Math Foundations for ML 10-606

Tips for written homework

- For HW1, you'll need to submit the written part through Gradescope
- If you're registered, please access Gradescope via Canvas: open Canvas, select Gradescope from the left navigation column
- this lets us link your Gradescope account to Canvas so you get credit
- if you're not registered, should still be able to access Gradescope directly
- Two options for preparing submission
- handwrite and scan
- type using a markup language

Handwrite and scan

- Handwrite legibly!
- Use a scanning app on your phone (see suggestions on course website)
- don't just take a photo; this will result in skewed, poor-contrast, badly cropped images that are hard for the TAs to work with
- Upload PDF to Gradescope

Markup languages

- Two most common are LaTeX and Markdown; both work well but need setup
- Both can produce PDFs to submit on Gradescope
- For lecture notes, I use the VSCode editor (Markdown is built in) with Markdown+Math (enables LaTeX math) and Markdown Extended (better CSS)

Above we described how to think of matrices or functions as vectors in a vector space. We also described how to upgrade a vector space to an inner product space by defining an inner product $\$ \backslash$ langle $x, y \backslash r a n g l e \$. ~ F o r ~ e x a m p l e, ~$ - A useful inner product for matrices is \$\$ Vangle X, Y rangle $=$ ssum_ $\{i=1, \backslash, j=1\} \wedge\{i=m$, $\backslash, j=n\}$ X_\{ij\}Y_\{ij\} $=$ \mathrm\{tr\} $\left(\mathrm{X}^{\wedge} \mathrm{TY}\right)=$ lmathrm\{tr\}(YX^T)\$\$

Complete spaces

Above we described how to think of matrices or functions as vectors in a vector space. We also described how to upgrade a vector space to an inner product space by defining an inner product $\langle x, y\rangle$. For example,

- A useful inner product for matrices is

$$
\langle X, Y\rangle=\sum_{i=1, j=1}^{i=m, j=n} X_{i j} Y_{i j}=\operatorname{tr}\left(X^{T} Y\right)=\operatorname{tr}\left(Y X^{T}\right)
$$

$$
\left\{w_{1} b_{1}+w_{2} y_{2} \mid w_{1} w_{2} \in \mathbb{R}\right\}
$$

\rightarrow span

$$
\binom{1}{0}(0)\binom{1}{1}
$$

Exercise: equivalent vector spaces

- Are these vector spaces the same? $R^{m \times 1} R^{1 \times m} R^{m}$
- A: yes, they're the same
- B: no, they're different
- C: they're different but equivalent

Exercise: basis
Go to text box on Canvas to assures

- Consider the vector space of degree-2 polynomials in a real variable x with the basis 1, $x, 2 x^{2}-1$ (first three Chebyshev polynomials)
-What is the representation of x^{2} in this basis?

$$
\frac{1}{2} \cdot 1+0+\frac{1}{2}\left(2 x^{2}-1\right) \rightarrow\left(\begin{array}{c}
1 / 2 \\
0 \\
1 / 2
\end{array}\right)
$$

-What is the representation of $(x-1)^{2}$?

$$
\omega \in \mathbb{R}^{2} \quad \delta \in \mathbb{R}
$$

x if $w \cdot x>b$
0 if $w \cdot x<b$
$\{x \mid f(x)=0\} \quad f(x) \equiv 0 \cdot x-3$
decision
sorface

$$
k u \cdot w-b=0
$$

$$
\begin{aligned}
& k \cdot \omega-b=0 \quad \omega \cdot x 1^{0}(x-y)=0 \\
& k=\frac{b}{\|\omega\|^{2}} \quad k \cdot\left(\frac{w}{\|\omega\|} \frac{b}{\|\omega\|}\right.
\end{aligned}
$$

$$
\begin{aligned}
& k u \cdot w-b=0 \\
& k=\frac{b}{\|w\|^{2}}
\end{aligned}
$$

Feature transforms

$$
\begin{aligned}
& \left.\binom{x_{1}}{x_{2}} \xrightarrow[\phi]{\longrightarrow} \left\lvert\, \begin{array}{c}
x_{1} \\
x_{2} \\
x_{1} x_{2} \\
x_{1}^{2} \\
x_{2}^{2}
\end{array}\right.\right] \\
& \omega \cdot \phi(x)-b \\
& \omega_{1} x_{1}+\omega_{2} x_{2}+\omega_{3} x_{1} x_{2}+ \\
& \omega_{4} x_{1}^{2}+\omega_{5} x_{2}^{2}-\delta=0
\end{aligned}
$$

Feature transforms

$$
\binom{x_{1}}{x_{2}} \rightarrow\left(\begin{array}{l}
x_{1} \\
x_{2} \\
1
\end{array}\right)
$$

$$
\begin{aligned}
f\left(\binom{x}{j}\right)=\binom{x+y}{2 x+2 y} & \rightarrow \text { range }=\operatorname{span}\binom{1}{2} \\
& \rightarrow \text { aull }=\operatorname{span}\binom{1}{-1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Adjont } \\
& (-2) \tan ^{\operatorname{ard}\left(f^{2}\right)} f^{*}\binom{u}{v}=\binom{u+2 v}{u+2 v} \\
& \text { Tavese } \\
& r^{\operatorname{angog}(f)} \frac{1}{\min \left(x^{\prime}\right)} f^{-1}\left(\binom{u}{v}\right)=\binom{x}{y}
\end{aligned}
$$

Exercise: Gaussian elimination

- Suppose
- $x+y+z=3$
- $2 x+y=5$
- $-x+y-2 z=4$
- What are x, y, z ?

