Probability

Probability

• Random variables weather { ram, sun}

Atomic events

Sample space

Probability

• Combining events weather = rain 1 HW1 > 90 U HII > 10

St - weether = rain

OR

Probability " Probability

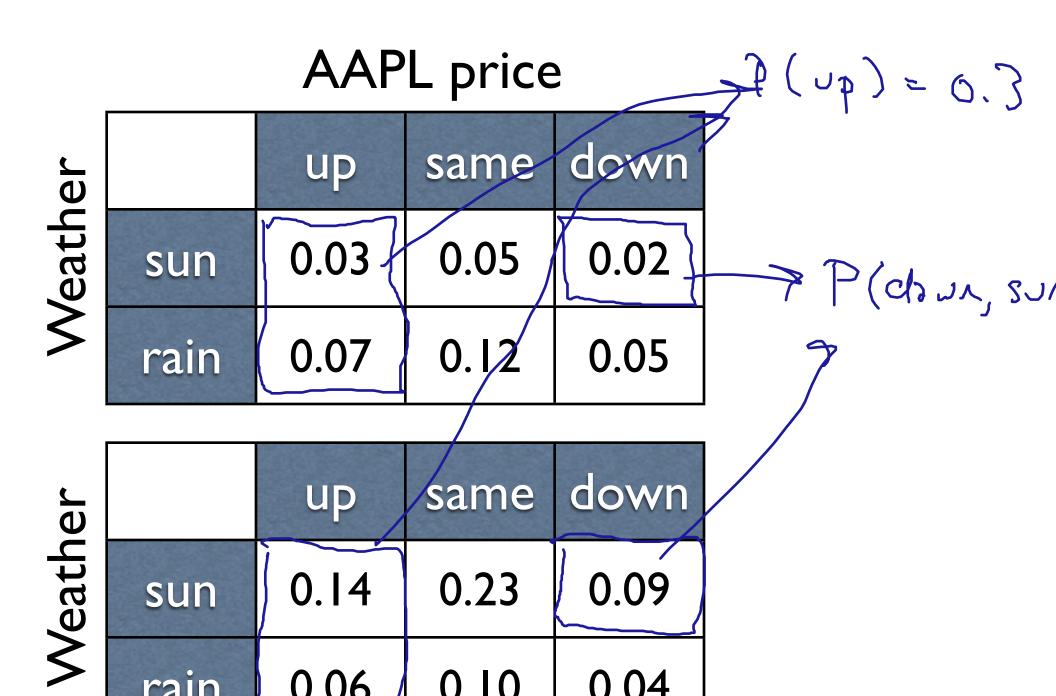
- Measure: M: 22 NR
- = o disjoint union: M(E, UE, W -Ex) = M(E,
 - e.g.: count $\mu(E) = |F|$
 - interpretation: how sig is an event
 - Distribution: M s.t. M(R) = 1
 - interpretation: $M(\epsilon) = probability of \epsilon$
 - e.g.: un form: M(E) = 1E1

Example

AAPL price

) L		up	same	down
Weather	sun	0.09	0.15	0.06
	rain	0.21	0.35	0.14

Bigger example



Notation

- X=x: event that r.v. X is realized as value x
- P(X=x) means probability of event X=x
 - if clear from context, may omit "X=" P(k)
 - instead of P(Weather=rain), just P(rain)
 - complex events too: e.g., $P(X=x,Y\neq y)$
- P(X) means a function: $x \rightarrow P(X=x)$

Functions of KVs

 Extend definition: any deterministic function of RVs is also an RV

• E.g., 3[sumy] + 5 [same]

AAPL price

91 if soury, Oif not

			ı	
J.		up	same	down
Weather	sun	3	8	3
>			F	

Sample v. population

AAPL price

Suppose we watch for 100 days and count up our observations

ler		up	same	
Weather	sun	0.09	0.15	
>	rain	0.21	0.35	

AAPL price

Jer		up	same	
eath	sun		12	
>	rain	77	U i	

Law of large numbers

- If we take a sample of size N from distribution P, count up frequencies of atomic events, and normalize (divide by N) to get a distribution P
- Then $\tilde{P} \to P$ as $N \to \infty$

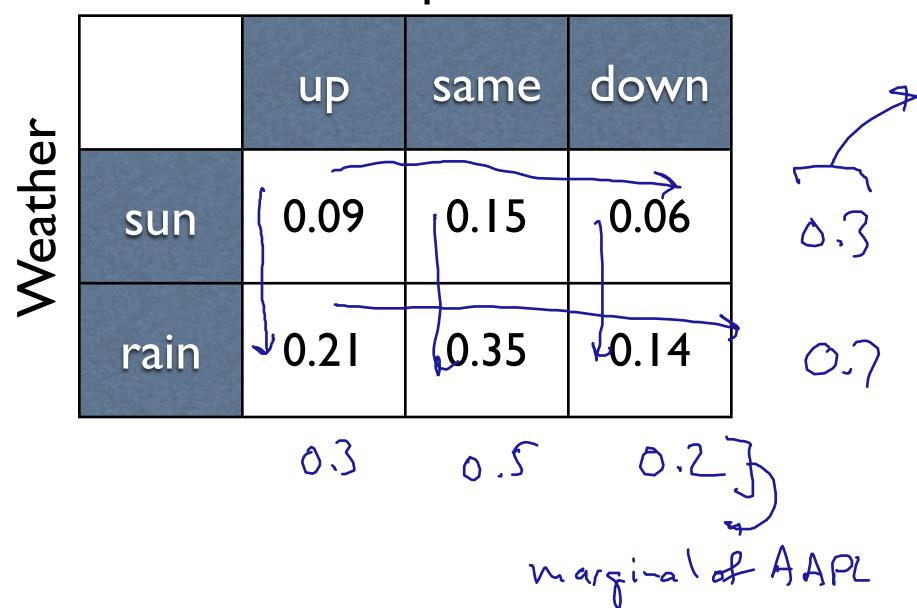
distributions

· Marginals > disting at it would have been if we ignored an R.V.

· Joint -> Gefore forgeting

Marginals

AAPL price



Marginals

AAPL price

down same up 0.03 0.05 0.02 sun 0.05 rain 0.12 0.07

P(Weather, A MP Same

SV7 117 .28

Fair 113 .22

eľ		up	same	down
eath	sun	0.14	0.23	0.09
>	rain	0.06	0.10	0.04

W 5m .56

Weather

Law of total probability

- Two RVs, X and Y
- Y has values $y_1, y_2, ..., y_k$

vorking w/ distribution

Coir

- Observation event that happened
- Consistency
- Renormalization
- Notation:

P(Westler | Com=H) Westler=sun

	H	
sun	0.15	
rain	0.35	

→ (o ...)
, 3
, 7

literature

When you have eliminated the impossible, whatever remains, however improbable, must be the truth.

—Sir Arthur Conan Doyle, as Sherlock Holmes

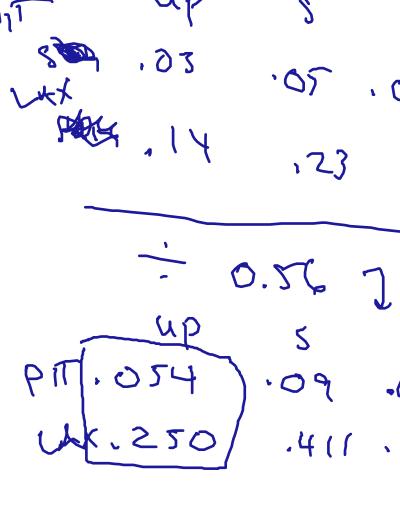
Conditionals

AAPL price

	up	same	down
sun	0.03	0.05	0.02
rain	0.07	0.12	0.05

veathe

	up	same	down
sun	0.14	0.23	0.09
rain	0.06	0.10	0.04



In general

- Zero out all but some slice of high-D table
 - or an irregular set of entries
- Throw away zeros
 - unless irregular structure makes it inconvenient
- Renormalize
 - normalizer for P(. | event) is P(event)

Conditionals

 Thought experiment: what happens if we condition on an event of zero probability?

Nal

Notation

- P(X | Y) is a function: $x, y \rightarrow P(X=x | Y=y)$
- As is standard, expressions are evaluated separately for each realization:
 - $P(X \mid Y) P(Y)$ means the function $x, y \rightarrow P(X = x \mid Y = y) P(Y = y)$

Exercise

Hall opens Hall opens A Prise

Independence

- X and Y are independent if, for all possible values of y, P(X) = P(X | Y=y)
 - equivalently, for all possible values of x,
 P(Y) = P(Y | X=x)
 - equivalently, P(X,Y) = P(X) P(Y)
- Knowing X or Y gives us no information about the other

= product of marginals

AAPL price

		up	same	down
Weather	sun	0.09	0.15	0.06
>	rain	0.21	0.35	0.14

0.3

0.7

0.3 0.5 0.2

Expectations

AAPL price

low much should we xpect to earn from ur AAPL stock? Weather

	up	same	•
sun	0.09	0.15	
rain	0.21	0.35	

Weather

	up	same	Ь
sun	+	0	
rain	+	0	

Linearity of expectation

Neather

AAPL price

Expectation is a linear function of numbers in bottom table

E.g., change - Is to 0s or to -2s

ler		up	same	C
Weather	sun	0.09	0.15	
>	rain	0.21	0.35	

	up	same	O
sun	+	0	
rain	+	0	

onditional expectation

AAPL price

Vhat if we know it's unny?

Weather

 up
 same

 sun
 0.09

 rain
 0.21

 0.35

Weather

	up	same	d
sun	+	0	
rain	+	0	

expectation

- If X and Y are independent, then:
- Proof:

Variance

- Two stocks: one as above, other always earns 0.1 each day
- Same expectation, but one is much more variable
- Measure of variability: variance

Variance

- If zero-mean: variance = $E(X^2)$
 - Ex: constant 0 v. coin-flip ± l

• In general: $E((X - E(X))^2)$

expression for variance

• $E((X - E(X))^2)$

Covariance

- Suppose we want an approximate numeric measure of (in)dependence
- Consider the r.v. XY
 - if X,Y are typically both +ve or both -ve

• if X,Y are independent

Covariance

- cov(X,Y) =
- Is this a good measure of dependence?
 - Suppose we scale X by 10:

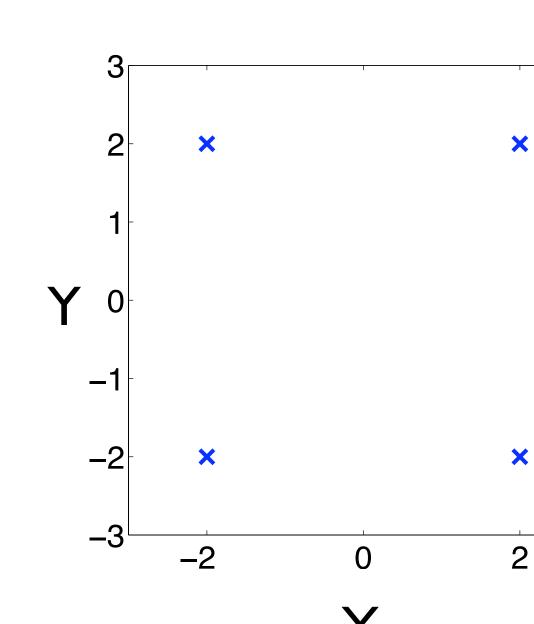
Correlation

- Like covariance, but control for variance of individual r.v.s
- cor(X,Y) =

Contactor v.

independence

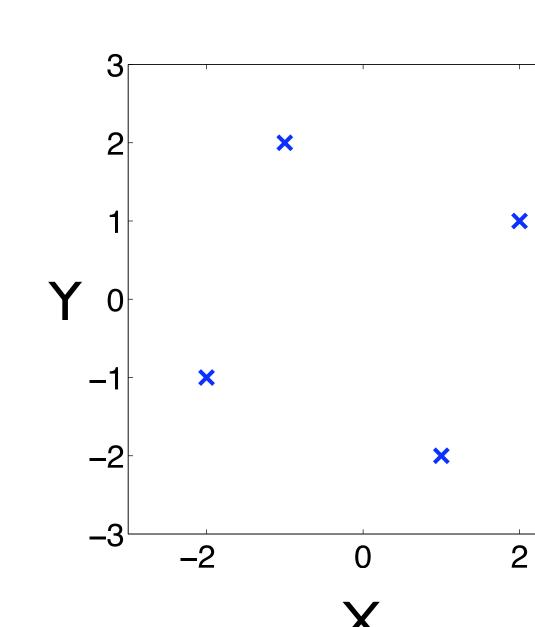
- Equal probability on each point
- Are X and Y independent?
- Are X and Y uncorrelated?



Contactor v.

independence

- Equal probability on each point
- Are X and Y independent?
- Are X and Y uncorrelated?



Law of large numbers

- Sample mean = expectation calculated from a sample =
- More general form of law:
- If we take a sample of size N from distribution P with mean μ and compute sample mean $\widetilde{\mu}$
- Then $\widetilde{\mu} \rightarrow \mu$ as $N \rightarrow \infty$

CLT

- Central limit theorem: for a sample of size N, population mean μ, population variance σ², the sample average has
 - mean
 - variance

CLT proof

Assume mu = 0 for simplicity

Bayes Rule

Rev. Thomas Ba 1702–1761

- For any X,Y, C
 - P(X | Y, C) P(Y | C) = P(Y | X, C) P(X | C)
- Simple version (without context)
 - $P(X \mid Y) P(Y) = P(Y \mid X) P(X)$
- Can be taken as definition of conditioning

Bayes rule: usual form

- Take symmetric form
 - $\bullet \ P(X \mid Y) \ P(Y) = P(Y \mid X) \ P(X)$
- Divide by P(Y)

Exercise

- ou are tested for a rare disease, macsitis—prevalence 3 in 100,000
- our receive a test that is 99% ensitive and 99% specific
- sensitivity = P(yes | emacsitis)
- specificity = P(no | ~emacsitis)
- he test comes out **positive**
- Oo you have emacsitis?