Review: probability

- ullet RVs, events, sample space Ω
- Measures, distributions
 - disjoint union property (law of total probability—book calls this "sum rule")
- Sample v. population
- Law of large numbers
- Marginals, conditionals

Monty Hall

Terminology

- Experiment =
- Prior =
- Posterior =

Example: model selection

- You're gambling to decide who has to clean the lab
- You are accused of using weighted dice!
- Two models:
 - fair dice: all 36 rolls equally likely
 - weighted: rolls summing to 7 more likely

prior:
observation:
posterior:

Philosophy

- Frequentist v. Bayesian
- Frequentist view: a probability is a property of the world (the coin has P(H) = 0.62)
- Bayesian view: a probability is a representation of our internal beliefs about the world (we think P(H) = 0.62)

Difference

- Bayesian is willing to assign P(E) to any E, even one which has happened already (although it will be I or 0 if E or ¬E has been observed)
- Frequentist will assign probabilities only to outcomes of future experiments
- Consider the question: what is the probability that coin #273 is fair?

Which is right?

- Both!
- Bayesians can ask more questions
- But for a question that makes sense to both, answer will agree
- Can often rephrase a Bayesian question in frequentist terms
 - answer may differ
 - either may see other's answer as a reasonable approximation

Independence

- X and Y are independent if, for all possible values of y, P(X) = P(X | Y=y)
 - equivalently, for all possible values of x,
 P(Y) = P(Y | X=x)
 - equivalently, P(X,Y) = P(X) P(Y)
- Knowing X or Y gives us no information about the other

Independence: probability = product of marginals

AAPL price

J C		up	same	down	
Weather	sun	0.09	0.15	0.06	0.3
	rain	0.21	0.35	0.14	0.7

0.3 0.5 0.2

Readings

- So far: pI-4, sec I-1.2, sec 2-2.3
- We'll put them next to relevant lectures on schedule page
- They provide extra detail beyond what's in lecture—you are responsible for knowing it
- No specific due date

Expectations

 How much should we expect to earn from our AAPL stock? Weather

	up	same	down
sun	0.09	0.15	0.06
rain	0.21	0.35	0.14

AAPL price

Weather

	up	same	down
sun	+	0	- l
rain	+	0	- I

Linearity of expectation

AAPL price

- Expectation is a linear function of numbers in bottom table
- E.g., change Is to0s or to -2s

Weather

	up	same	down
sun	0.09	0.15	0.06
rain	0.21	0.35	0.14

Weather

	up	same	down
sun	+	0	-
rain	+	0	-

Conditional expectation

AAPL price

• What if we know it's sunny?

Weather

	up	same	down
sun	0.09	0.15	0.06
rain	0.21	0.35	0.14

Weather

	up	same	down
sun	+	0	-1
rain	+	0	-

Independence and expectation

- If X and Y are independent, then:
- Proof:

Sample means

- Sample mean =
- Expectation of sample mean:

Estimators

- Common task: given a sample, infer something about the population
- An estimator is a function of a sample that we use to tell us something about the population
- E.g., sample mean is a good estimator of population mean
- E.g., linear regression

Law of large numbers (more general form)

- If we take a sample of size N from a distribution P with mean μ and compute sample mean \overline{x}
- Then $\overline{x} \rightarrow \mu$ as $N \rightarrow \infty$

Bias

- Given an estimator T of a population quantity θ
- The **bias** of T is
- Sample mean is population mean
- $(I + \sum x_i) / (N+I)$ is

estimator of

Variance

- Two estimators of population mean: sample mean, mean of every 2nd sample
- Both unbiased, but one is much more variable
- Measure of variability: variance

Variance

- If zero-mean: variance = $E(X^2)$
 - Ex: constant 0 v. coin-flip ± l

• In general: $E((X - E(X))^2)$

Exercise: simplify the expression for variance

• $E((X - E(X))^2)$

Exercise

What is the variance of 3X?

Sample variance

- Sample variance =
- Expectation:
- Sample size correction:

Bias-variance decomposition

- Estimator T of population quantity θ
- Mean squared error = $E((T \theta)^2)$ =

CLT

- Central limit theorem: for a sample of size N, population mean μ , population variance σ^2 , the sample average has
 - mean
 - variance

CLT proof

Assume mu = 0 for simplicity

Covariance

- Suppose we want an approximate numeric measure of (in)dependence
- Consider the random variable XY
 - if X,Y are typically both +ve or both -ve

if X,Y are independent

Covariance

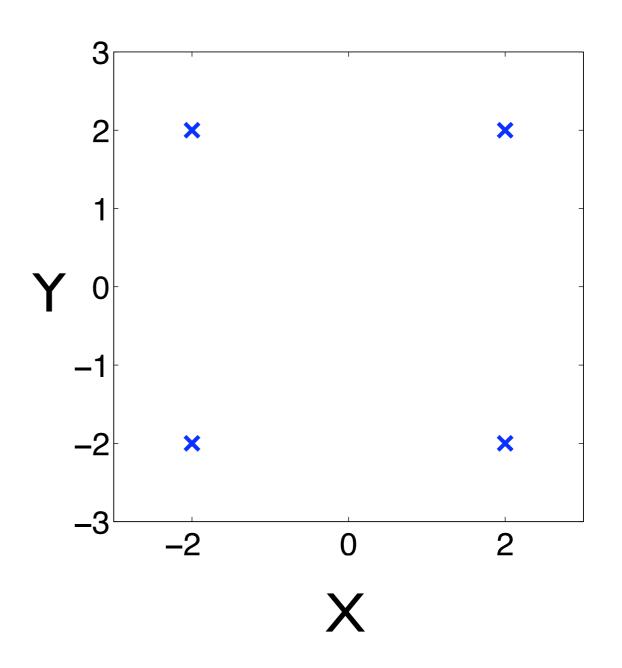
- cov(X,Y) =
- Is this a good measure of dependence?
 - Suppose we scale X by 10:

Correlation

- Like covariance, but control for variance of individual r.v.s
- cor(X,Y) =
- cor(10X,Y) =

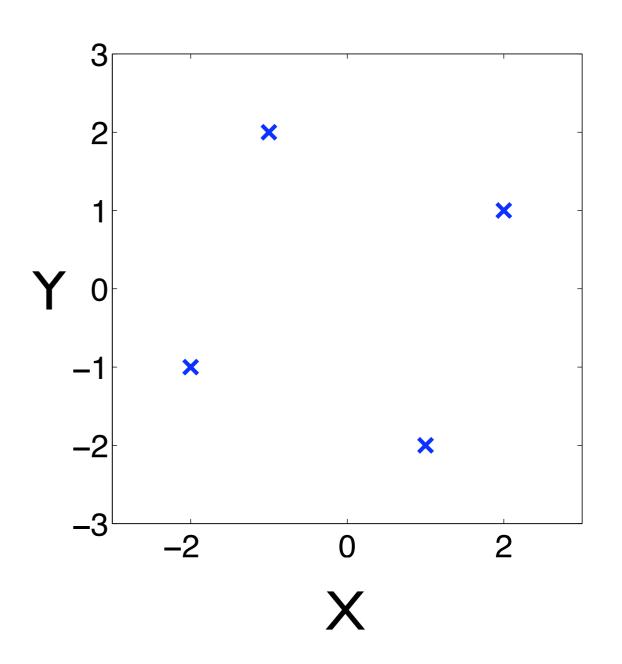
Correlation v. independence

- Equal probability on each point
- Are X and Y independent?
- Are X and Y uncorrelated?



Correlation v. independence

- Equal probability on each point
- Are X and Y independent?
- Are X and Y uncorrelated?



Bayes Rule

- For any X,Y, C
 - P(X | Y, C) P(Y | C) = P(Y | X, C) P(X | C)
- Simple version (without context)
 - P(X | Y) P(Y) = P(Y | X) P(X)
- Can be taken as definition of conditioning

Bayes rule: usual form

- Take symmetric form
 - $\bullet P(X \mid Y) P(Y) = P(Y \mid X) P(X)$
- Divide by P(Y)

Revisit: weighted dice

- Fair dice: all 36 rolls equally likely
- Weighted: rolls summing to 7 more likely
- Data: I-6 2-5

Exercise

- You are tested for a rare disease, emacsitis—prevalence 3 in 100,000
- Your receive a test that is 99%
 sensitive and 99% specific
 - sensitivity = P(yes | emacsitis)
 - specificity = P(no | ~emacsitis)
- The test comes out positive
- Do you have emacsitis?