Review: probability

- Monty Hall, weighted dice
- Frequentist v. Bayesian
- Independence
- Expectations, conditional expectations
 - Exp. & independence; linearity of exp.
- Estimator (RV computed from sample)
 - law of large #s, bias, variance, tradeoff

Covariance

- Suppose we want an approximate numeric measure of (in)dependence
- Let E(X) = E(Y) = 0 for simplicity
- Consider the random variable XY
 - if X,Y are typically both +ve or both -ve

• if X,Y are independent

Covariance

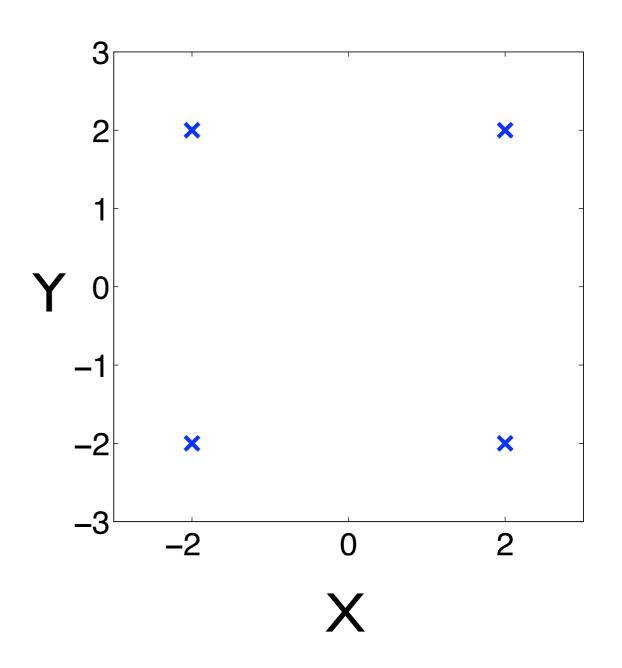
- cov(X,Y) =
- Is this a good measure of dependence?
 - Suppose we scale X by 10:

Correlation

- Like covariance, but controls for variance of individual r.v.s
- cor(X,Y) =
- cor(10X,Y) =

Correlation & independence

- Equal probability on each point
- Are X and Y independent?
- Are X and Y uncorrelated?



Correlation & independence

 Do you think that all independent pairs of RVs are uncorrelated?

 Do you think that all uncorrelated pairs of RVs are independent?

Proofs and counterexamples

- For a question $A \stackrel{?}{\Rightarrow} B$
 - e.g., X,Y uncorrelated $\stackrel{?}{\Rightarrow}$ X,Y independent
 - if true, usually need to provide a **proof**
 - if false, usually only need to provide a counterexample

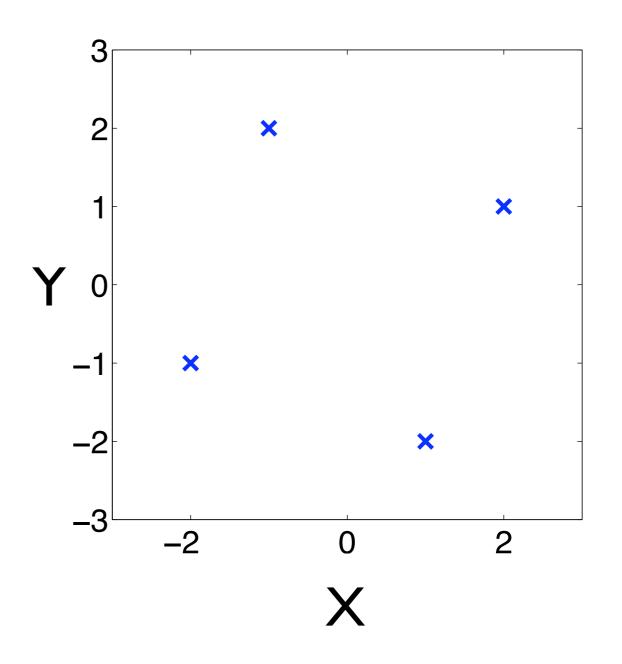
Counterexamples

$$\begin{array}{c} A \stackrel{?}{\Rightarrow} B \\ X,Y \ uncorrelated \stackrel{?}{\Rightarrow} X,Y \ independent \end{array}$$

- Counterexample = example satisfying A but not B
- E.g., RVs X and Y that are not independent,
 but are correlated

Correlation & independence

- Equal probability on each point
- Are X and Y independent?
- Are X and Y uncorrelated?



Bayes Rule

- For any X,Y, C
 - P(X | Y, C) P(Y | C) = P(Y | X, C) P(X | C)
- Simple version (without context)
 - $P(X \mid Y) P(Y) = P(Y \mid X) P(X)$
- Can be taken as definition of conditioning

Exercise

- You are tested for a rare disease, emacsitis—prevalence 3 in 100,000
- Your receive a test that is 99% sensitive and 99% specific
 - sensitivity = P(yes | emacsitis)
 - specificity = P(no | ~emacsitis)
- The test comes out positive
- Do you have emacsitis?

Revisit: weighted dice

- Fair dice: all 36 rolls equally likely
- Weighted: rolls summing to 7 more likely
- Data: I-6 2-5

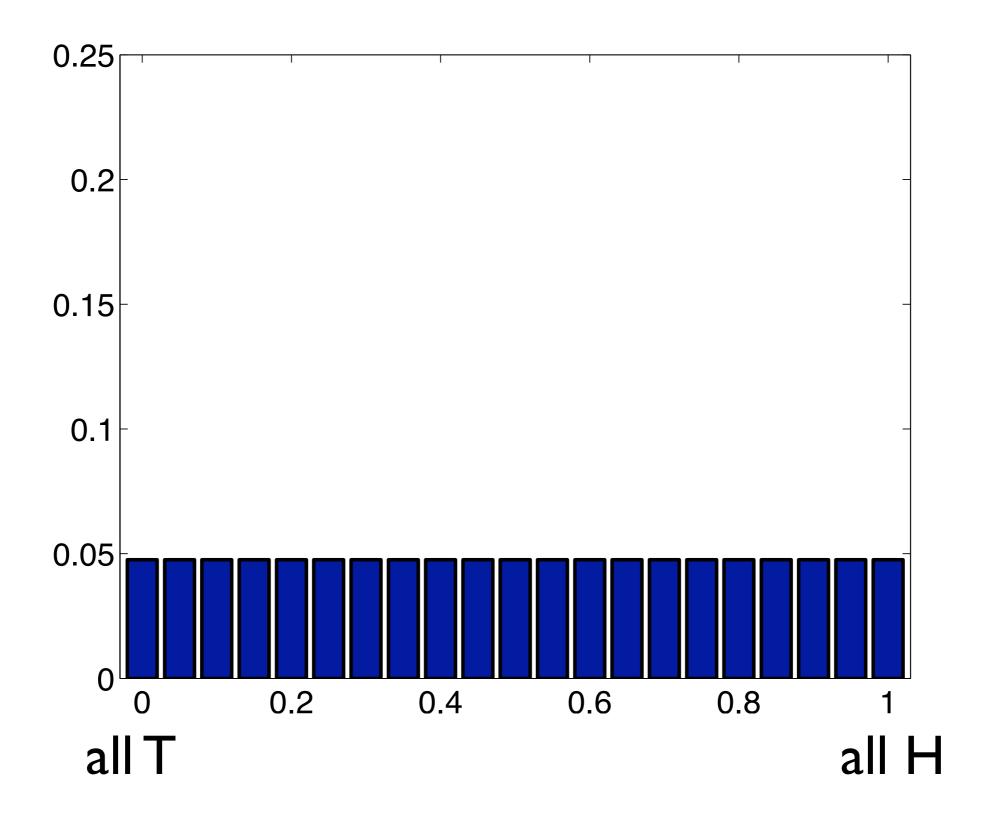
Learning from data

- Given a model class
- And some data, sampled from a model in this class
- Decide which model best explains the sample

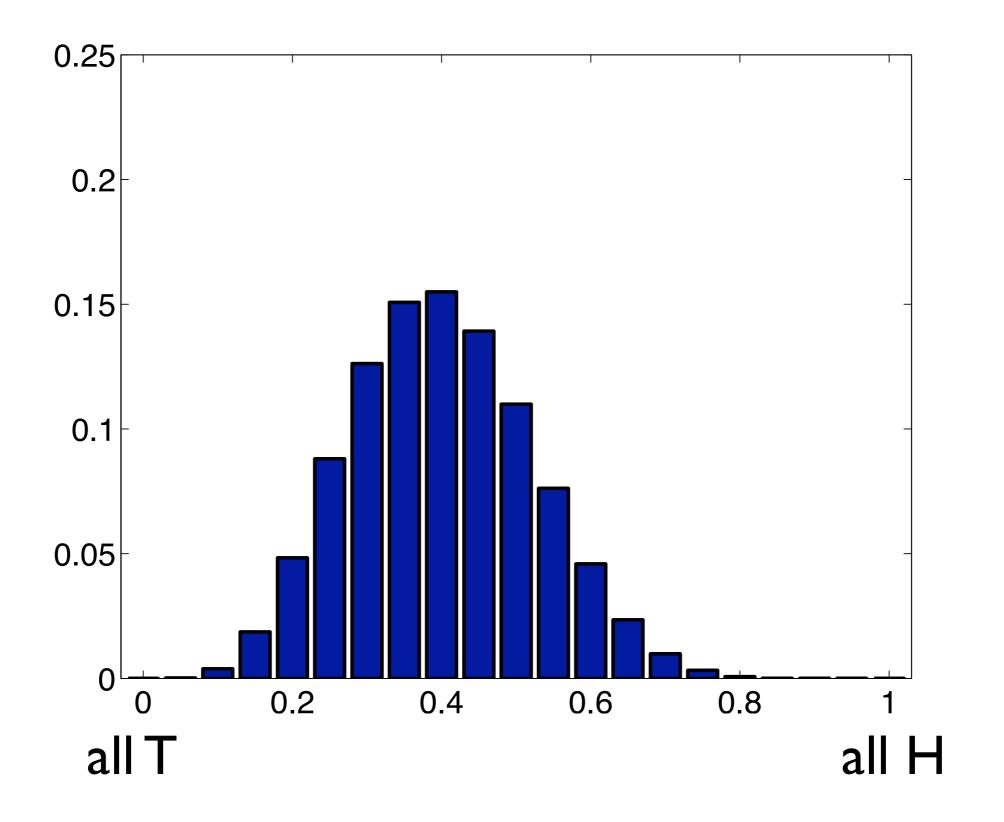
Bayesian model learning

- P(model | data) =
- Z =
- So, for each model, compute:
- Then:

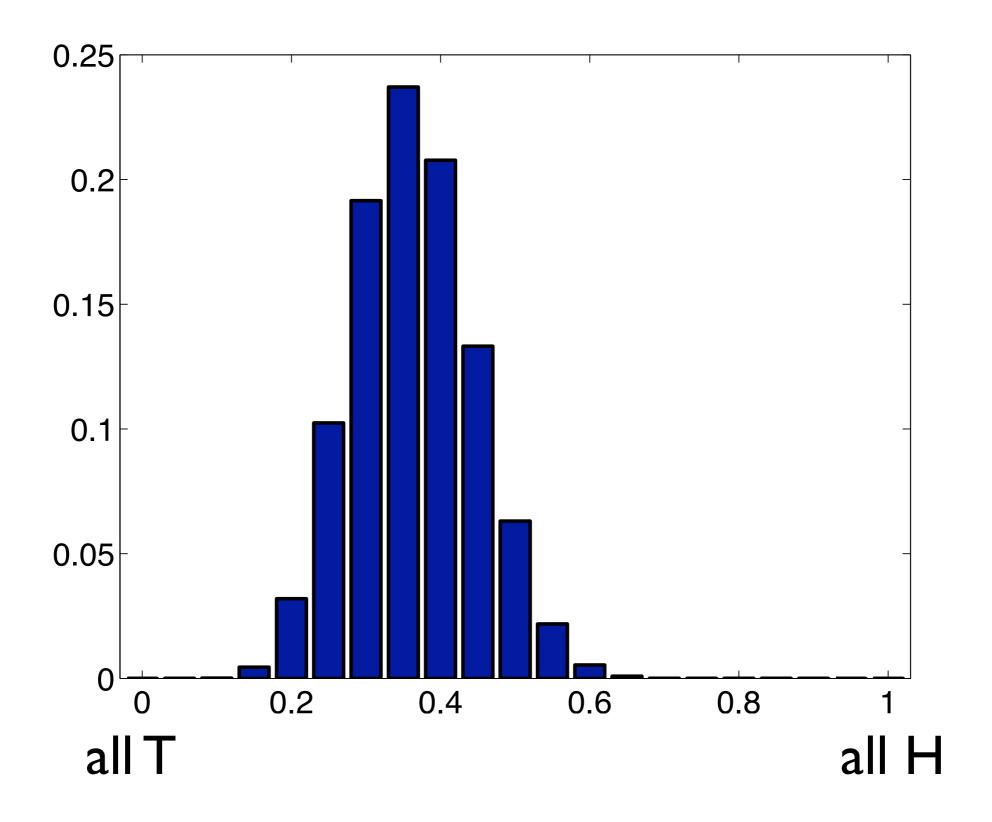
Prior: uniform



Posterior: after 5H, 8T



Posterior: IIH, 20T



Graphical models

Why do we need graphical models?

- So far, only way we've seen to write down a distribution is as a big table
- Gets unwieldy fast!
 - E.g., 10 RVs, each w/ 10 settings
 - Table size =
- Graphical model: way to write distribution compactly using diagrams & numbers

Example ML problem

- US gov't inspects food packing plants
 - 27 tests of contamination of surfaces
 - I2-point ISO 9000 compliance checklist
 - are there food-borne illness incidents in 30 days after inspection? (15 types)
- Q:
- A:

Big graphical models

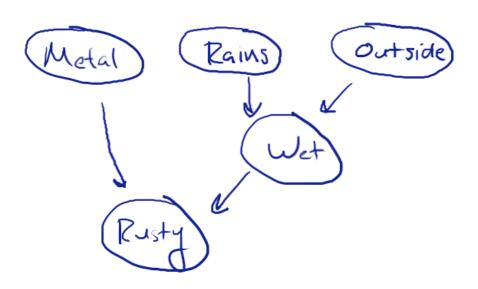
- Later in course, we'll use graphical models to express various ML algorithms
 - e.g., the one from the last slide
- These graphical models will be big!
- Please bear with some smaller examples for now so we can fit them on the slides and do the math in our heads...

Bayes nets

- Best-known type of graphical model
- Two parts: DAG and CPTs

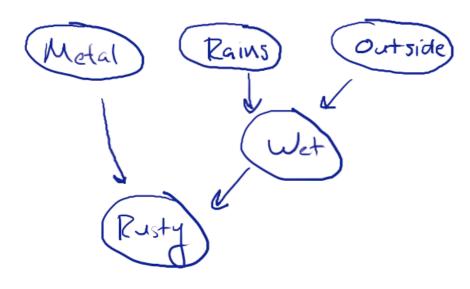
Rusty robot: the DAG

Rusty robot: the CPTs



 For each RV (say X), there is one CPT specifying P(X | pa(X))

Interpreting it



Benefits

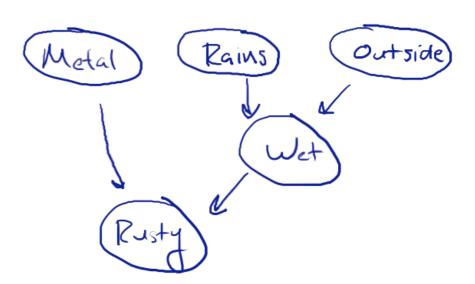
- II v. 31 numbers
- Fewer parameters to learn
- Efficient *inference* = computation of marginals, conditionals \Rightarrow posteriors

Inference example

- P(M, Ra, O, W, Ru) =
 P(M) P(Ra) P(O) P(W|Ra,O) P(Ru|M,W)
- Find marginal of M, O

Independence

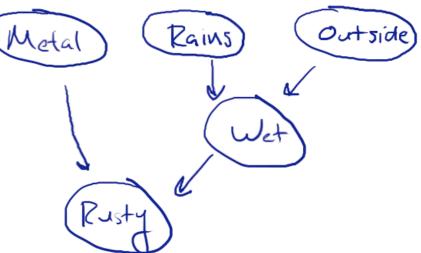
- Showed M ⊥ O
- Any other independences?



- Didn't use
 - independences depend only on
- May also be "accidental" independences

Conditional independence

- How about O, Ru? O Ru
- Suppose we know we're not wet
- P(M, Ra, O, W, Ru) =
 P(M) P(Ra) P(O) P(W|Ra,O) P(Ru|M,W)
- Condition on W=F, find marginal of O, Ru



Conditional independence

- This is generally true
 - conditioning on evidence can make or break independences
 - many (conditional) independences can be derived from graph structure alone
 - "accidental" ones are considered less interesting

Graphical tests for independence

- We derived (conditional) independence by looking for factorizations
- It turns out there is a purely graphical test
 - this was one of the key contributions of Bayes nets
- Before we get there, a few more examples

Blocking

Shaded = observed (by convention)

Explaining away

Intuitively:

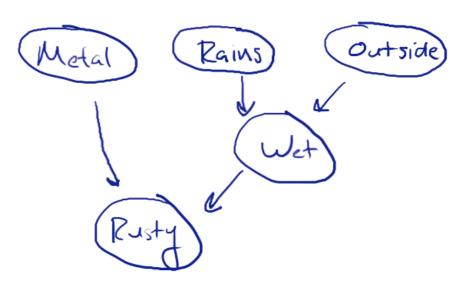
Son of explaining away

d-separation

- General graphical test: "d-separation"
 - d = dependence
- X \(\text{Y} \) | Z when there are no **active paths** between X and Y
- Active paths (W outside conditioning set):

Longer paths

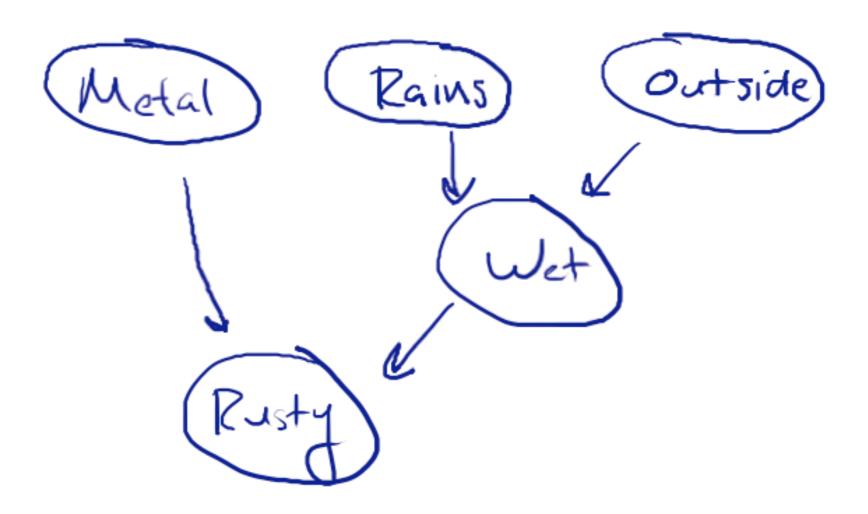
Node is active if:



and inactive o/w

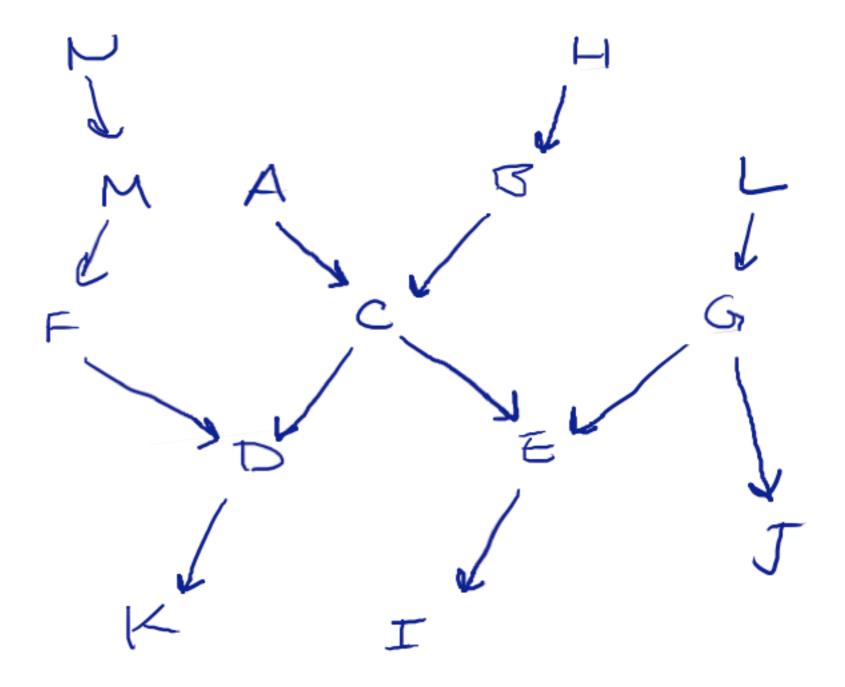
• Path is active if intermediate nodes are

Another example



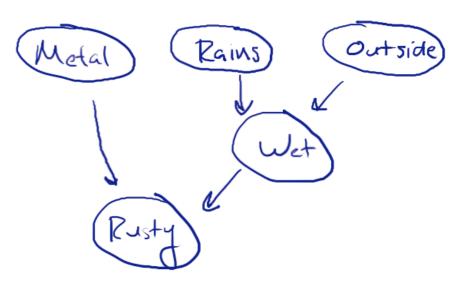
Markov blanket

Markov blanket of C = minimal set of observations to render C independent of rest of graph



Learning Bayes nets

$$P(Ru \mid M,W) =$$



M	Ra	0	W	Ru
H	F	H	T	F
Т	H	Т	7	Т
F	Т	Т	F	F
Т	F	F	F	Т
Щ	F	T	ш	Т

Laplace smoothing

$$P(Ru \mid M,W) =$$



M	Ra	0	W	Ru
H	F	Т	Т	F
Т	Т	Т	T	Т
F	Т	Т	F	F
Т	F	F	F	Т
F	F	Т	F	Т

Advantages of Laplace

- No division by zero
- No extreme probabilities
 - No near-extreme probabilities unless lots of evidence

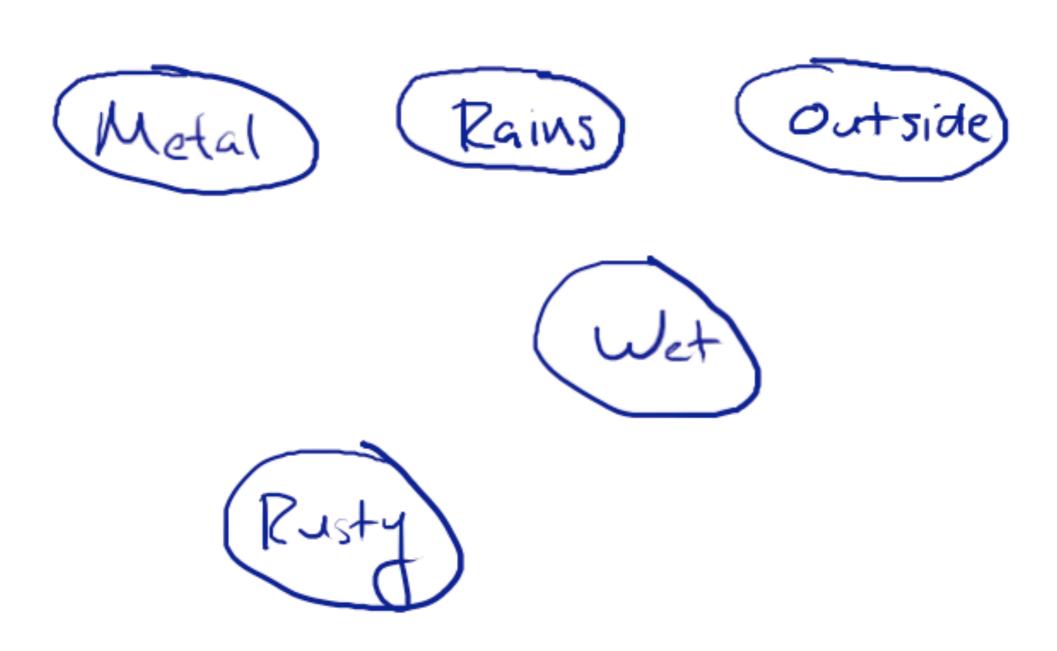
Limitations of counting and Laplace smoothing

- Work only when all variables are observed in all examples
- If there are *hidden* or *latent* variables, more complicated algorithm—we'll cover a related method later in course
 - or just use a toolbox!

Factor graphs

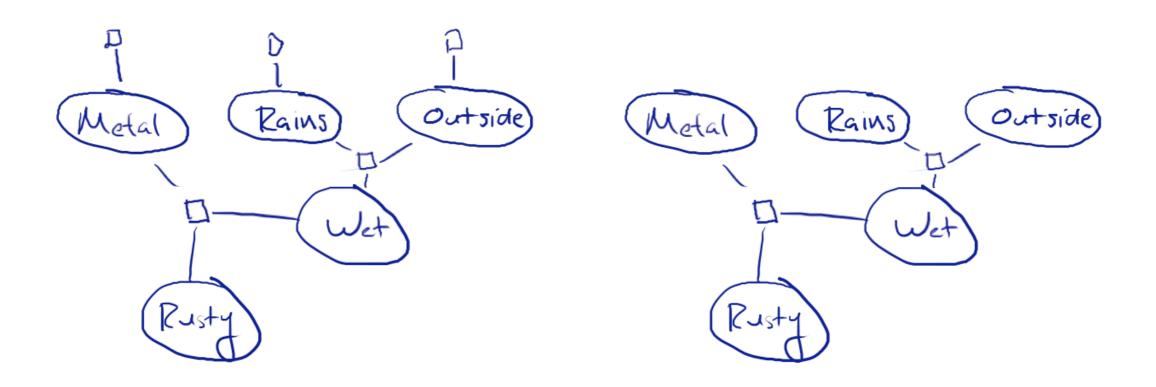
- Another common type of graphical model
- Uses undirected, bipartite graph instead of DAG

Rusty robot: factor graph



P(M) P(Ra) P(O) P(W|Ra,O) P(Ru|M,W)

Convention



- Don't need to show unary factors
- Why? They don't affect algorithms below.

Non-CPT factors

- Just saw: easy to convert Bayes net → factor graph
- In general, factors need not be CPTs: any nonnegative #s allowed
- In general, P(A, B, ...) =

• Z =

Ex: image segmentation

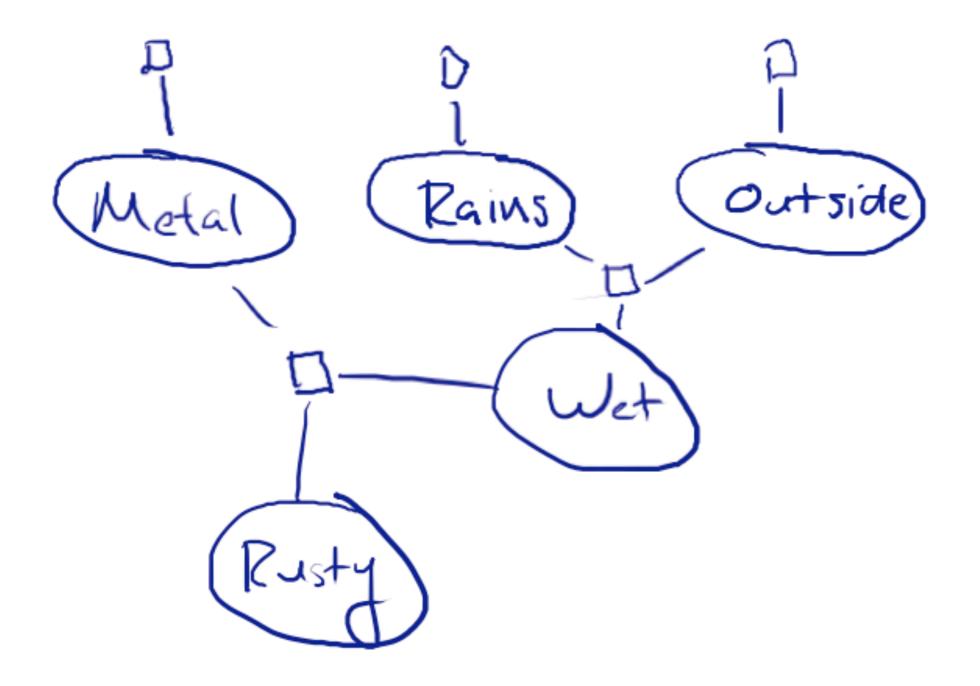
Factor graph → Bayes net

- Possible, but more involved
 - Each representation can handle any distribution
- Without adding nodes:
- Adding nodes:

Independence

- Just like Bayes nets, there are graphical tests for independence and conditional independence
- Simpler, though:
 - Cover up all observed nodes
 - Look for a path

Independence example



Modeling independence

- Take a Bayes net, list the (conditional) independences
- Convert to a factor graph, list the (conditional) independences
- Are they the same list?
- What happened?