll get to this use case later
 - for now, warning: as soon as we optimize anything based on hold-out error, the hold-out error becomes biased!

The same did to the the same in the state of the same of the s

Cross-validation

split data evenly into groups ("folds")

Х

Х

Cross-validation

remove green group, fit on rest

Water and the state of the stat

Cross-validation

add back green group: error 1/4

Х

Х

Water and the second for and the second of t

remove red group, fit on rest

Water and the state of the stat

Cross-validation

Х

0 X

Water and the state of the stat

Cross-validation

 \bigcirc

Ο

remove blue group, fit on rest

Х

Х

Water and the state of the stat

Cross-validation

A MARKED & A PATHON

add back blue group: error 2/4

Cross-validation

 \bigcirc

Ο

Overall: (1+2+2)/12 = 42% error rate

add back blue group: error 2/4

Why the name?

- Each fold serves as validation set for other F–1 folds
- Do this in all possible ways = **cross**-validation

and have seen the third and and the balance of the set of the second states of the second sta

Cross-validation error is unbiased

an and the ball and the state of the state

- In each round, we didn't optimize on hold-out fold, so error estimate is unbiased
 - ▶ therefore, so is overall CV error
 - ▶ so, overfitting detector: CV error ≫ training set error
- Variance of CV is better than plain hold-out
 - especially if we can only afford a small hold-out set
 - note: folds are not independent!
- We only trained our classifier on some of our data
 - might not reflect amount of overfitting if we used all data

How many folds?

• More folds (F big):

- ▶ train on more data: (F−I)/F good
- ▶ more computation bad
 - ▶ sometimes, tricks apply: e.g., F=N is cheap in k-nearest-neighbor
- Fewer folds (F small)
 - ▶ train on less data bad
 - Iess computation = can afford more expensive-to-train models good

typical: F = *2..10*

 \bigcirc

Χ

Х

 \bigcirc

Ο

Х

Water a state of the state of t

Bootstrap

Ο

Ο

make a **bootstrap resample** of our data

Х

Х

Ο

and have she to be an and the barrow of the state of the MARCE ELSER BALLE LEVE CONSTRUCTION

Ο

really on top of each other $\rightarrow \bigcirc$ Ø

Х

size = N, each example drawn independently w/ replacement from original training set

make a **bootstrap resample** of our data

Х

 \times

The second state of the second of the second

Bootstrap

Ο

really on top of each other $\rightarrow \bigcirc$

fit our classifier on the new sample (often called a bag)

Ø

size = N, each example drawn independently w/ replacement from original training set

Х

 \times

ØX

Х

Bootstrap

Ο

really on top of each other $\rightarrow \bigcirc$

evaluate on out-of-bag (oob) samples

Х

Х

*

size = N, each example drawn independently w/ replacement from original training set

Water and the second of the se

evaluate on out-of-bag (oob) samples

 \times

Repeat F times Final error estimate = average error on oob samples

Х

size = N, each example drawn independently w/ replacement from original training set

Water and the state of the second of the sec

evaluate on out-of-bag (oob) samples

Repeat F times Final error estimate = average error on oob samples

Can treat fitted parameter vectors as a sample from **posterior** distribution over parameters (given data)

size = N, each example drawn independently w/ replacement from original training set

Why the name?

- Seems like we're getting something for nothing
 - ▶ an estimate of error on independent samples, even though we don't have any more independent samples
 - "pulling one's self up by the bootstraps"

Use error estimate to pick model

The state of the second of the state of the

- Instead of picking model or hyper-parameters (features, kernel, hold-out, cross-validation, or bootstrap error
- parameters of the model we picked

optimizer, etc.) based on training set error, pick them to minimize

Now put all of our data together (all F folds) and re-optimize the

Model selection by CV

Water a state of the state of t

Algorithm	TRAINERR	10-
1-NN		
10-NN		
Linear Reg'n		
Quad reg'n		
LWR, KW=0.1		
LWR, KW=0.5		

[table credit: Andrew Moore, <u>http://www.autonlab.org/tutorials/]</u>

Fit best model on all the data

Bagging

- For bootstrap or CV, instead of re-fitting best model, make an ensemble vote among the models (one per fold or bag)
 - ''bootstrap aggregating'' = ''bagging''
 - ▶ e.g., bagged decision trees \rightarrow random forests
 - voted prediction approximates Bayesian predictive distribution

What's the catch?

Attack to

- Two problems with doing model/hyper-parameter selection this way
 - pick too simple a model
 - still don't know its performance

What can go wrong?

- Convergence is only asymptotic (large original sample) here: what if original sample hits mostly the larger mode?
- Original sample might not be i.i.d.
 - unmeasured covariate
- We can still overfit the bootstrap / CV / holdout

Save some data for later

- Big data set: say, N = 10,000
- Hide some of it
 - say $N_v=7,000$ visible, $N_h=3,000$ hidden
 - pretend we never had hidden part really, no peeking!
- Do stuff that might overfit on our N_v points
 - pick kernel/features, test rules for removing outliers, ...
 - ▶ use cross-validation within N_v points
- Done? OK, fix just one classifier. Test it on the N_h points. Report accuracy.

Not the second of the Line of the

But I really want to try one more thing

وجعد المحمد ومعالم المراح والمحمد والمحمد

- Often: didn't do as well as expected on the N_h hidden points
 - ▶ after all, the whole point was that we risked overfitting

But I really want to try one more thing

- Often: didn't do as well as expected on the N_h hidden points • after all, the whole point was that we risked overfitting
- So let's go back and try another idea fit it on the N_v points.
 - ► OK, that didn't work try something else
 - ▶ No, not that either on to the next idea
 - ▶ Now it works better on the N_h points. Good, right?

But I really want to try one more thing

- Often: didn't do as well as expected on the N_h hidden points • after all, the whole point was that we risked overfitting
- So let's go back and try another idea fit it on the N_v points.
 - ► OK, that didn't work try something else
 - ▶ No, not that either on to the next idea
 - ▶ Now it works better on the N_h points. Good, right?
- Strong risk that it doesn't actually work better...

Recursive hiding

- So, split our data into N_v visible points, N_h hidden ones, and N_{rh} "really hidden" ones
 - develop on the N_v
 - ▶ test rarely on the N_h
 - test only once at the end on the N_{rh}
- Practically, 3 groups are probably the limit
 - ▶ and only if we have lots of data

petal lent

6.8 cm 5.7 cm

Muer Mig

petal viden

I. viginica 3.0 cm I. versicolor 2.5 cm

 $\begin{array}{c} \mathcal{D} \\ \mathcal{D} \\ \mathcal{D} \end{array} \\ \mathcal{D} \\ \mathcal{D} \end{array} \\ \mathcal{D} \\ \mathcal{D} \\ \mathcal{D} \end{array} \\ \mathcal{D} \\ \mathcal{$

Moer - Mirs

$P(m) \propto exp(-1m/c)$

C = 20

