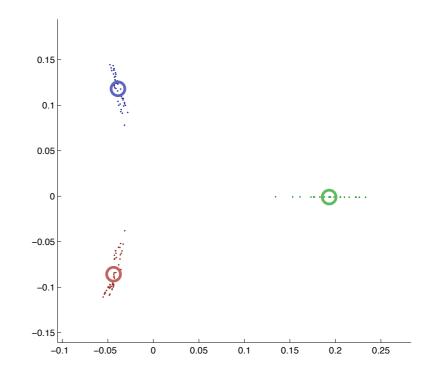
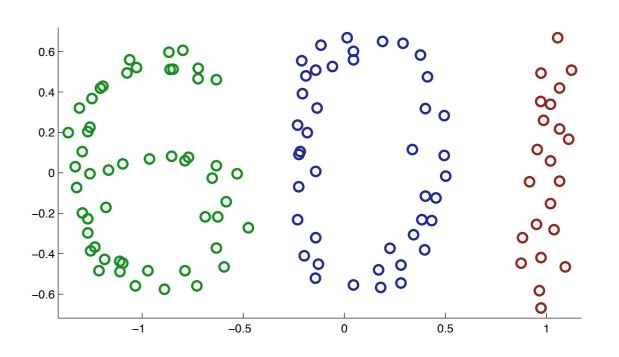
Review

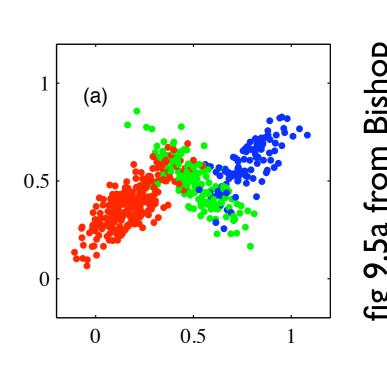
- Supervised v. unsup. v. "other"
- Clustering (for understanding, for compression, or as input to another task)
 - break into "similar" groups
 - what is "similar"?
 - use of spectral embedding
 - mapping back to clusters in original space





Review

- k-means clustering
 - alternating optimization; convergence
 - initialization; multiple restarts; split / merge
- soft k-means
 - mixture of Gaussians model
 - ▶ E-step, M-step
 - relation to hard k-means
 - connection to naïve Bayes
 - (un)biasedness



Review

- EM algorithm
 - general strategy for MLE or MAP with hidden variables (in our case, Z_{ij})
 - we were in the middle of deriving soft kmeans as an EM algorithm

Review: soft k-means

- Find soft assignments: " = step"
 - 9:1=
- Update means: "M step"

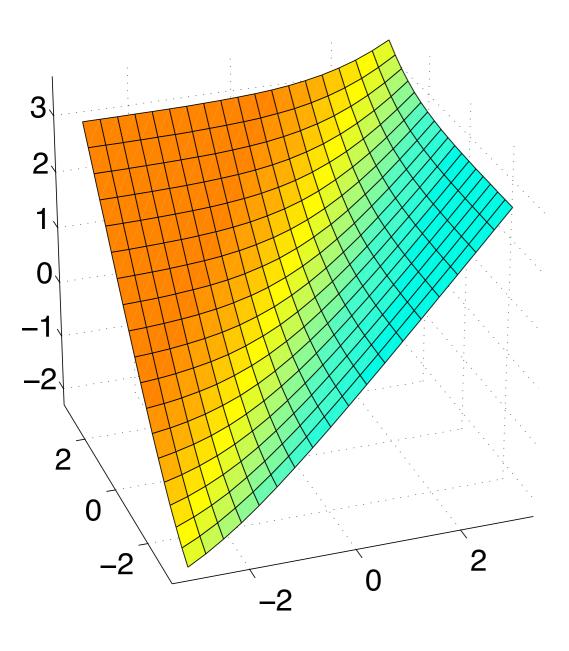
 Sor max

 My = ₹ ais Xi / ₹ ais
- Possibly: update covariances
 - ► Z= Z Z qi; (X;-μ;)(X:-μ;) N
- Repeat

Deriving soft k-means

- ▶ $P(X_i \mid Z_{ij} = I, \theta) = Gaussian(\mu_i, \sum_j)$
- $P(Z_{ij} = I \mid \theta) = p_i$
- $P(X_i, Z_i \mid \theta) = \prod_{j} P_j^{z_{ij}} N(x_i \mid y_j, z_j)^{x_j}$
- $L = In P(X | \theta) =$

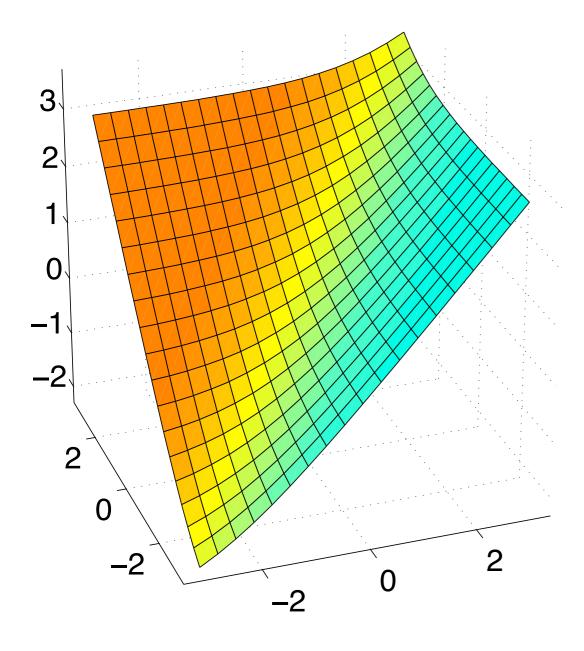
soft max
$$f(x,y) = ln(e^x + e^y)$$



Convex fins are

lower-bounded by tangents

$f(x,y) = In(e^x + e^y)$



In general

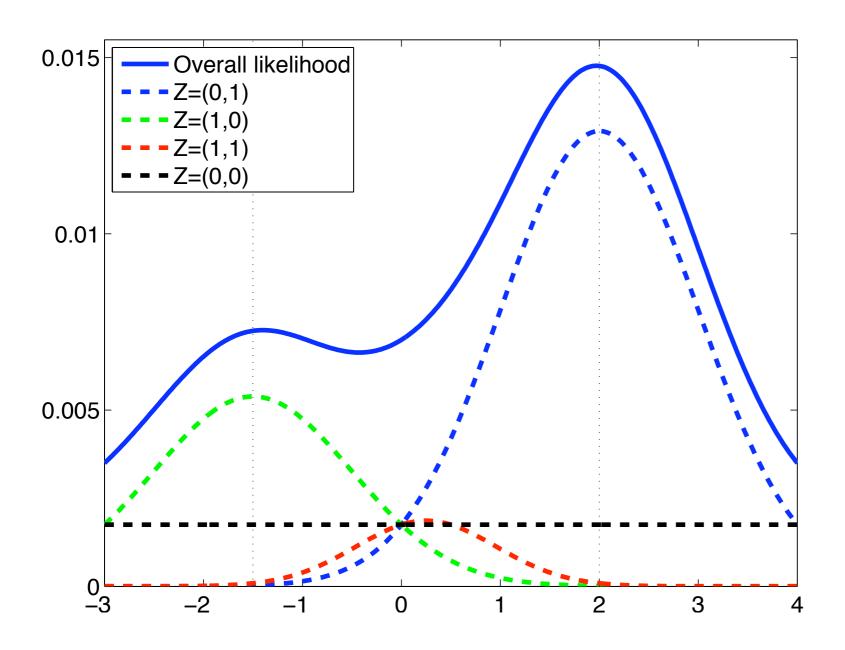
• $f(x_1, x_2, ...) = In(\sum_i exp(x_i)) \ge$

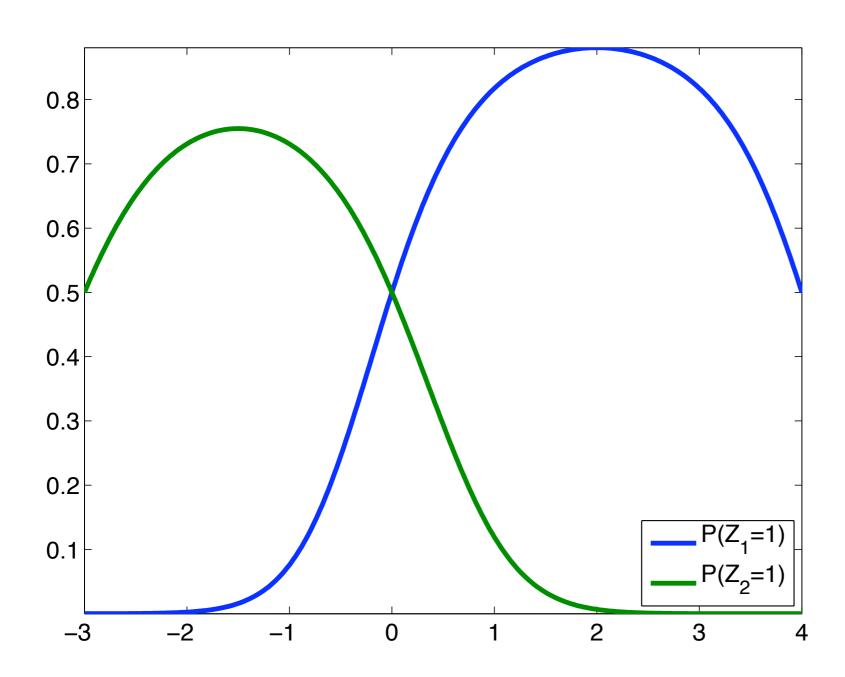
for any probability distribution q:

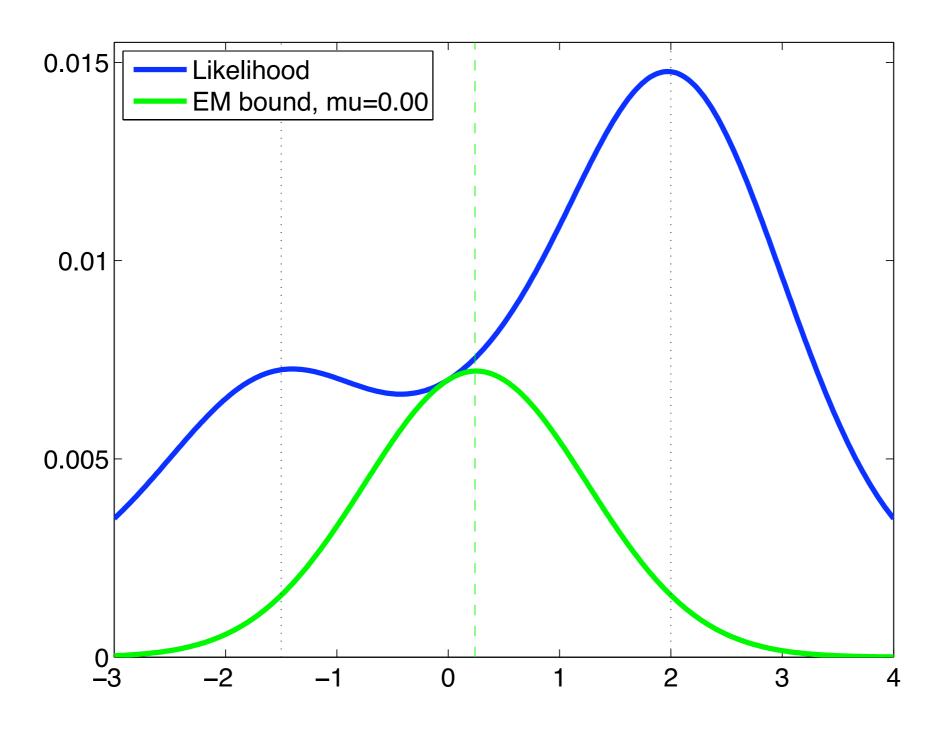
Optimizing a bound

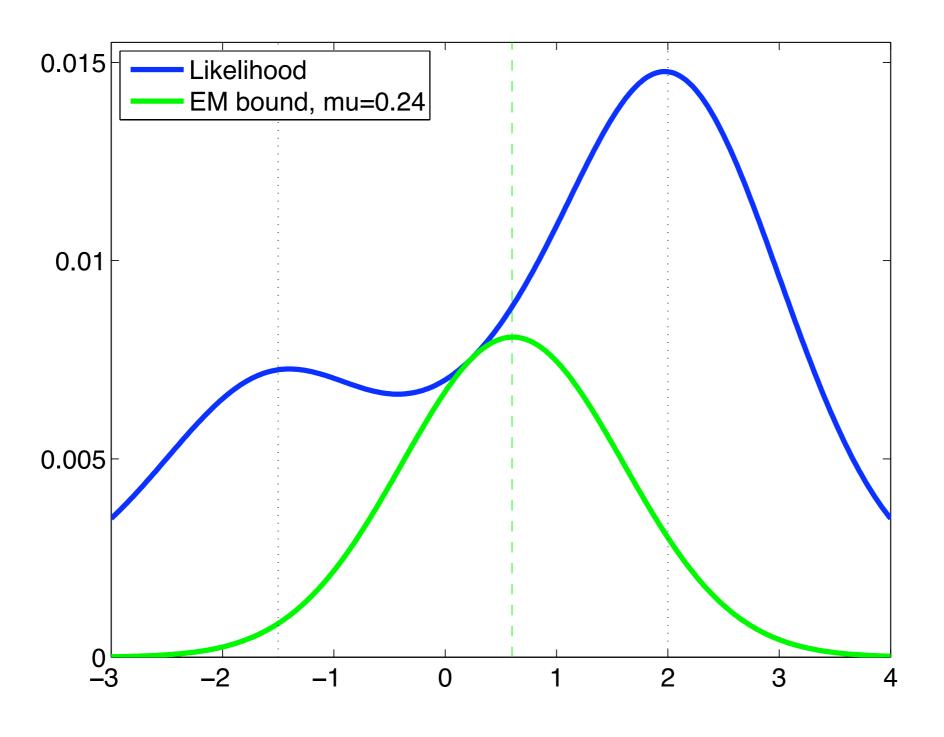
• $L(\theta) = \ln \sum_{z} \exp(\ln P(X, Z=z \mid \theta)) \ge$

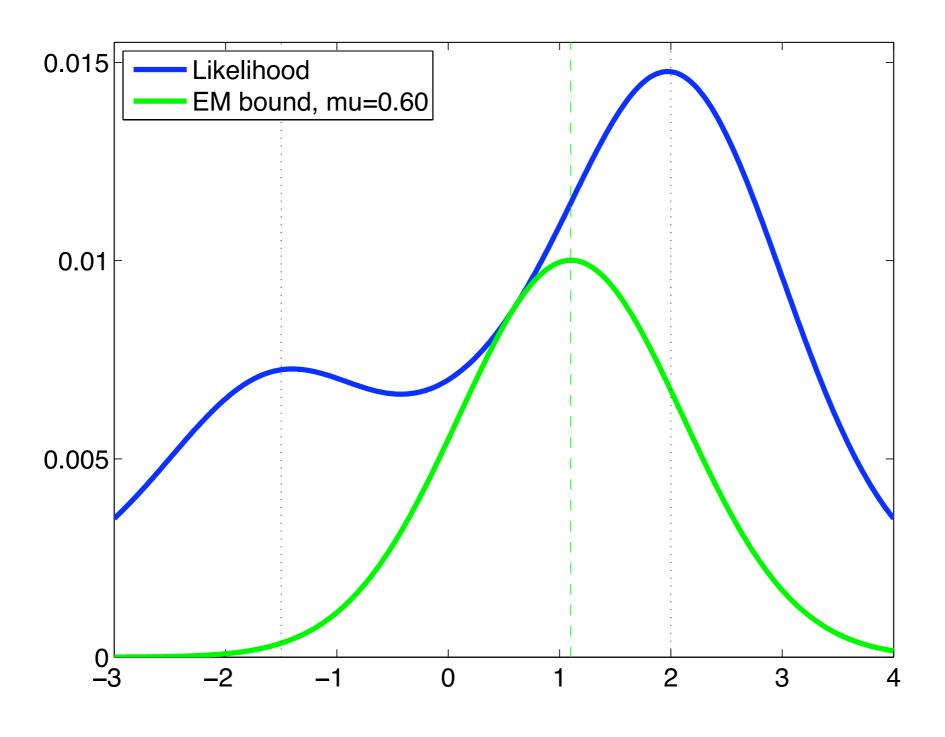
- for any distribution $q = \langle q_z \rangle$
- Maximizing $L(\theta)$ is hard
- So, maximize $L(\theta, q)$ instead
 - \blacktriangleright start w/ arbitrary q, max wrt θ
 - then max wrt q to get a tighter bound
 - repeat

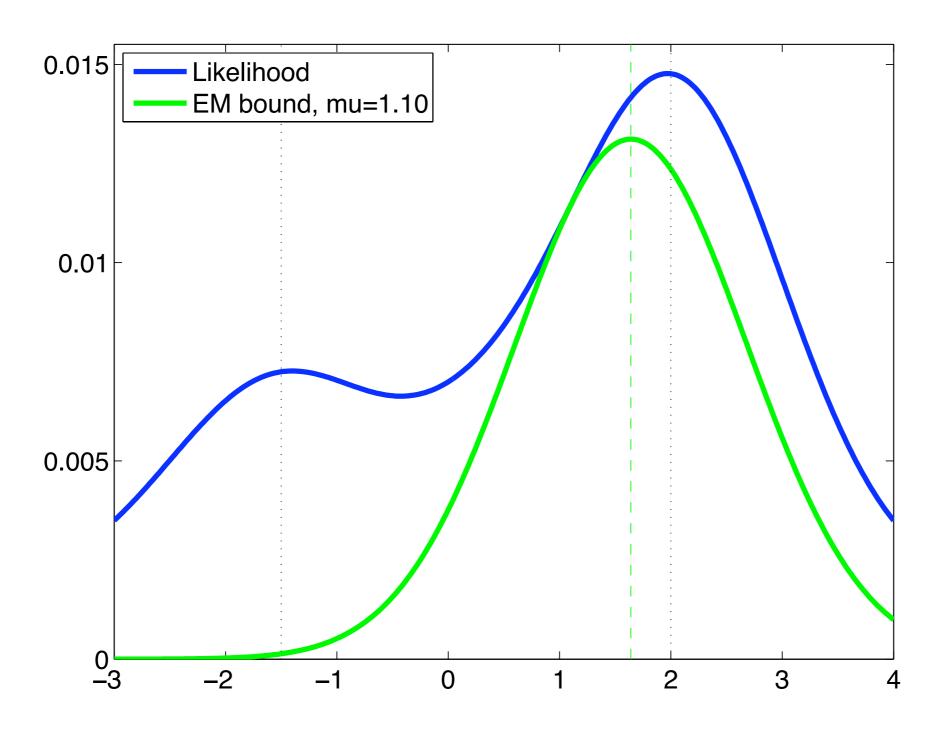


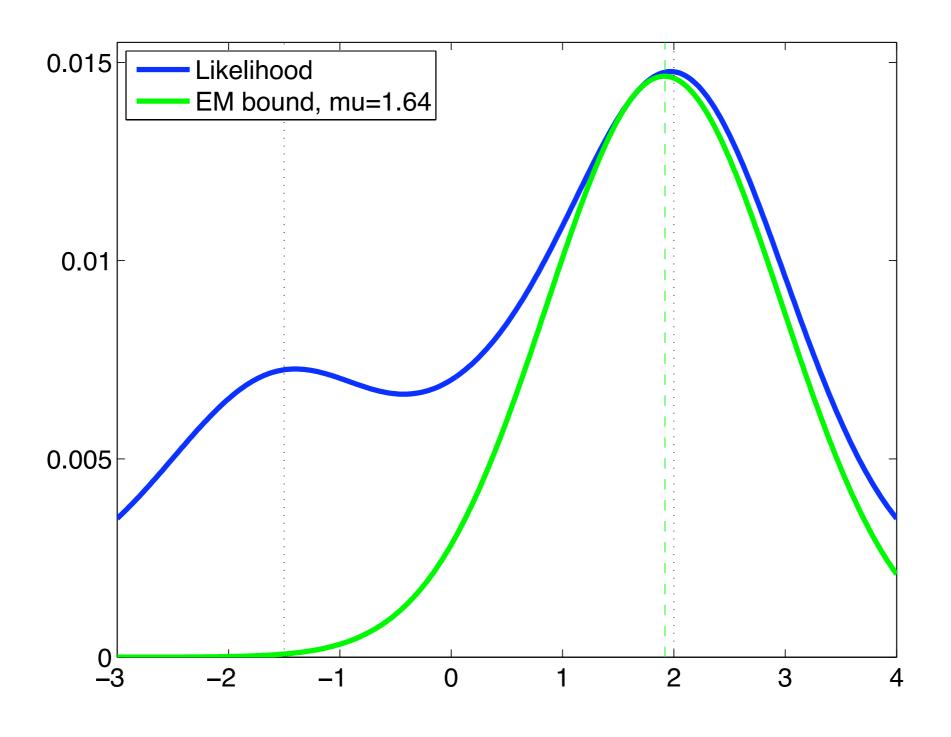


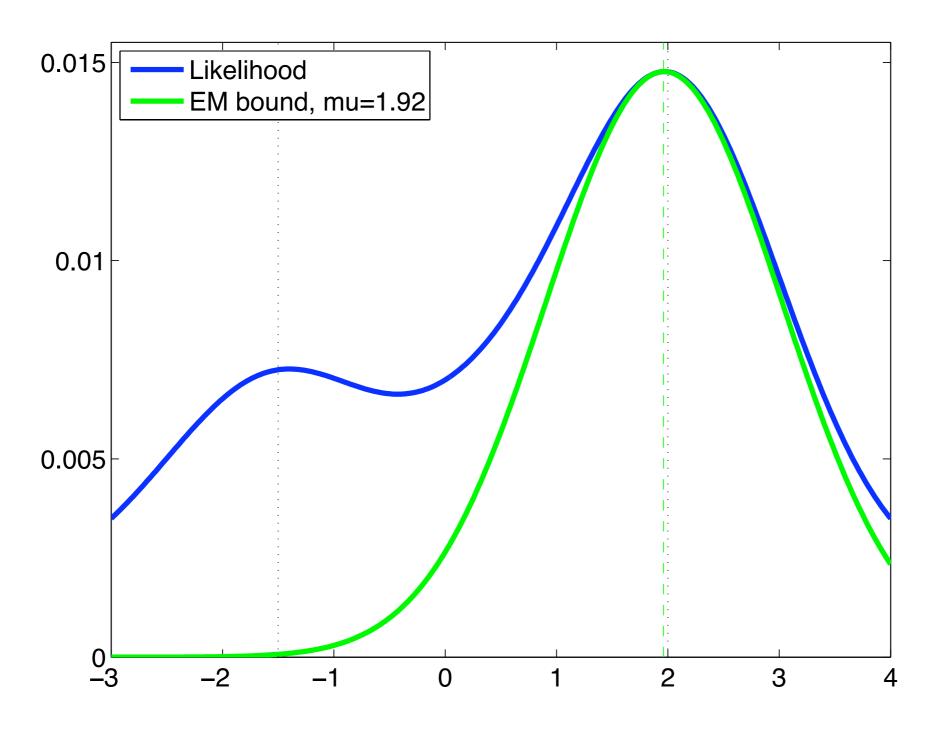












Optimizing: q

•
$$L(\theta, q) = \sum_{z} q_z \ln P(X, Z=z \mid \theta) - \sum_{z} q_z \ln q_z$$

For soft k-means

• $q_z = P(Z=z \mid X, \theta)$

Simplifying the bound

•
$$L(\theta, q) = \sum_{z} q_z \ln P(X, Z=z \mid \theta) - \sum_{z} q_z \ln q_z$$

Optimizing: µ

•
$$L(\theta, q) = \sum_{i \neq j} \sum_{j \neq i} q_{ij} [\ln p_{ij} + \ln N(X_i \mid \mu_j, \Sigma_j)] - H(q)$$

The EM algorithm

- Want to maximize $L(\theta) = \log P(X \mid \theta)$
- Hidden variables Z, so that
 - $L(\theta) = \log \sum_{z} P(X, Z = z \mid \theta)$
- Use bound: for any distribution q, $\log(\sum_{z} \exp(\ln P(X, Z = z \mid \theta))) \ge$

The EM algorithm

- Alternating optimization
 - of $L(\theta,q) = E_{Z\sim q} [\ln P(X,Z \mid \theta)] H(q)$
 - ► E-step:

M-step:

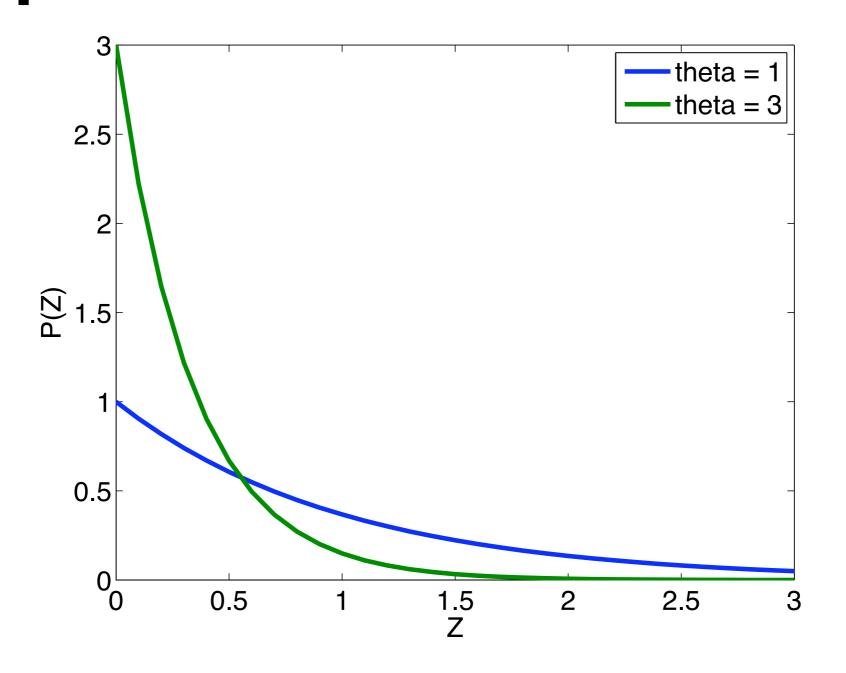
Example: failure times

- You're GE, testing light bulbs to estimate failure rate / lifetime
 - run torture test on 1000 bulbs for 1000 hrs
 - Adata: 503 bulbs fail at times $X_1, X_2, ..., X_{503}$
 - 497 bulbs are still going after 1000 hrs
- Or, you're an MD running a 5-year study, estimating mortality rate due to Emacsitis
 - of 1000 patients, 214 die at times $X_1, ..., X_{214}$
 - remaining 786 are alive at end of study

EM for survival analysis

- Hidden data: when would remaining samples have failed, if we had been patient enough to watch that long?
 - $ightharpoonup Z_i = X_i$ for failed samples
 - ▶ $Z_i \ge X_i$ for remaining samples
- $P(X_i = x \mid \theta) = \theta e^{-\theta x}$ for $x \ge 0$

Exponential distribution



•
$$P(X = x \mid \theta) = \theta e^{-\theta x}$$
 (for $x \ge 0$)

Properties of exponential distribution

•
$$E(X \mid \theta) =$$

•
$$P(Z = z \mid \theta, Z \ge X) =$$

•
$$E(Z \mid \theta, Z \ge X) =$$

EM algorithm for survival analysis

- E-step: for each censored point, compute
 - \rightarrow E(Z_i | X_i) =

- M-step: compute MLE
 - with fully-observed data, MLE is:

with censored data:

Fixed point

If there are K censored observations, EM converges to:

 Note: it's unusual to have closed-form expression for fixed point

More examples of EM

- Regression / classification with missing input values
- Learning parameters of Kalman filters
- Learning params of hidden Markov models
 - "forward-backward", "Baum-Welsh"
- Learning parameters of NL parsers
 - "inside-outside"