Math Foundations for ML 10-606

Geoff Gordon

Tips for written homework

- For HW1, you'll need to submit the written part through Gradescope
- If you're registered, please access Gradescope via Canvas: open Canvas, select Gradescope from the left navigation column
 - this lets us link your Gradescope account to Canvas so you get credit
 - If you're not registered, should still be able to access Gradescope directly
- Two options for preparing submission
 - handwrite and scan
 - type using a markup language

Handwrite and scan

- Handwrite legibly!
- Use a scanning app on your phone (see suggestions on course website)
 - cropped images that are hard for the TAs to work with
- Upload PDF to Gradescope

In don't just take a photo; this will result in skewed, poor-contrast, badly

Markup languages

- - Both can produce PDFs to submit on Gradescope
- For lecture notes, I use the VSCode editor (Markdown is built in) with

Complete spaces

Above we described how to think of matrices or functions as vectors in a vector space. We also described how to upgrade a vector space to an inner product space by defining an inner product \$\langle x, y\rangle\$. For example, - A useful inner product for matrices is \$\$ $\Lambda = \Lambda_{i=1,\lambda_{i=1}}^{i=1,\lambda_{i=1}},$,j=n X_{ij}Y_{ij} = $mathrm{tr}(X^TY) =$ \mathrm{tr}(YX^T)\$\$

Complete spaces

Above we described how to think of matrices or functions as vectors in a vector space. We also described how to upgrade a vector space to an inner product space by defining an inner product $\langle x, y \rangle$. For example,

Two most common are LaTeX and Markdown; both work well but need setup

Markdown+Math (enables LaTeX math) and Markdown Extended (better CSS)

• A useful inner product for matrices is

$$\langle X,Y
angle = \sum_{i=1,\,j=1}^{i=m,\,j=n} X_{ij}Y_{ij} = \mathrm{tr}(X^TY) = \mathrm{tr}(YX^T)$$

 $\{\omega, b, + \omega_2, b_2\}$ $\{\omega, \omega_2 \in \mathbb{R}^2\}$ La span $L_{X}(X,Y) = U \cdot V$ N

Exercise: equivalent vector spaces

- Are these vector spaces the same? R^{mx1} R^{1xm} R^m
 - A: yes, they're the same
 - B: no, they're different
 - C: they're different but equivalent

Exercise: basis

- the basis 1, x, $2x^2 1$ (first three Chebyshev polynomials)
- What is the representation of x² in this basis?

$$\frac{1}{2}$$
 + 0 + $\frac{1}{2}(2x^2 - 1)$

• What is the representation of (x-1)²?

Go to text box on Casas to Casas to

Consider the vector space of degree-2 polynomials in a real variable x with

SER were Fw.x 5 -4 $f(x) = 0 \quad f(x) = u \cdot x$ decision -0 $k \cup \dots - b = u$ $k = \frac{b}{\|w\|^2}$ $k = \frac{b}{\|w\|^2}$ $k = \frac{w}{\|w\|}$ $\frac{b}{\|w\|}$ $\frac{b}{\|w\|}$

Feature transforms

 $w \cdot \phi(x) - b$

Feature transforms

6. --- 6. (b;)GV

Ajoint $f^{*}(u), f(y)$ $= \left(f^{*}(\begin{pmatrix} y \\ y \end{pmatrix} \right), \begin{pmatrix} x \\ y \end{pmatrix} \right)$ $= \left(f^{*}(\begin{pmatrix} y \\ y \end{pmatrix} \right), \begin{pmatrix} x \\ y \end{pmatrix} = \left(f^{*}(y) \right)$ $= \left(f^{*}(y) \right)$

Exercise: Gaussian elimination

- Suppose
 - ► x + y + z = 3
 - ► 2x + y = 5
 - ► -x + y 2z = 4
- What are x, y, z?

