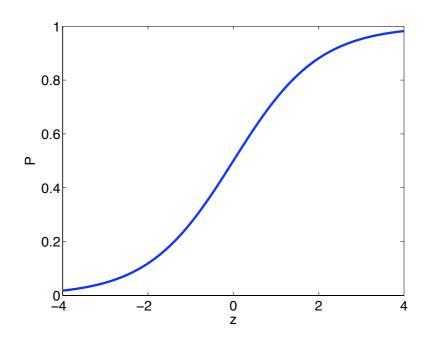
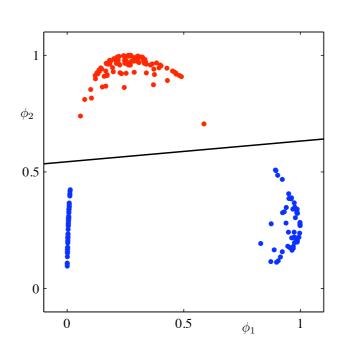
figure from book

Review

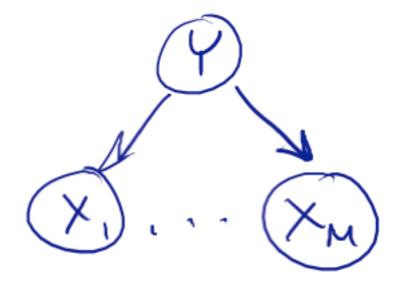
- Linear separability (and use of features)
- Class probabilities for linear discriminants
 - sigmoid (logistic) function
- Applications: USPS, fMRI

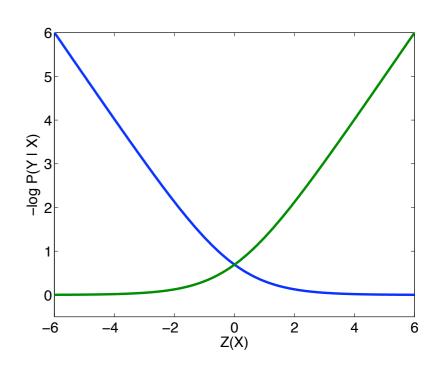




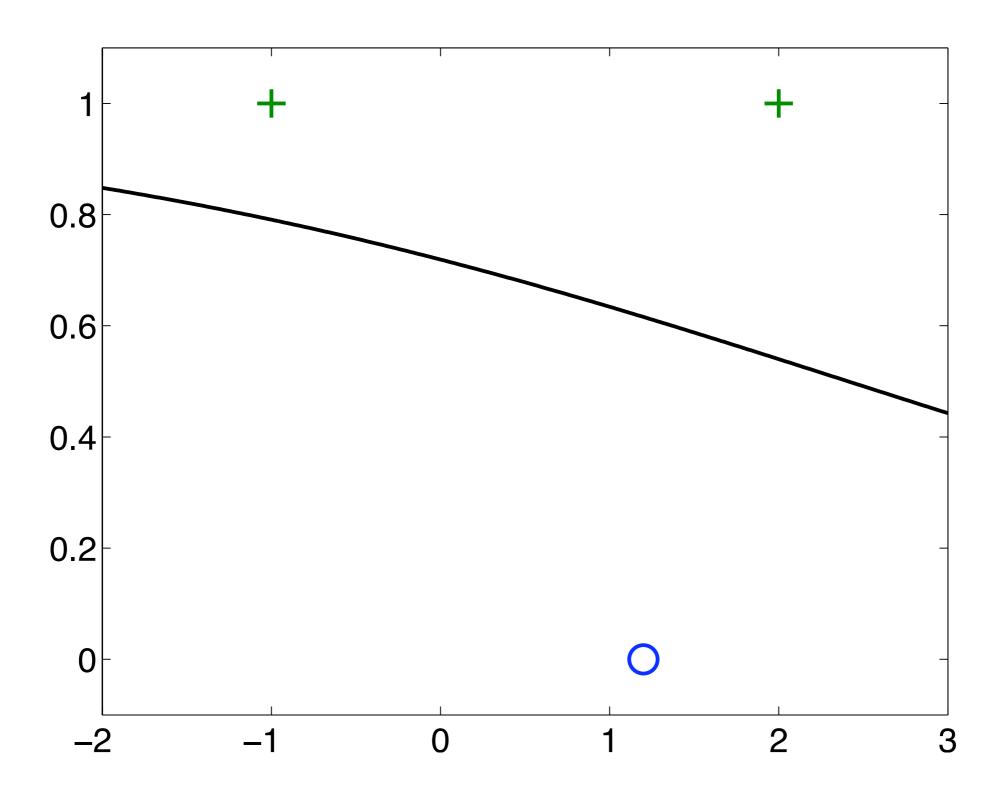
Review

- Generative vs. discriminative
 - maximum conditional likelihood
- Logistic regression
- Weight space
 - each example adds a penalty to all weight vectors that misclassify it
 - penalty is approximately piecewise linear

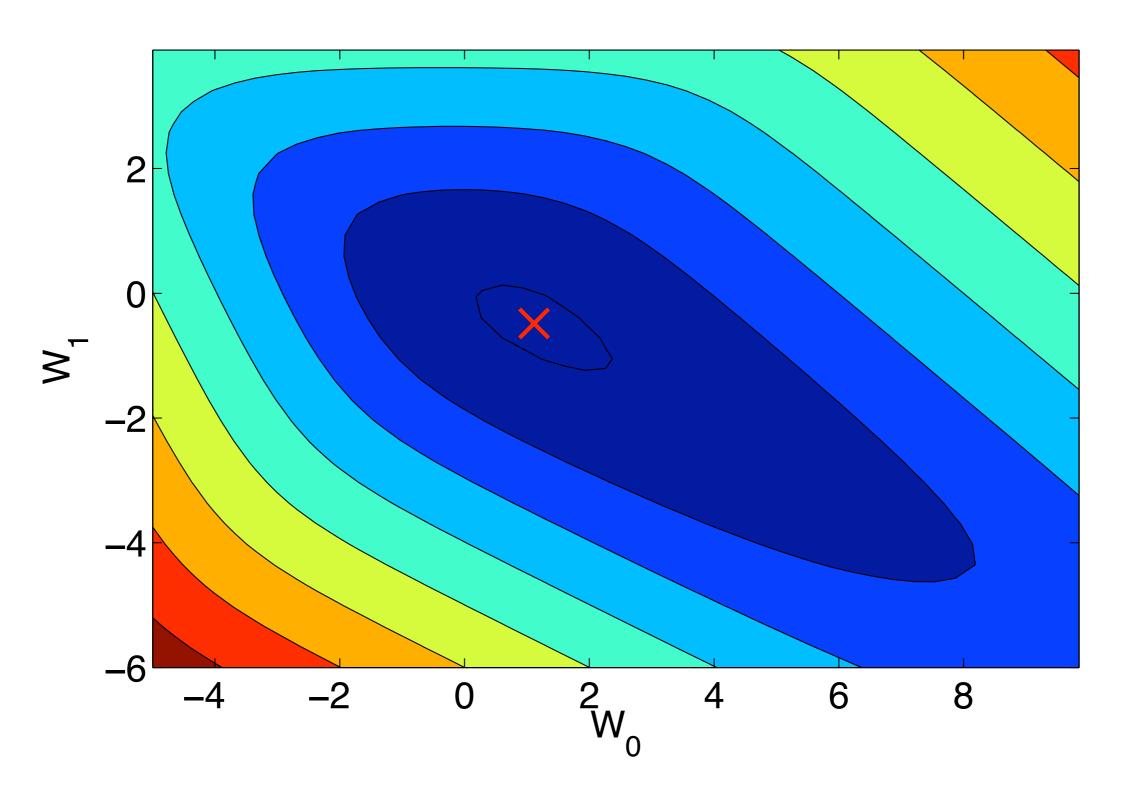




Example



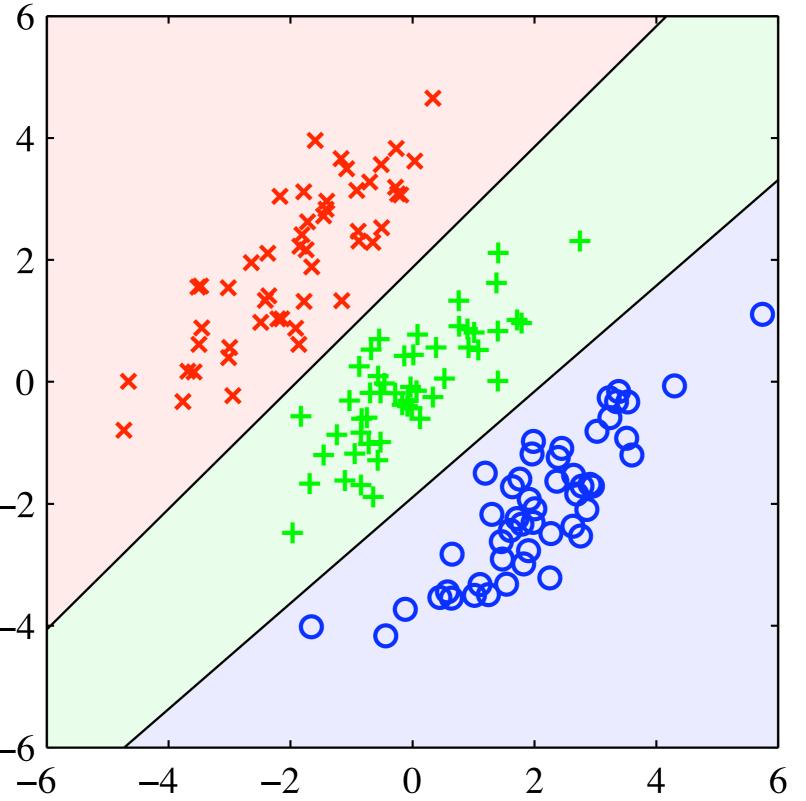
$-log(P(Y_{1..3} | X_{1..3}, W))$



Generalization: multiple classes

- One weight vector per class: Y ∈ {1,2,...,C}
 - ▶ P(Y=k) =
 - ightharpoonup $Z_k =$
- In 2-class case:

Multiclass example



Priors and conditional MAP

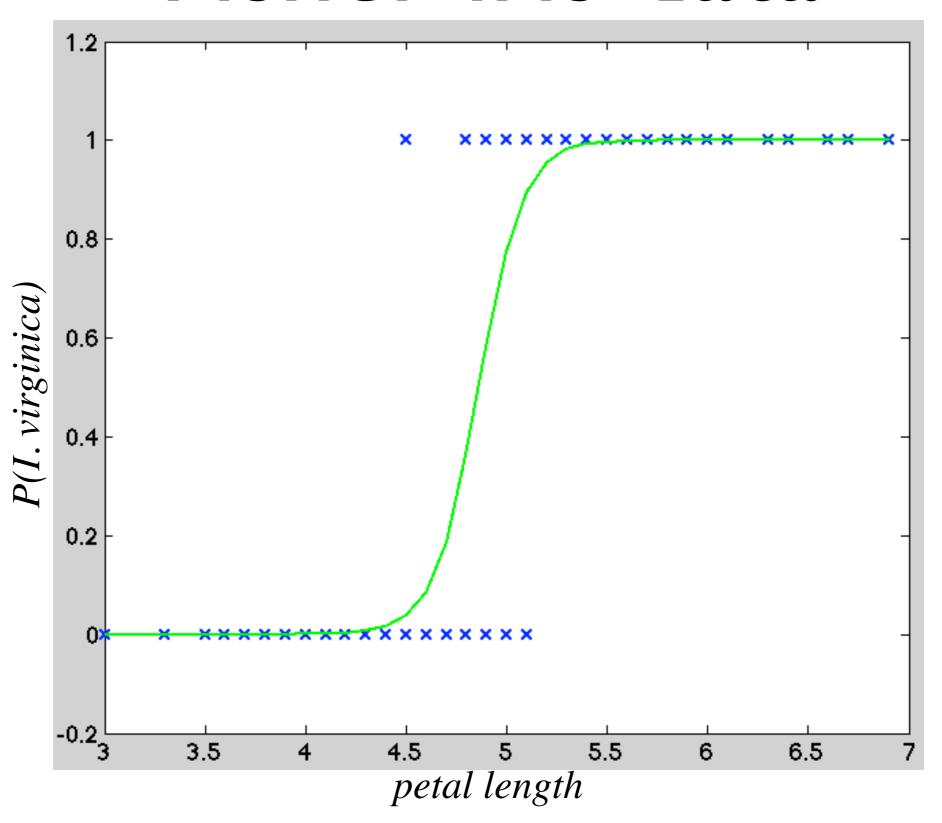
- P(Y | X,W) =
 - ➤ Z =
- As in linear regression, can put prior on W
 - common priors: L₂ (ridge), L₁ (sparsity)

max_w P(W=w | X,Y)

Software

- Logistic regression software is easily available: most stats packages provide it
 - e.g., glm function in R
 - or, http://www.cs.cmu.edu/~ggordon/IRLS-example/
- Most common algorithm: Newton's method on log-likelihood (or L₂-penalized version)
 - called "iteratively reweighted least squares"
 - for L_I, slightly harder (less software available)

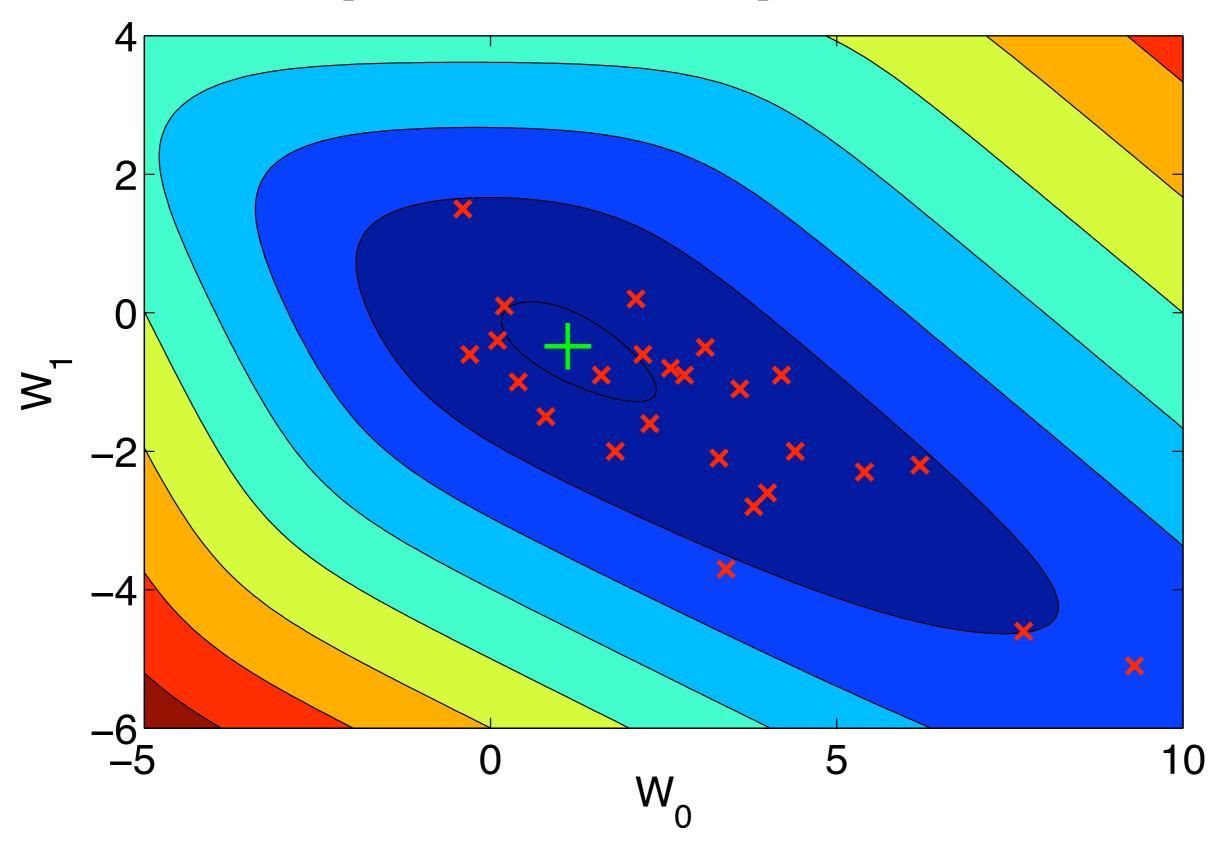
Historical application: Fisher iris data



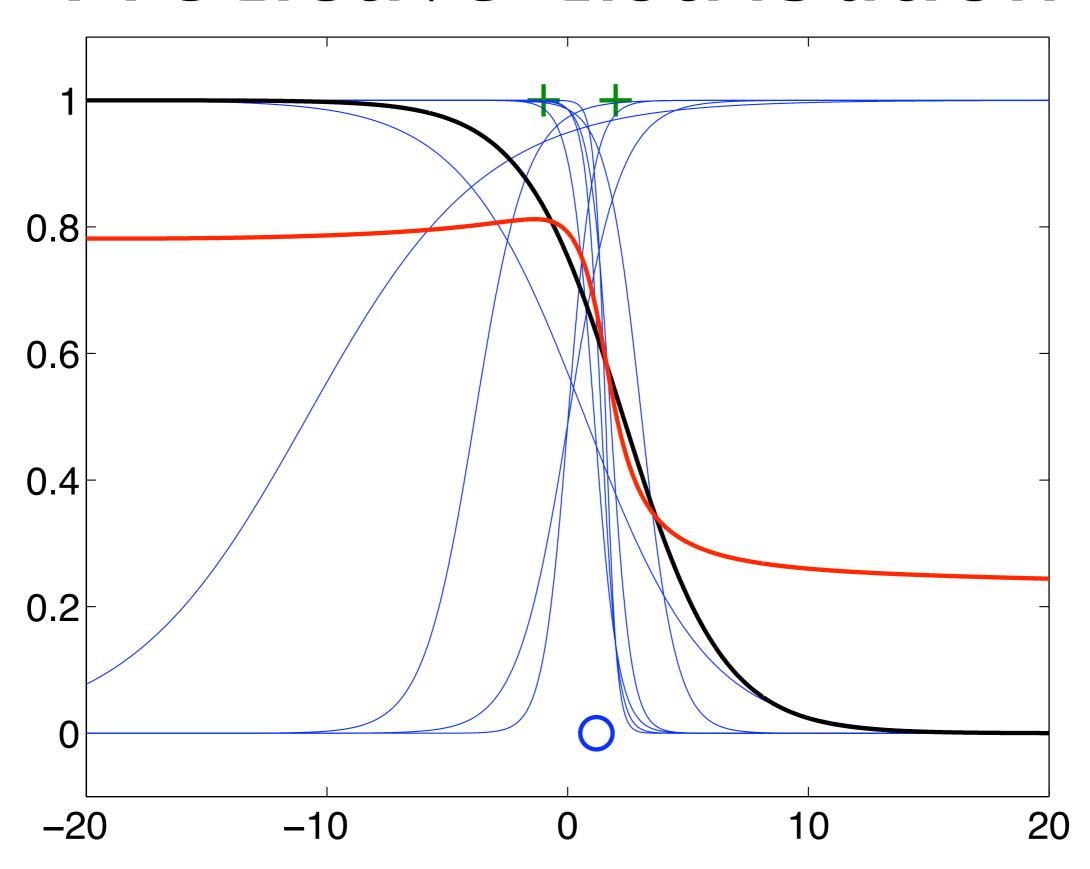
Bayesian regression

- In linear and logistic regression, we've looked at
 - conditional MLE: max_w P(Y | X, w)
 - conditional MAP: max_w P(W=w | X,Y)
- But of course, a true Bayesian would turn up nose at both
 - why?

Sample from posterior



Predictive distribution



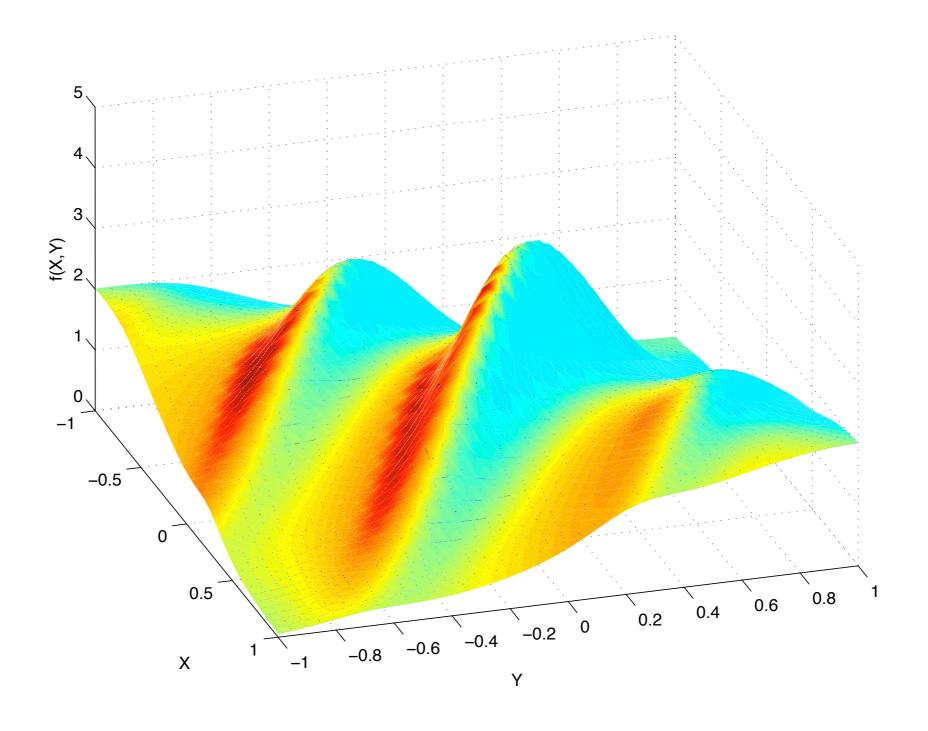
Overfitting

- Overfit: training likelihood » test likelihood
 - often a result of overconfidence
- Overfitting is an indicator that the MLE or MAP approximation is a bad one
- Bayesian inference rarely overfits
 - may still lead to bad results for other reasons!
 - e.g., not enough data, bad model class, ...

So, we want the predictive distribution

- Most of the time...
 - Graphical model is big and highly connected
 - Variables are high-arity or continuous
- Can't afford exact inference
 - Inference reduces to numerical integration (and/ or summation)
 - We'll look at randomized algorithms

Numerical integration



2D is 2 easy!

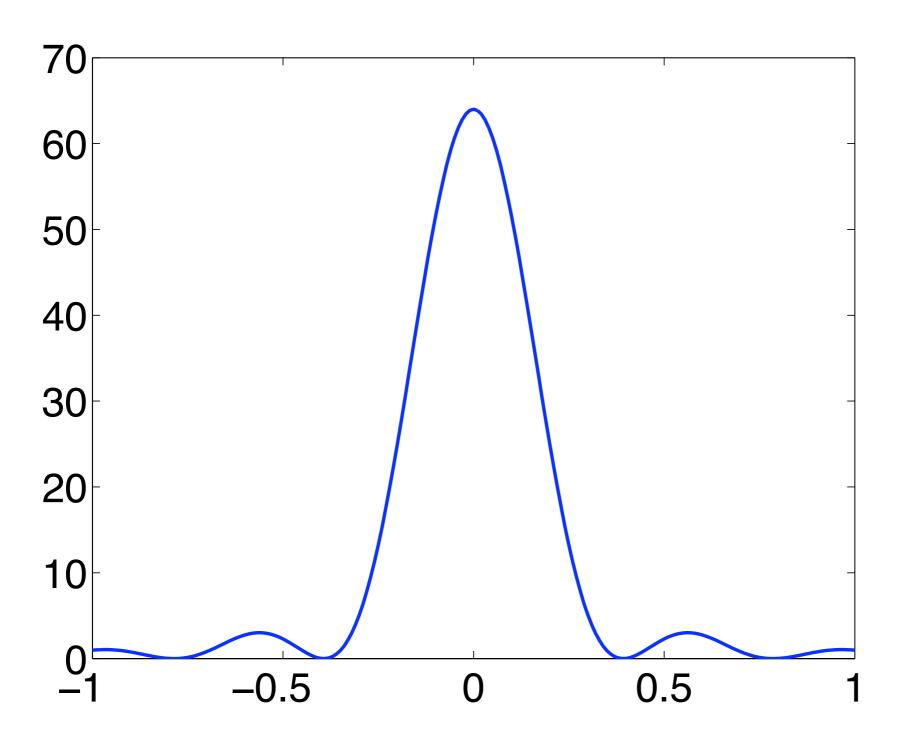
- We care about high-D problems
- Often, much of the mass is hidden in a tiny fraction of the volume
 - simultaneously try to discover it and estimate amount

Application: SLAM

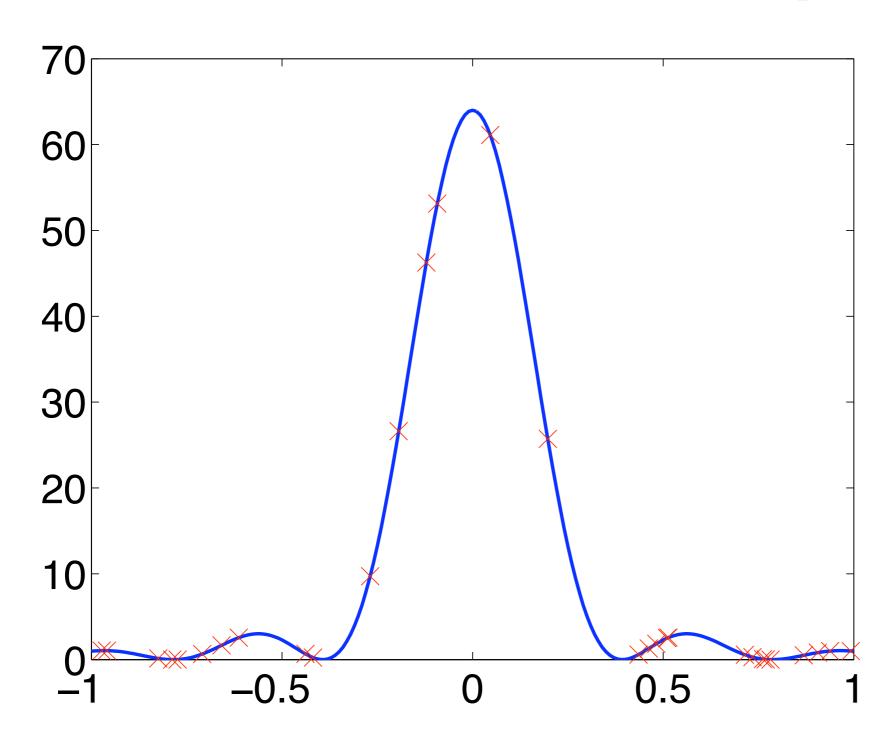
Eliazar and Parr, IJCAI-03

Integrals in multi-million-D

Simple ID problem



Uniform sampling



Uniform sampling

$$E(f(X)) =$$

- So, is desired integral
- But standard deviation can be big
- Can reduce it by averaging many samples
- But only at rate $1/\sqrt{N}$

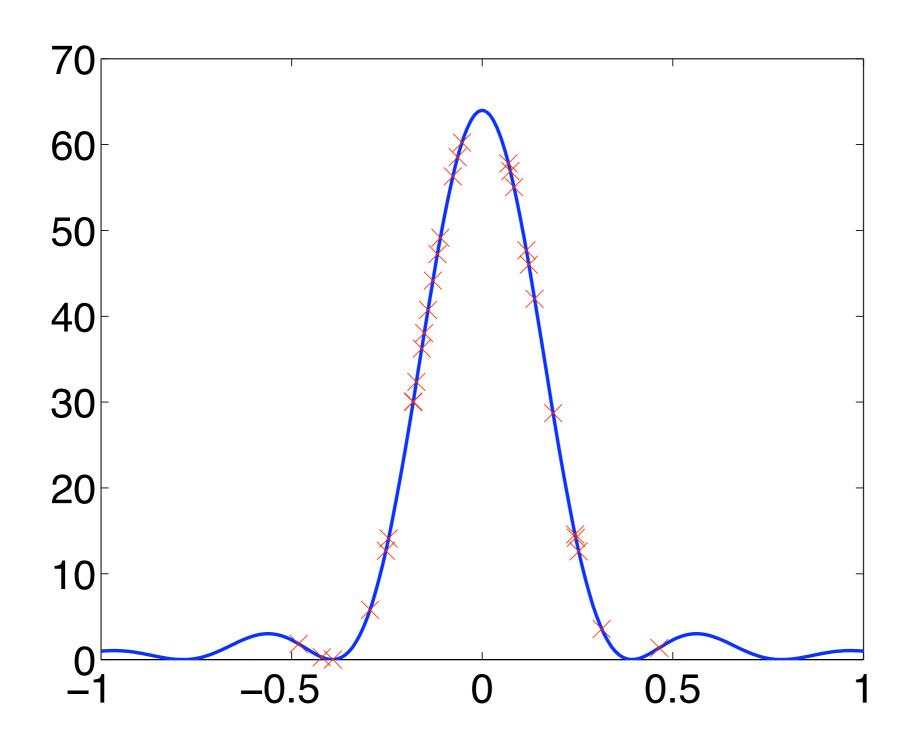
- Instead of $X \sim \text{uniform}$, use $X \sim Q(x)$
- Q =
- Should have Q(x) large where f(x) is large
- Problem:

- Instead of $X \sim \text{uniform}$, use $X \sim Q(x)$
- Q =
- Should have Q(x) large where f(x) is large
- Problem:

$$E_Q(f(X)) = \int Q(x)f(x)dx$$

$$h(x) \equiv f(x)/Q(x)$$

- So, take samples of h(X) instead of f(X)
- $W_i = I/Q(X_i)$ is importance weight
- Q = I/V yields uniform sampling



Variance

- How does this help us control variance?
- Suppose:
 - f big
 - Q small
- Then h = f/Q:
- Variance of each weighted sample is
- Optimal Q?

Importance sampling, part II

Suppose we want

$$\int f(x)dx = \int P(x)g(x)dx = E_P(g(X))$$

- Pick N samples X_i from proposal Q(X)
- \bullet Average W_i g(X_i), where importance weight is
 - \rightarrow $W_i =$

Importance sampling, part II

Suppose we want

$$\int f(x)dx = \int P(x)g(x)dx = E_P(g(X))$$

- Pick N samples X_i from proposal Q(X)
- \bullet Average W_i g(X_i), where importance weight is

$$\rightarrow$$
 W_i =

$$E_Q(Wg(X)) = \int Q(x)[P(x)/Q(x)]g(x)dx = \int P(x)g(x)dx$$

Two variants of IS

- Same algorithm, different terminology
 - want $\int f(x) dx$ vs. $E_P(f(X))$
 - \rightarrow W = I/Q vs.W = P/Q

Parallel importance sampling

Suppose we want

$$\int f(x)dx = \int P(x)g(x)dx = E_P(g(X))$$

 But P(x) is unnormalized (e.g., represented by a factor graph)—know only Z P(x)

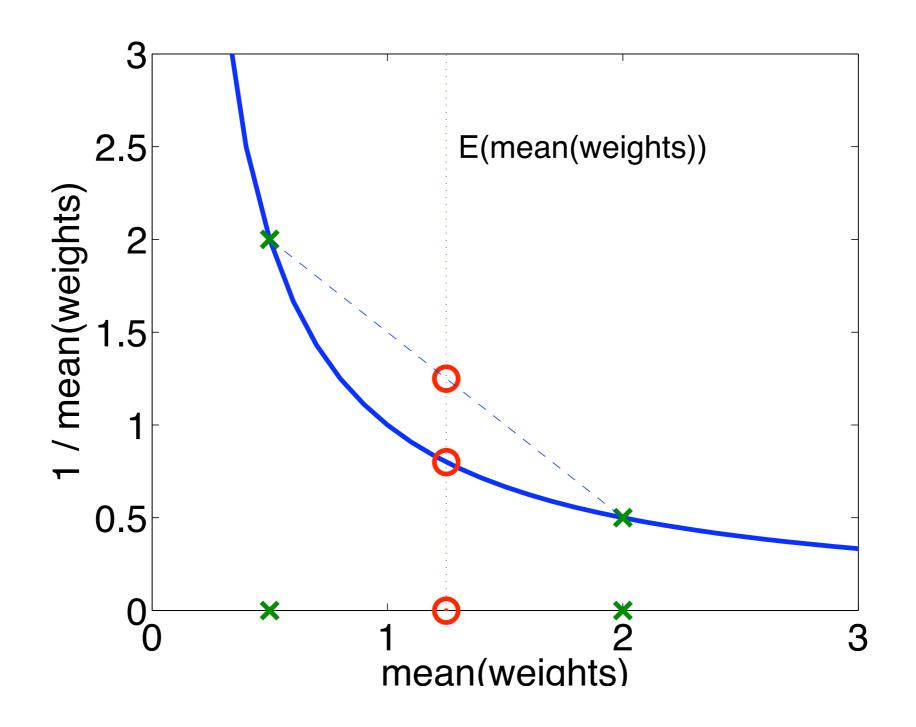
Parallel IS

- Pick N samples X_i from proposal Q(X)
- If we knew $W_i = P(X_i)/Q(X_i)$, could do IS
- Instead, set
 - and,
- Then:

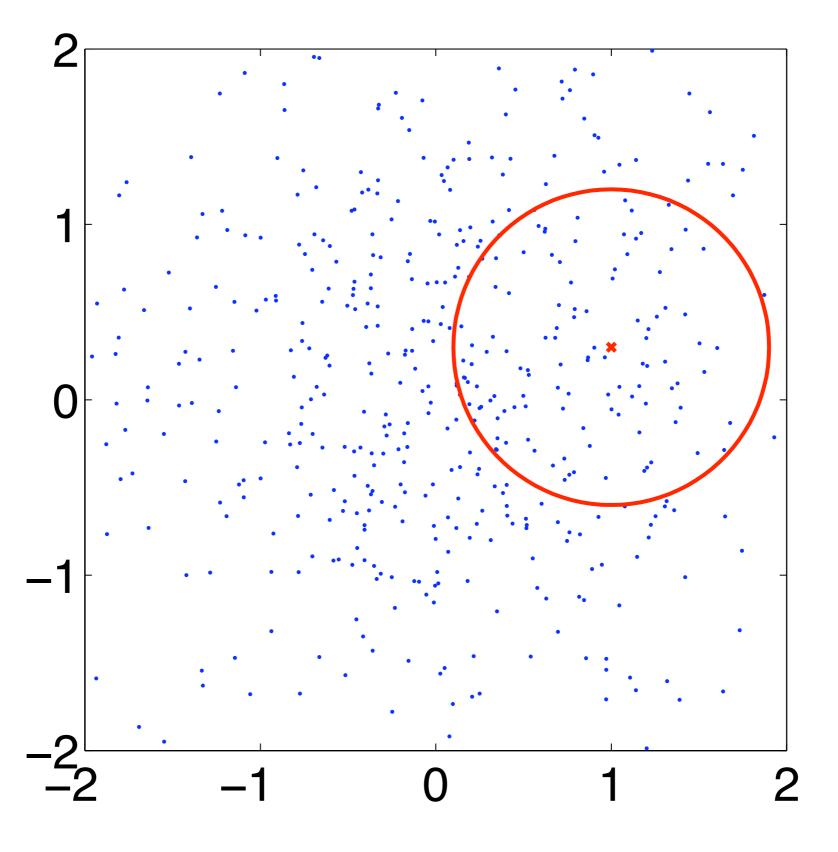
Parallel IS

• Final estimate:

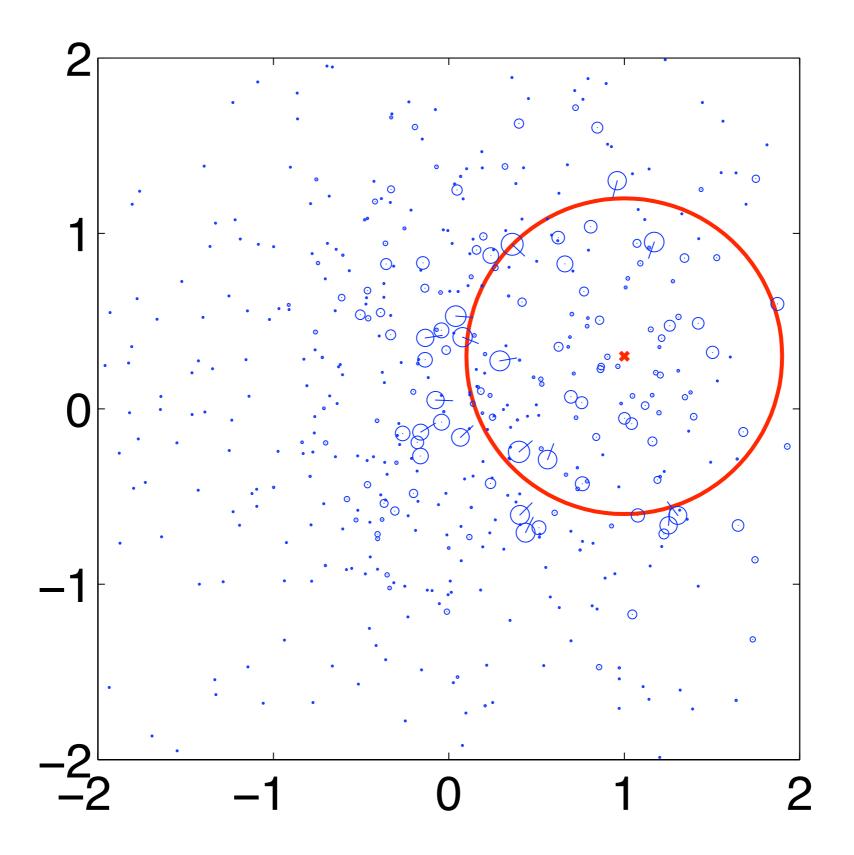
Parallel IS is biased



$$E(W) = Z$$
, but $E(1/W) \neq 1/Z$ in general



$$Q: (X, Y) \sim N(1, 1)$$
 $\theta \sim U(-\pi, \pi)$
 $f(x, y, \theta) = Q(x, y, \theta)P(o = 0.8 \mid x, y, \theta)/Z$



Posterior $E(X,Y,\theta) = (0.496,0.350,0.084)$

SLAM revisited

- Uses a recursive version of parallel importance sampling: particle filter
 - each sample (particle) = trajectory over time
 - sampling extends trajectory by one step
 - recursively update importance weights and renormalize
 - resampling trick to avoid keeping lots of particles with low weights

Particle filter example

